Effects of Soil Properties and Nutrients on the Fruit Economic Parameters and Oil Nutrient Contents of Camellia oleifera
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Location
2.2. Samples Collection
2.3. Soil Analysis
2.4. Economic Parameters of Fruits
2.5. Oil Content Analysis
2.6. Fatty Acid Composition Analysis
2.7. Nutritional Substance Determination
2.8. Statistical Analysis
3. Results
3.1. Physico-Chemical Properties of C. oleifera Cultivated Soils
3.2. The Parameters of C. oleifera Fruits in Different Studied Sites
3.3. Distribution of Fatty Acids in Camellia Seed Oil of Selected Sites
3.4. Distribution of Active Compounds in Camellia Seed Oil
3.5. Correlations of Selected Soil Properties, Soil Nutrients, and Fruit Parameters
3.6. Correlation of Soil Properties, Soil Nutrients and Fatty Acids
3.7. Correlation of Soil Properties, Soil Nutrients and Active Compounds
4. Discussion
4.1. C. oleifera Fruits Yield Parameters as Affected by Soil Properties and Nutrients
4.2. Effects of Soil Properties and Soil Nutrients on the Composition and Content of Fatty Acids
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, D.; Tan, X.; Peng, W.; Liu, Q.; Zeng, Y.; Chen, H.; Tian, H.; Ma, Q. Improved application of Camellia oleifera on biomass energy by enlarging its production. Acta Sci. Nat. Univ. Sunyatseni 2007, 46, 109–110. [Google Scholar]
- Li, G.; Ma, L.; Yan, Z.; Zhu, Q.; Cai, J.; Wang, S.; Deng, S. Extraction of Oils and Phytochemicals from Camellia oleifera Seeds: Trends, Challenges, and Innovations. Processes 2022, 10, 1489. [Google Scholar]
- Lin, P.; Wang, K.; Zhou, C.; Xie, Y.; Yao, X.; Yin, H. Seed transcriptomics analysis in Camellia oleifera uncovers genes associated with oil content and fatty acid composition. Int. J. Mol. Sci. 2018, 19, 118. [Google Scholar] [CrossRef]
- Yang, C.; Liu, X.; Chen, Z.; Lin, Y.; Wang, S. Comparison of oil content and fatty acid profile of ten new Camellia oleifera cultivars. J. Lipids 2016, 2016, 3982486. [Google Scholar]
- Wang, X.; Zeng, Q.; Verardo, V.; del Mar Contreras, M. Fatty acid and sterol composition of tea seed oils: Their comparison by the “FancyTiles” approach. Food Chem. 2017, 233, 302–310. [Google Scholar]
- Sahari, M.A.; Ataii, D.; Hamedi, M. Characteristics of tea seed oil in comparison with sunflower and olive oils and its effect as a natural antioxidant. J. Am. Oil Chem. Soc. 2004, 81, 585–588. [Google Scholar] [CrossRef]
- Cheng, Y.T.; Wu, S.L.; Ho, C.Y.; Huang, S.M.; Cheng, C.L.; Yen, G.C. Beneficial effects of camellia oil (Camellia oleifera Abel.) on ketoprofen-induced gastrointestinal mucosal damage through upregulation of HO-1 and VEGF. J. Agric. Food Chem. 2014, 62, 642–650. [Google Scholar] [CrossRef]
