Detection of Tree Species in Beijing Plain Afforestation Project Using Satellite Sensors and Machine Learning Algorithms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Survey
2.3. Remote Sensing Data and Pre-Processing
2.3.1. High-Resolution Satellite Image Pre-Processing
2.3.2. Sentinel-2 Image Pre-Processing
2.4. Data Processing
2.4.1. Level 1 Classification: Vegetation Extraction
2.4.2. Level 2 Classification: Forest Extraction
2.4.3. Level 3 Classification: Species Identification
3. Results
3.1. Vegetation Extraction and Forest Extraction
3.2. Spectral Curves of Tree Species
3.3. Feature Importance
3.4. Results of Tree Species Classification
3.4.1. Accuracy Analysis
3.4.2. Mapping of Tree Species
4. Discussion
4.1. Comparison of Machine Learning Algorithms
4.2. Potential of Sentinel-2 for Tree Extraction and Classification in Artificial Forests
4.3. Evaluation of Classification Accuracy at the Single-Tree Level
5. Conclusions
- (1)
- In the artificial forest of the Beijing Plain Afforestation Project, the constructed three-level image classification system could meet the requirements to develop a tree species map. At the single-tree level, WorldView-2 images with higher costs could achieve better classification results, distinguishing accuracy on the ground object type and tree species, with an overall accuracy of more than 90%. Although Pléiades-1 has a lower classification accuracy, its lesser cost can also meet some of the lower accuracy requirements. The resolution of Sentinel-2 was not sufficient to classify individual trees but its good stand classification still had important application potential in terms of tree species classification;
- (2)
- The classification accuracies achieved by RF and SVM were similar and both were better than DT. RF applied to Sentinel-2 data was more accurate than SVM and DT in the classification of the Beijing Plain Afforestation Project at the stand level and SVM performed better in WorldView-2 and Pléiades-1 data sources at the single-tree level.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Tree Species | Ecological Photos | Examples of Satellite Imagery | ||
---|---|---|---|---|
Pléiades-1B | WorldView-2 | Sentinel-2A | ||
Styphnolobium japonicum | ||||
Platanus acerifolia | ||||
Koelreuteria paniculata | ||||
Pinus tabuliformis | ||||
Salix matsudana | ||||
Prunus davidiana | ||||
Populus tomentosa | ||||
Ginkgo biloba | ||||
Fraxinus americana | ||||
Prunus cerasifera ‘Atropurpurea’ | ||||
Eucommia ulmoide |
References
- Cao, X.; Onishi, A.; Chen, J.; Imura, H. Quantifying the Cool Island Intensity of Urban Parks Using ASTER and IKONOS Data. Landsc. Urban Plan. 2010, 96, 224–231. [Google Scholar] [CrossRef]
- Xiao, D.; Deng, L.; Kim, D.-G.; Huang, C.; Tian, K. Carbon Budgets of Wetland Ecosystems in China. Glob. Change Biol. 2019, 25, 2061–2076. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Li, X.; Gong, P.; Yu, W.; Huang, X. Evaluating the Effect of Plain Afforestation Project and Future Spatial Suitability in Beijing. Sci. China Earth Sci. 2020, 63, 1587–1598. [Google Scholar] [CrossRef]