- Ye, Y.; Xing, H.; Li, Y. Nanoencapsulation of the sasanquasaponin from Camellia oleifera, its photo responsiveness and neuroprotective effects. Int. J. Nanomed. 2014, 9, 4475. [Google Scholar] [CrossRef]
- Li, J. Soil, water and nutrient loss in young plantation of the inter-cropped tea oil (Camellia oleifera) with different crops. Scientia Silvae Sinicae 2008, 44, 167–172. [Google Scholar]
- Gu, W.; Lu, Z.; Huang, C.; Li, Y.; Guan, Y. Screening study of fire resistant tree species in Jianshui County, Yunnan Province of southwestern China. J. Beijing For. Univ. 2020, 42, 49–60. [Google Scholar]
- Liu, J.; Wu, L.; Chen, D.; Li, M.; Wei, C. Soil quality assessment of different Camellia oleifera stands in mid-subtropical China. Appl. Soil Ecol. 2017, 113, 29–35. [Google Scholar] [CrossRef]
- Liu, C.; Chen, L.; Tang, W.; Peng, S.; Li, M.; Deng, N.; Chen, Y. Predicting potential distribution and evaluating suitable soil condition of oil tea Camellia in China. Forests 2018, 9, 487. [Google Scholar] [CrossRef]
- Ruan, J.; Zhang, F.; Wong, M.H. Effect of nitrogen form and phosphorus source on the growth, nutrient uptake and rhizosphere soil property of Camellia sinensis L. Plant Soil 2000, 223, 65–73. [Google Scholar] [CrossRef]
- Wu, F.; Li, J.; Chen, Y.; Zhang, L.; Zhang, Y.; Wang, S.; Shi, X.; Li, L.; Liang, J. Effects of phosphate solubilizing bacteria on the growth, photosynthesis, and nutrient uptake of Camellia oleifera Abel. Forests 2019, 10, 348. [Google Scholar] [CrossRef]
- Cao, Y.Q.; Yao, X.H.; Ren, H.D.; Wang, K.L.; Li, J.X.; Zhou, Q. Correlations between soil nutrient characteristics and kernel quality traits in Camellia oleifera cultivation. Chin. Agric. Sci. Bull. 2022, 38, 81–85. [Google Scholar]
- Qu, M.H.; Chen, X.D.; Ni, Z.L.; Mo, R.H.; Han, S.F.; Tang, F.B. Characteristics and distributions of metal elements in Camellia oleifera fruits and soil in production areas of Zhejiang province. J. Trop. Subtrop. Bot. 2021, 29, 259–268. [Google Scholar]
- Liu, J. The Research on Soil Fertility Quality Assessment of Camellia Oleifera in Different Dite Type and Quality of Tea Oil. Ph.D. Theis, Central South University of Forestry & Technology, Changsha, China, 2018. [Google Scholar]
- Lu, R. Analytical Methods of Soil Agrochemistry; China Agricultural Science and Technology Press: Beijing, China, 1999. [Google Scholar]
- Liu, C.L.; Wang, M.K.; Yang, C.C. Determination of Cation Exchange Capacity by One-Step Soil Leaching Column Method. Commun. Soil Sci. Plan. 2001, 32, 2359–2372. [Google Scholar] [CrossRef]
- Liu, C.; Deng, N.; He, Z.; Tang, W.; Wang, X.; Chen, L.; Chen, Y. Effects of Camellia oleifera clone selection on soil nutrient and microbial community structure. Agron. J. 2021, 113, 200–209. [Google Scholar] [CrossRef]
- Júnior, J.L.R.; de Oliveira, S.R.; Caldas, N.M.; Neto, J.A.G. Evaluation of alternate lines of Fe for sequential multi-element determination of Cu, Fe, Mn and Zn in soil extracts by high-resolution continuum source flame atomic absorption spectrometry. Anal. Chim. Acta 2008, 627, 198–202. [Google Scholar]
- Ji, K.; Song, Q.; Yu, X.; Tan, C.; Wang, L.; Chen, L.; Xiang, X.; Gong, W.; Yuan, D. Hormone analysis and candidate genes identification associated with seed size in Camellia oleifera. R. Soc. Open Sci. 2022, 9, 211138. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, Y.; He, M.; Yang, Y. Composition of fatty acid in commercially available bottled vegetable oil. J. Hyg. Res. 2012, 41, 445–448. [Google Scholar]
- Gimeno, E.; Castellote, A.I.; Lamuela-Raventos, R.M.; De La Torre, M.C.; Lopez-Sabater, M.C. Rapid determination of vitamin E in vegetable oils by reversed-phase high-performance liquid chromatography. J. Chromatogr. A 2000, 881, 251–254. [Google Scholar] [CrossRef]
- Sassano, G.; Sanderson, P.; Franx, J.; Groot, P.; van Straalen, J.; Bassaganya-Riera, J. Analysis of pomegranate seed oil for the presence of jacaric acid. J. Sci. Food Agr. 2009, 89, 1046–1052. [Google Scholar] [CrossRef]
- Fang, X.; Du, M.; Luo, F.; Jin, Y. Physicochemical properties and lipid composition of Camellia seed oil (Camellia oleifera Abel.) extracted using different methods. Food Sci. Technol. Res. 2015, 21, 779–785. [Google Scholar] [CrossRef]
- Zhang, W.; Yao, Z.; Zheng, X.; Liu, C.; Wang, R.; Wang, K.; Shi, J. Effects of fertilization and stand age on N2O and NO emissions from tea plantations: A site-scale study in a subtropical region using a modified biogeochemical model. Atmos. Chem. Phys. 2020, 20, 6903–6919. [Google Scholar] [CrossRef]
- Li, N.; Zare, E.; Huang, J.; Triantafilis, J. Mapping soil cation-exchange capacity using Bayesian modeling and proximal sensors at the field scale. Soil Sci. Soc. Am. J. 2018, 82, 1203–1216. [Google Scholar] [CrossRef]
- Bai, W.; Huang, A.; Yang, S.; Lu, X.; Wang, Z.; Wu, N.; Tang, Y.; Zhang, F. Soil nutrient characteristics and comprehensive fertility evaluation of Camellia oleifera in main production area of Guizhou province. Southwest China J. Agric. Sci. 2022, 35, 2096–2106. [Google Scholar]
- Sun, W. Analysis of Soil Stoichiometric Characteristics of Camellia oleifera in Different Planting Years. Agricult. Technol. Equip. 2021, 6, 7–8. [Google Scholar]
- Zhou, Y.; Wang, R.; Chen, Z.; Zhong, F.; Liao, W. Analysis on soil moisture characteristics of Camellia oleifera forest at low mountain and hill areas. Nonwood For. Res. 2013, 31, 7–12. [Google Scholar]
- D’Andria, R.; Lavini, A.; Morelli, G.; Patumi, M.; Terenziani, S.; Calandrelli, D.; Fragnito, F. Effects of water regimes on® ve pickling and double aptitude olive cultivars (Olea europaea L.). J. Hortic. Sci. Biotech. 2004, 79, 18–25. [Google Scholar] [CrossRef]