- Konijnendijk, C.C.; Ricard, R.M.; Kenney, A.; Randrup, T.B. Defining Urban Forestry—A Comparative Perspective of North America and Europe. Urban For. Urban Green. 2006, 4, 93–103. [Google Scholar] [CrossRef]
- Chen, W.Y.; Jim, C.Y. Assessment and Valuation of the Ecosystem Services Provided by Urban Forests. In Ecology, Planning, and Management of Urban Forests; Carreiro, M.M., Song, Y.-C., Wu, J., Eds.; Springer: New York, NY, USA, 2008; pp. 53–83. ISBN 978-0-387-71424-0. [Google Scholar]
- Yao, N.; Konijnendijk van den Bosch, C.C.; Yang, J.; Devisscher, T.; Wirtz, Z.; Jia, L.; Duan, J.; Ma, L. Beijing’s 50 Million New Urban Trees: Strategic Governance for Large-Scale Urban Afforestation. Urban For. Urban Green. 2019, 44, 126392. [Google Scholar] [CrossRef]
- Zhou, Q.; Yu, L.; Zhang, X.; Liu, Y.; Zhan, Z.; Ren, L.; Luo, Y. Fusion of UAV Hyperspectral Imaging and LiDAR for the Early Detection of EAB Stress in Ash and a New EAB Detection Index—NDVI(776,678). Remote Sens. 2022, 14, 2428. [Google Scholar] [CrossRef]
- Nevalainen, O.; Honkavaara, E.; Tuominen, S.; Viljanen, N.; Hakala, T.; Yu, X.; Hyyppä, J.; Saari, H.; Pölönen, I.; Imai, N.; et al. Individual Tree Detection and Classification with UAV-Based Photogrammetric Point Clouds and Hyperspectral Imaging. Remote Sens. 2017, 9, 185. [Google Scholar] [CrossRef]
- Soleimannejad, L.; Ullah, S.; Abedi, R.; Dees, M.; Koch, B. Evaluating the Potential of Sentinel-2, Landsat-8, and Irs Satellite Images in Tree Species Classification of Hyrcanian Forest of Iran Using Random Forest. J. Sustain. For. 2019, 38, 615–628. [Google Scholar] [CrossRef]
- Darvishzadeh, R.; Skidmore, A.; Abdullah, H.; Cherenet, E.; Ali, A.; Wang, T.; Nieuwenhuis, W.; Heurich, M.; Vrieling, A.; O’Connor, B.; et al. Mapping Leaf Chlorophyll Content from Sentinel-2 and RapidEye Data in Spruce Stands Using the Invertible Forest Reflectance Model. Int. J. Appl. Earth Obs. Geoinf. 2019, 79, 58–70. [Google Scholar] [CrossRef]
- Nasiri, V.; Darvishsefat, A.A.; Arefi, H.; Griess, V.C.; Sadeghi, S.M.M.; Borz, S.A. Modeling Forest Canopy Cover: A Synergistic Use of Sentinel-2, Aerial Photogrammetry Data, and Machine Learning. Remote Sens. 2022, 14, 1453. [Google Scholar] [CrossRef]
- Jin, Z.; Azzari, G.; You, C.; Di Tommaso, S.; Aston, S.; Burke, M.; Lobell, D.B. Smallholder Maize Area and Yield Mapping at National Scales with Google Earth Engine. Remote Sens. Environ. 2019, 228, 115–128. [Google Scholar] [CrossRef]
- Mura, M.; Bottalico, F.; Giannetti, F.; Bertani, R.; Giannini, R.; Mancini, M.; Orlandini, S.; Travaglini, D.; Chirici, G. Exploiting the Capabilities of the Sentinel-2 Multi Spectral Instrument for Predicting Growing Stock Volume in Forest Ecosystems. Int. J. Appl. Earth Obs. Geoinf. 2018, 66, 126–134. [Google Scholar] [CrossRef]