- Lavee, S.; Hanoch, E.; Wodner, M.; Abramowitch, H. The effect of predetermined deficit irrigation on the performance of cv. Muhasan olives (Olea europaea L.) in the eastern coastal plain of Israel. Sci. Hortic. 2007, 112, 156–163. [Google Scholar] [CrossRef]
- Moriana, A.; Orgaz, F.; Pastor, M.; Fereres, E. Yield responses of a mature olive orchard to water deficits. J. Am. Soc. Hortic. Sci. 2003, 128, 425–431. [Google Scholar] [CrossRef]
- Xiao, Z.; Zhang, Z.; Krebs, C.J. Seed size and number make contrasting predictions on seed survival and dispersal dynamics: A case study from oil tea Camellia oleifera. Forest Ecol. Manag. 2015, 343, 1–8. [Google Scholar] [CrossRef]
- Hu, G.; Gao, C.; Fan, X.; Gong, W.; Yuan, D. Pollination compatibility and Xenia in Camellia oleifera. Hort Sci. 2020, 55, 898–905. [Google Scholar] [CrossRef]
- Zhang, F.; Li, Z.; Zhou, J.; Gu, Y.; Tan, X. Comparative study on fruit development and oil synthesis in two cultivars of Camellia oleifera. BMC Plant Biol. 2021, 21, 348. [Google Scholar] [CrossRef]
- Xie, L.; Hu, J.; Zhang, Q.; Sun, Q.; Zhang, Y.; Niu, L. Influence of pollen sources on the expression of FA and TAG biosynthetic pathway genes in seeds of Paeonia rockii during the rapid oil accumulation. Sci. Hortic. 2019, 243, 477–483. [Google Scholar] [CrossRef]
- Vicianová, M.; Ducsay, L.; Ryant, P.; Provazník, M.; Zapletalová, A.; Slepčan, M. Oilseed Rape (Brassica Napus L.) Nutrition by Nitrogen and Phosphorus and its Effect on Yield of Seed, Oil and Higher Fatty Acids Content. Acta Univ. Agric. Silvic. Mendelianae Brun. 2020, 68, 129–136. [Google Scholar] [CrossRef]
- Su, M.H.; Shih, M.C.; Lin, K.-H. Chemical composition of seed oils in native Taiwanese Camellia species. Food Chem. 2014, 156, 369–373. [Google Scholar] [CrossRef]
Number | Sample Site | Sampling Site Location | Altitude/m | Parent Material | Afforestation Period |
---|---|---|---|---|---|
1 | Tangquan Village, Donghu Town | 113°8′49″ E 26°29′32″ N | 260 | Plate shale | Old Forest |
2 | Shaming Village, Daozi Town | 113°4′14″ E 26°27′24″ N | 540 | Granite | Old Forest |
3 | Suyinlou Village, Dayi Town | 113°3′50″ E 26°16′2″ N | 160 | Plate shale | 2010 |
4 | Tianxin Village, Nanyang Town | 112°56′12″ E 26°18′38″ N | 170 | Quaternary | 2011 |
5 | Yicheng Village, Zhaoshi Subdistrict | 112°55′20″ E 26°17′15″ N | 85 | Quaternary | 2011 |
6 | Zaotian Village, Taipingxu Township | 112°46′3″ E 26°12′15″ N | 400 | Limestone | 2013 |
7 | Tanhu Village, Changping Township | 112°74′22″E 26°20′18″ N | 360 | Limestone | 2011 |
8 | Shili Village, Renyi Township | 112°65′23″ E 26°26′8″ N | 110 | Quaternary | 2009 |
9 | Jiangli Village,Nanjing Town | 112°42′38″ E 26°22′4″ N | 110 | Limestone | 2010 |
10 | Jiangli Village, Nanjing Town | 112°42′49″ E 26°22′7″ N | 110 | Limestone | Old Forest |
11 | Liming Village, Zheqiao Town | 112°42′51″ E 26°26′17″ N | 99 | Quaternary | 2009 |
12 | Huayuan Village, Yongji Town | 112°55′20″ E 26°11′38″ N | 70 | Sandstone | 2010 |
13 | Maotian Village, Shuidongjiang Subdistrict | 112°57′14″ E 26°24′24″ N | 125 | Quaternary | 2010 |
14 | Banbei Village, Yuqing Township | 112°44′4″ E 26°20′34″ N | 90 | Limestone | 2010 |
15 | Zifeng Village, Dashi Town | 112°14′40″ E 26°52′47″ N | 105 | Quaternary | 2009 |
16 | Tianhua Company, Zheqiao Town | 112°47′34″ E 26°28′00″ N | 108 | Quaternary | 2008 |
17 | Zhouxing Village, Xinshi Town | 112°5′13″ E 26°57′35″ N | 81 | Quaternary | Old Forest |
18 | Jinzao Village, Donghu Town | 113°4′56″ E 26°27′26″ N | 240 | Plate shale | Old Forest |
19 | Oil-Tea Camellia Cutting Orchard, Mashui Town | 113°1′26″ E 26°27′26″ N | 83 | Quaternar | Old Forest |
20 | Dongnan Village, Mashui Town | 112°58′57″ E 26°39′33″ N | 110 | Quaternar | 2012 |
Sample | pH | WC (%) | CEC (Cmol/kg) | Ex. Ca2+ (Cmol/kg) | Ex. Mg2+ (Cmol/kg) | Es (mg/kg) | OM (g/kg) | TN (g/kg) | TP (g/kg) | TK (g/kg) | AN (mg/kg) | AP (mg/kg) | AK (mg/kg) | Fe (mg/kg) | Mn (mg/kg) | Cu (mg/kg) | Zn (mg/kg) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 4.60 | 13.97 | 11.90 | 0.68 | 0.21 | 28.30 | 24.10 | 1.74 | 0.33 | 15.50 | 79.00 | 1.50 | 44.00 | 52.75 | 2.48 | 0.34 | 0.88 |
2 | 4.49 | 18.03 | 13.40 | 0.48 | 0.23 | 42.80 | 32.80 | 1.73 | 0.43 | 23.30 | 114.00 | 0.90 | 48.00 | 25.66 | 4.86 | 0.28 | 1.13 |
3 | 4.40 | 22.53 | 14.20 | 0.51 | 0.23 | 144.80 | 7.00 | 0.57 | 0.38 | 20.70 | 31.00 | 0.60 | 43.00 | 1.30 | 0.12 | 0.02 | 0.18 |
4 | 4.22 | 20.58 | 14.60 | 0.49 | 0.20 | 50.30 | 15.80 | 1.38 | 0.24 | 9.90 | 52.00 | 0.90 | 37.00 | 10.95 | 1.31 | 0.20 | 0.50 |
5 | 4.38 | 13.61 | 12.70 | 0.54 | 0.24 | 88.50 | 13.60 | 1.07 | 0.27 | 12.70 | 66.00 | 0.80 | 71.00 | 10.97 | 3.94 | 0.17 | 1.27 |
6 | 5.34 | 14.77 | 9.60 | 3.42 | 0.63 | 5.60 | 17.00 | 1.07 | 0.42 | 11.50 | 72.00 | 3.50 | 43.00 | 31.22 | 45.85 | 0.90 | 1.62 |
7 | 4.78 | 23.95 | 16.20 | 1.70 | 0.39 | 79.50 | 26.20 | 1.40 | 0.32 | 12.30 | 83.00 | 1.50 | 47.00 | 11.63 | 3.41 | 0.22 | 1.11 |
8 | 4.26 | 19.39 | 19.80 | 0.63 | 0.19 | 28.80 | 17.00 | 1.39 | 0.29 | 20.50 | 52.00 | 1.00 | 35.00 | 13.50 | 0.15 | 0.17 | 0.97 |
9 | 4.50 | 20.76 | 11.90 | 0.88 | 0.20 | 102.60 | 10.20 | 0.91 | 0.26 | 14.60 | 40.00 | 0.70 | 42.00 | 3.87 | 5.32 | 0.07 | 0.67 |
10 | 4.74 | 19.02 | 16.20 | 1.74 | 0.32 | 62.10 | 20.70 | 1.33 | 0.32 | 19.50 | 96.00 | 0.70 | 78.00 | 16.20 | 16.21 | 0.52 | 1.94 |
11 | 4.30 | 16.23 | 14.90 | 0.49 | 0.19 | 75.70 | 25.50 | 1.37 | 0.19 | 11.20 | 80.00 | 1.10 | 36.00 | 15.30 | 7.53 | 0.41 | 0.87 |
12 | 4.50 | 13.85 | 4.80 | 0.47 | 0.18 | 25.20 | 9.00 | 0.68 | 0.18 | 10.60 | 45.00 | 1.10 | 32.00 | 16.80 | 6.33 | 0.20 | 0.45 |