- Puliti, S.; Saarela, S.; Gobakken, T.; Stahl, G.; Naesset, E. Combining UAV and Sentinel-2 Auxiliary Data for Forest Growing Stock Volume Estimation through Hierarchical Model-Based Inference. Remote Sens. Environ. 2018, 204, 485–497. [Google Scholar] [CrossRef]
- Grabska, E.; Hostert, P.; Pflugmacher, D.; Ostapowicz, K. Forest Stand Species Mapping Using the Sentinel-2 Time Series. Remote Sens. 2019, 11, 1197. [Google Scholar] [CrossRef]
- Wang, D.; Wan, B.; Qiu, P.; Su, Y.; Guo, Q.; Wang, R.; Sun, F.; Wu, X. Evaluating the Performance of Sentinel-2, Landsat 8 and Pléiades-1 in Mapping Mangrove Extent and Species. Remote Sens. 2018, 10, 1468. [Google Scholar] [CrossRef]
- Adelabu, S.; Dube, T. Employing Ground and Satellite-Based QuickBird Data and Random Forest to Discriminate Five Tree Species in a Southern African Woodland. Geocarto Int. 2015, 30, 457–471. [Google Scholar] [CrossRef]
- Hobi, M.L.; Ginzler, C. Accuracy Assessment of Digital Surface Models Based on WorldView-2 and ADS80 Stereo Remote Sensing Data. Sensors 2012, 12, 6347–6368. [Google Scholar] [CrossRef]
- Lottering, R.; Mutanga, O. Optimizing the Spatial Resolution of WorldView-2 Imagery for Discriminating Forest Vegetation at Subspecies Level in KwaZulu-Natal, South Africa. Geocarto Int. 2016, 31, 870–880. [Google Scholar] [CrossRef]
- Guo, Q.; Zhang, J.; Guo, S.; Ye, Z.; Deng, H.; Hou, X.; Zhang, H. Urban Tree Classification Based on Object-Oriented Approach and Random Forest Algorithm Using Unmanned Aerial Vehicle (UAV) Multispectral Imagery. Remote Sens. 2022, 14, 3885. [Google Scholar] [CrossRef]
- The Potential of Göktürk 2 Satellite Images for Mapping Burnt Forest Areas. Turk. J. Agric. For. 2021, 45, 91–101. [CrossRef]
- Tiwari, L.K.; Sinha, S.K.; Saran, S.; Tolpekin, V.A.; Raju, P.L.N. Forest Encroachment Mapping in Baratang Island, India, Using Maximum Likelihood and Support Vector Machine Classifiers. J. Appl. Remote Sens. 2016, 10, 016016. [Google Scholar] [CrossRef]
- Quang, N.H.; Quinn, C.H.; Stringer, L.C.; Carrie, R.; Hackney, C.R.; Van Hue, L.T.; Van Tan, D.; Nga, P.T.T. Multi-Decadal Changes in Mangrove Extent, Age and Species in the Red River Estuaries of Viet Nam. Remote Sens. 2020, 12, 2289. [Google Scholar] [CrossRef]
- Xie, Z.; Chen, Y.; Lu, D.; Li, G.; Chen, E. Classification of Land Cover, Forest, and Tree Species Classes with ZiYuan-3 Multispectral and Stereo Data. Remote Sens. 2019, 11, 164. [Google Scholar] [CrossRef]
- Sola, I.; García-Martín, A.; Sandonís-Pozo, L.; Álvarez-Mozos, J.; Pérez-Cabello, F.; González-Audícana, M.; Montorio Llovería, R. Assessment of Atmospheric Correction Methods for Sentinel-2 Images in Mediterranean Landscapes. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 63–76. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, G.; Li, Q.; Li, Z.-L.; Wan, H.; Guo, Z. Evaluating the Fraction of Vegetation Cover Based on NDVI Spatial Scale Correction Model. Int. J. Remote Sens. 2006, 27, 5359–5372. [Google Scholar] [CrossRef]
- Juneja, D.; Sharma, S.; Jain, A.; Sharma, S. A Novel Approach to Construct Decision Tree Using Quick C4.5 Algorithm. Orient. J. Comput. Sci. Technol. 2010, 3, 305–310. [Google Scholar]
- Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A Training Algorithm for Optimal Margin Classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, Pittsburgh, PA, USA, 27–29 July 1992; ACM: Pittsburgh, PA, USA, 1992; pp. 144–152. [Google Scholar]
- Shen, L.; Chen, H.; Yu, Z.; Kang, W.; Zhang, B.; Li, H.; Yang, B.; Liu, D. Evolving Support Vector Machines Using Fruit Fly Optimization for Medical Data Classification. Knowl. Based Syst. 2016, 96, 61–75. [Google Scholar] [CrossRef]
- Speiser, J.L.; Miller, M.E.; Tooze, J.; Ip, E. A Comparison of Random Forest Variable Selection Methods for Classification Prediction Modeling. Expert. Syst. Appl. 2019, 134, 93–101. [Google Scholar] [CrossRef]
- Biau, G. Analysis of a Random Forests Model. J. Mach. Learn. Res. 2012, 13, 1063–1095. [Google Scholar]
- Haralick, R.; Shanmugam, K.; Dinstein, I. Texture Features for Image Classification. Syst. Man. Cybern. IEEE Trans. 1975, 3. [Google Scholar]
- Zhu, Y.; Liu, K.; Liu, L.; Wang, S.; Liu, H. Retrieval of Mangrove Aboveground Biomass at the Individual Species Level with WorldView-2 Images. Remote Sens. 2015, 7, 12192–12214. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between Leaf Chlorophyll Content and Spectral Reflectance and Algorithms for Non-Destructive Chlorophyll Assessment in Higher Plant Leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Zhang, X.; Yu, L.; Ren, L.; Luo, Y. Combining WV-2 Images and Tree Physiological Factors to Detect Damage Stages of Populus gansuensis by Asian Longhorned Beetle (Anoplophora glabripennis) at the Tree Level. For. Ecosyst. 2021, 8, 35. [Google Scholar] [CrossRef]
- Le Maire, G.; François, C.; Dufrêne, E. Towards Universal Broad Leaf Chlorophyll Indices Using PROSPECT Simulated Database and Hyperspectral Reflectance Measurements. Remote Sens. Environ. 2004, 89, 1–28. [Google Scholar] [CrossRef]
- Korhonen, L.; Packalen, P.; Rautiainen, M. Comparison of Sentinel-2 and Landsat 8 in the Estimation of Boreal Forest Canopy Cover and Leaf Area Index. Remote Sens. Environ. 2017, 195, 259–274. [Google Scholar] [CrossRef]
- Fernández-Manso, A.; Fernández-Manso, O.; Quintano, C. SENTINEL-2A Red-Edge Spectral Indices Suitability for Discriminating Burn Severity. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 170–175. [Google Scholar] [CrossRef]
- Shoko, C.; Mutanga, O. Examining the Strength of the Newly-Launched Sentinel 2 MSI Sensor in Detecting and Discriminating Subtle Differences between C3 and C4 Grass Species. ISPRS J. Photogramm. Remote Sens. 2017, 129, 32–40. [Google Scholar] [CrossRef]
- Lim, J.; Kim, K.-M.; Jin, R. Tree Species Classification Using Hyperion and Sentinel-2 Data with Machine Learning in South Korea and China. IJGI 2019, 8, 150. [Google Scholar] [CrossRef]
- Burkholder, A. Seasonal Trends in Separability of Leaf Reflectance Spectra for Ailanthus Altissima and Four Other Tree Species; West Virginia University: Morgantown, WV, USA, 2010. [Google Scholar]