13 | 4.46 | 16.47 | 13.60 | 0.72 | 0.23 | 108.20 | 13.60 | 0.99 | 0.67 | 9.20 | 67.00 | 9.60 | 85.00 | 6.21 | 2.92 | 0.10 | 0.33 |
14 | 4.47 | 16.09 | 10.10 | 0.67 | 0.20 | 35.90 | 19.80 | 1.39 | 0.34 | 17.10 | 88.00 | 12.90 | 48.00 | 45.04 | 6.44 | 0.79 | 1.29 |
15 | 4.57 | 18.60 | 10.80 | 0.58 | 0.20 | 109.20 | 3.90 | 0.75 | 0.68 | 10.40 | 19.00 | 0.60 | 23.00 | 0.88 | 0.24 | 0.01 | 0.22 |
16 | 4.37 | 21.49 | 10.70 | 0.61 | 0.22 | 96.60 | 16.50 | 1.07 | 0.28 | 13.90 | 60.00 | 0.70 | 38.00 | 5.90 | 1.96 | 0.17 | 0.68 |
17 | 4.49 | 15.33 | 12.20 | 0.52 | 0.23 | 96.10 | 10.00 | 1.13 | 0.38 | 17.50 | 47.00 | 0.30 | 36.00 | 3.45 | 7.79 | 0.06 | 0.49 |
18 | 4.58 | 14.66 | 15.40 | 0.67 | 0.23 | 46.50 | 28.60 | 1.55 | 0.33 | 9.70 | 88.00 | 0.90 | 27.00 | 11.74 | 6.72 | 0.23 | 0.90 |
19 | 4.57 | 19.77 | 15.10 | 0.44 | 0.19 | 95.80 | 8.00 | 0.72 | 0.25 | 10.40 | 37.00 | 0.30 | 24.00 | 1.62 | 0.13 | 0.02 | 0.13 |
20 | 4.43 | 19.69 | 11.20 | 0.51 | 0.17 | 113.4 | 5.70 | 0.56 | 0.40 | 8.00 | 28.00 | 0.30 | 18.00 | 1.33 | 0.10 | 0.02 | 0.15 |
Average | 4.52 | 17.94 | 12.97 | 0.84 | 0.24 | 71.80 | 16.25 | 1.14 | 0.35 | 13.93 | 57.06 | 2.00 | 42.75 | 14.32 | 6.19 | 0.25 | 0.79 |
CV/% | 5.28 | 17.26 | 24.31 | 84.66 | 42.56 | 52.01 | 50.24 | 31.86 | 37.82 | 32.06 | 42.21 | 164.52 | 40.96 | 100.42 | 163.32 | 100.59 | 63.96 |
Sample | Fw (g) | Hd (mm) | Vd (mm) | Pt (mm) | Ptm (mm) | Fst (mm) | Nv (F) | Se (F) | Fse (%) | Dse (%) | Dkr (%) | Oc (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 42.10 a | 20.64 f | 35.13 b | 4.48 d | 1.81 d | 2.02 d | 2.73 a | 6.40 a | 44.81 | 51.38 | 35.05 | 48.16 |
2 | 11.45 I,j | 26.40 e | 26.60 g | 6.11 c | 2.75 c | 2.70 c | 2.53 a,b | 4.07 c | 39.81 | 52.78 | 50.75 | 42.54 |
3 | 31.05 c | 37.08 a | 36.98 a | 7.63 a,b | 3.52 a,b | 3.61 b | 2.47 a,b | 4.67 c | 40.57 | 52.78 | 50.75 | 48.88 |
4 | 24.37 e | 33.71 b | 35.70 b | 7.26 b | 3.46 a,b | 3.34 b,c | 2.53 a,b | 3.53 d,c | 43.26 | 51.04 | 54.53 | 39.43 |
5 | 18.44 g | 30.36 d | 34.09 c | 7.12 b | 2.99 b,c | 2.94 c | 2.40 b | 3.13 c | 42.99 | 50.88 | 54.34 | 38.64 |
6 | 30.30 c | 18.60 g | 19.77 i | 4.04 d | 1.86 d | 2.09 d | 2.40 b | 5.36 b | 43.01 | 50.38 | 64.34 | 38.64 |
7 | 21.87 f | 32.12 c | 31.38 d | 7.57 b | 3.39 a | 3.42 b,c | 3.00 a | 5.40 b | 43.34 | 53.02 | 61.46 | 41.86 |
8 | 22.41 f | 32.96 c | 36.77 a | 8.41 a | 3.99 a | 4.03 a | 2.00 c | 3.00 c | 38.04 | 60.28 | 64.54 | 44.19 |
9 | 22.76 f | 33.03 b,c | 33.40 c | 6.82 b,c | 3.35 a,b | 3.28 b,c | 1.80 c | 2.53 d | 41.74 | 52.63 | 60.74 | 42.13 |
10 | 15.77 h | 29.67 d | 29.39 e | 7.97 a,b | 3.28 b | 3.79 a,b | 2.07 b,c | 2.67 c,d | 38.25 | 53.48 | 55.75 | 43.13 |
11 | 30.43 c | 29.51 d | 29.66 e | 7.70 a,b | 3.69 a | 3.67 b | 2.80 a | 4.07 c | 39.98 | 53.10 | 60.28 | 46.04 |
12 | 35.47 b | 19.51 f | 20.32 h | 4.37 d | 1.96 d | 2.27 d | 2.87 a | 5.00 b,c | 42.58 | 52.10 | 59.61 | 47.11 |
13 | 28.37 d | 34.95 b | 35.00 b,c | 6.99 b | 3.74 a | 3.59 b | 2.40 b | 3.27 d,c | 42.19 | 49.14 | 54.76 | 38.32 |
14 | 29.13 c,d | 36.22 a | 36.13 a,b | 6.82 b,c | 3.85 a | 3.86 a,b | 2.60 a,b | 3.73 d | 44.53 | 50.20 | 55.25 | 40.57 |
15 | 23.93 e,f | 16.96 h | 18.41 i | 4.19 d | 1.68 d | 2.14 d | 2.67 a,b | 4.07 c | 41.92 | 51.56 | 54.88 | 38.87 |
16 | 23.09 e,f | 31.97 c,d | 33.59 c | 6.51 c | 3.21 b | 3.49 b,c | 2.13 b,c | 2.73 c,d | 43.05 | 54.39 | 53.52 | 42.77 |
17 | 10.69 j | 25.06 e | 27.73 f | 6.47 c | 2.94 b,c | 3.42 b,c | 1.87 c | 2.53 d | 37.43 | 55.83 | 61.43 | 40.81 |
18 | 12.32 i | 26.75 e | 27.94 f | 6.16 c | 2.81 b,c | 2.79 c | 2.07 b,c | 2.93 c,d | 43.02 | 55.60 | 60.49 | 41.00 |
19 | 19.02 g | 31.10 c,d | 34.10 c | 8.20 a | 3.87 a | 3.98 a,b | 2.00 c | 2.40 d | 37.01 | 51.70 | 61.21 | 39.10 |
20 | 23.95 e,f | 33.38 b,c | 35.30 b | 6.71 c | 3.16 b | 3.03 c | 2.20 b,c | 3.40 d,c | 48.26 | 48.61 | 58.69 | 36.98 |
Average | 23.85 | 29.00 | 30.87 | 6.58 | 3.07 | 3.17 | 2.37 | 3.74 | 41.79 | 52.54 | 56.62 | 41.96 |
CV (%) | 33.86 | 20.81 | 18.84 | 20.39 | 23.60 | 20.38 | 15.00 | 30.06 | 6.66 | 4.99 | 11.54 | 8.21 |
Sample | Palmitic Acid (C16:0)% | Stearic Acid (C18:0)% | Palmitoleic Acid (C16:1)% | Heptadecenoic Acid (C17:1)% | Oleic Acid (C18:1)% | Linoleic Acid (C18:2)% | Linolenic Acid (C18:3)% | Eicosenoic Acid (C20:1)% | Tetracosanoic Acid (C24:1)% | SFA (%) | MUFA (%) | PUFA (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 8.30 | 2.30 | 0.09 | 0.08 | 81.70 | 6.70 | 0.27 | 0.54 | 0.07 | 10.60 | 82.48 | 6.97 |
2 | 8.50 | 1.90 | 0.08 | 0.07 | 80.40 | 8.10 | 0.33 | 0.54 | 0.07 | 10.40 | 81.16 | 8.43 |
3 | 8.10 | 2.60 | 0.09 | 0.08 | 82.70 | 5.60 | 0.27 | 0.51 | 0.07 | 10.70 | 83.45 | 5.87 |
4 | 8.90 | 2.00 | 0.09 | 0.08 | 79.70 | 8.30 | 0.31 | 0.52 | 0.07 | 10.90 | 80.46 | 8.61 |
5 | 8.55 | 2.00 | 0.10 | 0.08 | 80.50 | 7.75 | 0.31 | 0.56 | 0.08 | 10.55 | 81.32 | 8.06 |
6 | 8.55 | 2.00 | 0.09 | 0.08 | 80.70 | 7.60 | 0.33 | 0.53 | 0.08 | 10.55 | 81.48 | 7.93 |
7 | 8.40 | 2.00 | 0.09 | 0.07 | 80.90 | 7.60 | 0.28 | 0.50 | 0.07 | 10.40 | 81.63 | 7.88 |
8 | 8.65 | 2.10 | 0.10 | 0.07 | 80.60 | 7.60 | 0.29 | 0.53 | 0.07 | 10.75 | 81.37 | 7.89 |
9 | 8.00 | 2.40 | 0.09 | 0.08 | 82.20 | 6.30 | 0.29 | 0.54 | 0.08 | 10.40 | 82.99 | 6.59 |
10 | 8.60 | 2.20 | 0.09 | 0.07 | 80.30 | 7.80 | 0.29 | 0.54 | 0.06 | 10.80 | 81.06 | 8.09 |
11 | 8.10 | 2.80 | 0.09 | 0.08 | 82.10 | 5.80 | 0.26 | 0.51 | 0.06 | 10.90 | 82.84 | 6.06 |
12 | 7.85 | 2.90 | 0.11 | 0.08 | 82.20 | 5.90 | 0.25 | 0.55 | 0.07 | 10.75 | 83.01 | 6.15 |
13 | 8.00 | 2.70 | 0.10 | 0.07 | 82.20 | 5.90 | 0.28 | 0.53 | 0.05 | 10.70 | 82.95 | 6.18 |
14 | 8.10 | 2.70 | 0.10 | 0.09 | 82.10 | 5.90 | 0.27 | 0.55 | 0.07 | 10.80 | 82.91 | 6.17 |