- Ng, W.-T.; Rima, P.; Einzmann, K.; Immitzer, M.; Atzberger, C.; Eckert, S. Assessing the Potential of Sentinel-2 and Pléiades Data for the Detection of Prosopis and Vachellia Spp. in Kenya. Remote Sens. 2017, 9, 74. [Google Scholar] [CrossRef]
- Cervantes, J.; Garcia-Lamont, F.; Rodríguez-Mazahua, L.; Lopez, A. A Comprehensive Survey on Support Vector Machine Classification: Applications, Challenges and Trends. Neurocomputing 2020, 408, 189–215. [Google Scholar] [CrossRef]
- Bjerreskov, K.S.; Nord-Larsen, T.; Fensholt, R. Classification of Nemoral Forests with Fusion of Multi-Temporal Sentinel-1 and 2 Data. Remote Sens. 2021, 13, 950. [Google Scholar] [CrossRef]
- Grabska, E.; Frantz, D.; Ostapowicz, K. Evaluation of Machine Learning Algorithms for Forest Stand Species Mapping Using Sentinel-2 Imagery and Environmental Data in the Polish Carpathians. Remote Sens. Environ. 2020, 251, 112103. [Google Scholar] [CrossRef]
- Immitzer, M.; Atzberger, C.; Koukal, T. Tree Species Classification with Random Forest Using Very High Spatial Resolution 8-Band WorldView-2 Satellite Data. Remote Sens. 2012, 4, 2661–2693. [Google Scholar] [CrossRef]
- Mohammadpour, P.; Viegas, D.X.; Viegas, C. Vegetation Mapping with Random Forest Using Sentinel 2 and GLCM Texture Feature-A Case Study for Lousa Region, Portugal. Remote Sens. 2022, 14, 4585. [Google Scholar] [CrossRef]
Spectrum | Pléiades-1B | WorldView-2 | Sentinel-2A | ||||||
---|---|---|---|---|---|---|---|---|---|
2021/8/2 | 2020/8/14 | 2020/9/1 | |||||||
Band | Band Width | Resolution | Band | Band Width | Resolution | Band | Band Width | Resolution | |
(nm) | (m) | (nm) | (m) | (nm) | (m) | ||||
Coastal | - | - | - | B1 | 427.3 ± 50 | 2 | B1 | 442.3 ± 45 | 60 |
Blue | B1 | 495 ± 76.5 | 2 | B2 | 477.9 ± 60 | 2 | B2 | 492.1 ± 98 | 10 |
Green | B2 | 558.5 ± 83.7 | 2 | B3 | 546.2 ± 70 | 2 | B3 | 559 ± 46 | 10 |
Yellow | - | - | - | B4 | 607.8 ± 40 | 2 | - | - | - |
Red | B3 | 656 ± 78.8 | 2 | B5 | 658.8 ± 60 | 2 | B4 | 665 ± 39 | 10 |
Vegetation Red Edge | - | - | - | - | - | - | B5 | 703.8 ± 20 | 20 |
Vegetation Red Edge | - | - | - | B6 | 723.7 ± 40 | 2 | B6 | 739.1 ± 18 | 20 |
Vegetation Red Edge | - | - | - | - | - | - | B7 | 779.7 ± 28 | 20 |
NIR | B4 | 842.5 ± 130.3 | 2 | B7 | 832.5 ± 125 | 2 | B8 | 833 ± 133 | 10 |
Vegetation Red Edge | - | - | - | - | - | - | B8A | 864 ± 32 | 20 |
Water vapor | - | - | - | B8 | 908 ± 180 | 2 | B9 | 943.2 ± 27 | 60 |
SWIR-Cirrus | - | - | - | - | - | - | B10 | 1376.9 ± 76 | 60 |
SWIR | - | - | - | - | - | - | B11 | 1610.4 ± 141 | 20 |
SWIR | - | - | - | - | - | - | B12 | 2185.7 ± 238 | 20 |
Pan | B5 | - | 0.5 | B9 | - | 0.5 | - | - | - |
Object Features | Formula for Pléiades-1 | Formula for WorldView-2 | Formula for Sentinel-2 | Reference | |
---|---|---|---|---|---|
Spectral Bands | Individual Bands | B1, B2, B3, B4 | B1, B2, B3, B4, B5, B6, B7, B8, | B1, B2, B3, B4, B5, B6, B7, B8, B8A, B9, B11, B12, | |
Conventional NIR indices | DVI | B4 − B3 | B7 − B5 | B8 − B4 | [33] |