15 | 8.50 | 2.20 | 0.10 | 0.08 | 81.10 | 7.00 | 0.30 | 0.53 | 0.07 | 10.70 | 81.88 | 7.30 |
16 | 8.15 | 2.50 | 0.09 | 0.08 | 82.20 | 6.10 | 0.28 | 0.53 | 0.07 | 10.65 | 82.97 | 6.38 |
17 | 9.20 | 1.90 | 0.13 | 0.08 | 80.20 | 7.50 | 0.34 | 0.52 | 0.07 | 11.10 | 81.00 | 7.84 |
18 | 9.15 | 2.10 | 0.12 | 0.08 | 80.05 | 7.60 | 0.31 | 0.51 | 0.07 | 11.25 | 80.83 | 7.91 |
19 | 8.05 | 2.10 | 0.09 | 0.08 | 81.55 | 7.20 | 0.26 | 0.54 | 0.07 | 10.15 | 82.33 | 7.46 |
20 | 8.15 | 2.00 | 0.10 | 0.08 | 81.40 | 7.20 | 0.30 | 0.56 | 0.08 | 10.15 | 82.22 | 7.50 |
Average | 8.39 | 2.27 | 0.10 | 0.08 | 81.24 | 6.97 | 0.29 | 0.53 | 0.07 | 10.66 | 82.02 | 7.26 |
CV (%) | 4.55 | 14.16 | 12.11 | 6.71 | 1.11 | 12.43 | 8.63 | 3.15 | 10.36 | 2.61 | 1.10 | 12.18 |
Sample | Sterols (mg/100 g) | Squalene (mg/kg) | Tocopherols (mg/kg) | Polyphenols (mg/kg) |
---|---|---|---|---|
1 | 163.50 | 162.50 | 220.00 | 13.62 |
2 | 173.00 | 146.00 | 277.00 | 13.94 |
3 | 197.50 | 142.50 | 224.00 | 13.33 |
4 | 192.50 | 168.00 | 237.00 | 17.77 |
5 | 216.50 | 170.50 | 250.00 | 16.41 |
6 | 200.00 | 272.00 | 264.00 | 16.12 |
7 | 185.00 | 152.50 | 234.00 | 16.92 |
8 | 202.00 | 158.50 | 225.00 | 27.02 |
9 | 225.00 | 138.00 | 214.00 | 14.15 |
10 | 211.50 | 123.00 | 256.00 | 13.63 |
11 | 167.00 | 177.00 | 198.00 | 18.80 |
12 | 160.50 | 182.50 | 205.00 | 16.47 |
13 | 176.50 | 139.50 | 214.00 | 18.37 |
14 | 199.50 | 131.00 | 231.00 | 18.04 |
15 | 194.00 | 158.00 | 229.00 | 16.94 |
16 | 151.50 | 145.00 | 217.00 | 17.50 |
17 | 194.50 | 149.00 | 292.00 | 21.02 |
18 | 170.00 | 157.50 | 258.00 | 19.52 |
19 | 170.50 | 137.50 | 228.00 | 11.23 |
20 | 174.50 | 166.50 | 252.00 | 12.36 |
Average | 186.25 | 158.85 | 236.25 | 16.66 |
CV (%) | 10.77 | 19.42 | 10.34 | 21.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Deng, S.; Ma, L.; Li, M.; Xie, B.; Gao, J.; Shao, M.; Chen, Y. Effects of Soil Properties and Nutrients on the Fruit Economic Parameters and Oil Nutrient Contents of Camellia oleifera. Forests 2023, 14, 1786. https://doi.org/10.3390/f14091786
Xu Y, Deng S, Ma L, Li M, Xie B, Gao J, Shao M, Chen Y. Effects of Soil Properties and Nutrients on the Fruit Economic Parameters and Oil Nutrient Contents of Camellia oleifera. Forests. 2023; 14(9):1786. https://doi.org/10.3390/f14091786
Chicago/Turabian StyleXu, Yanming, Senwen Deng, Li Ma, Meiqun Li, Biyu Xie, Jing Gao, Minghao Shao, and Yongzhong Chen. 2023. "Effects of Soil Properties and Nutrients on the Fruit Economic Parameters and Oil Nutrient Contents of Camellia oleifera" Forests 14, no. 9: 1786. https://doi.org/10.3390/f14091786
APA StyleXu, Y., Deng, S., Ma, L., Li, M., Xie, B., Gao, J., Shao, M., & Chen, Y. (2023). Effects of Soil Properties and Nutrients on the Fruit Economic Parameters and Oil Nutrient Contents of Camellia oleifera. Forests, 14(9), 1786. https://doi.org/10.3390/f14091786