Cig | (B4/B2) − 1 | (B7/B3) − 1 | (B8/B3) − 1 | [34] | |
SR | B4/B3 | B7/B5 | B8/B4 | [33] | |
NDVI | (B4 − B3)/(B4 + B3) | (B7 − B5)/(B7 + B5) | (B8 − B4)/(B8 + B4) | [26] | |
NIRRY | NA | B7/(B4 + B5) | NA | [35] | |
DD | (2 × B4 − B3) − (B2 − B1) | (2 × B7 − B5) − (B3-B2) | (2 × B8 − B4) − (B3 − B2) | [36] | |
EVI | [37] | ||||
Red edge indices | CIre1 | NA | B6/B3 − 1 | B5/B3 − 1 | [38] |
CIre2 | NA | NA | B6/B3 − 1 | [38] | |
CIre3 | NA | B7/B3 − 1 | B7/B3 − 1 | [38] | |
NDVIIre1 | NA | NA | (B8 − B5)/(B8 + B5) | [39] | |
NDVIIre2 | NA | (B7 − B6)/(B7 + B6) | (B8 − B6)/(B8 + B6) | [39] | |
NDVIIre3 | NA | NA | (B8 − B7)/(B8 + B7) | [39] | |
Shortwave infrared indices | MDI1 | NA | NA | (B8 − B11)/B11 | [16] |
MDI2 | NA | NA | (B8 − B12)/B12 | [16] | |
Texture information | Mean (G1) | Same as left | Same as left | [32] | |
Variance (G2) | Same as left | Same as left | [32] | ||
Homogeneity (G3) | Same as left | Same as left | [32] | ||
Contrast (G4) | Same as left | Same as left | [32] | ||
Dissimilarity (G5) | Same as left | Same as left | [32] | ||
Entropy (G6) | Same as left | Same as left | [32] | ||
Second Moment (G7) | Same as left | Same as left | [32] | ||
Correlation (G8) | Same as left | Same as left | [32] |
Landscape | Class | Pléiades-1, 0.5 m | WorldView-2, 0.5 m | Sentinel-2, 10 m | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pa | Ua | Oa | Kappa | Pa | Ua | Oa | Kappa | Pa | Ua | Oa | Kappa | ||
Vegetation | Forest | 94.20% | 99.28% | 95.25% | 0.88 | 97.64% | 99.31% | 97.75% | 0.94 | 98.98% | 98.32% | 98.00% | 0.95% |
Non-forest | 98.13% | 86.07% | 98.08% | 93.58% | 95.24% | 97.09% |
Scale | Single-Tree | Stand | ||||
---|---|---|---|---|---|---|
Classification Models | Pléiades-1 | WorldView-2 | Sentinel-2 | |||
OA | Kappa | OA | Kappa | OA | Kappa | |
Decision Tree | 72.08% | 0.69 | 85.39% | 0.84 | 83.44% | 0.82 |
Support Vector Machine | 82.79% | 0.81 | 90.91% | 0.90 | 85.39% | 0.84 |
Random Forest | 78.90% | 0.77 | 90.26% | 0.89 | 89.29% | 0.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Yu, L.; Zhou, Q.; Wu, D.; Ren, L.; Luo, Y. Detection of Tree Species in Beijing Plain Afforestation Project Using Satellite Sensors and Machine Learning Algorithms. Forests 2023, 14, 1889. https://doi.org/10.3390/f14091889
Zhang X, Yu L, Zhou Q, Wu D, Ren L, Luo Y. Detection of Tree Species in Beijing Plain Afforestation Project Using Satellite Sensors and Machine Learning Algorithms. Forests. 2023; 14(9):1889. https://doi.org/10.3390/f14091889
Chicago/Turabian StyleZhang, Xudong, Linfeng Yu, Quan Zhou, Dewei Wu, Lili Ren, and Youqing Luo. 2023. "Detection of Tree Species in Beijing Plain Afforestation Project Using Satellite Sensors and Machine Learning Algorithms" Forests 14, no. 9: 1889. https://doi.org/10.3390/f14091889
APA StyleZhang, X., Yu, L., Zhou, Q., Wu, D., Ren, L., & Luo, Y. (2023). Detection of Tree Species in Beijing Plain Afforestation Project Using Satellite Sensors and Machine Learning Algorithms. Forests, 14(9), 1889. https://doi.org/10.3390/f14091889