Simulation of Thinning by Integrating Tree Competition and Species Biodiversity for Target Tree-Based Management of Secondary Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Spatial Structure Index
2.3.2. Tree Competition Indices
2.3.3. Algorithm Design for Selective Thinning
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lu, Y.C. The Theory and Practice of Near-Natural Forest Management; Science Press: Beijing, China, 2006. [Google Scholar]
- Trimble, G.R., Jr. Early Crop-Tree Release in Even-Aged Stands of Appalachian Hardwoods; Res. Pap. NE-203; U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station: Upper Darby, PA, USA, 1971; 13p.
- Abetz, P.; Klädtke, J. The target tree management system. Eur. J. For. Res. 2002, 121, 73–82. [Google Scholar] [CrossRef]
- Lu, Y.C.; Lei, X.D.; Hong, L.X.; Ning, J.K.; Liu, X.Z.; Meng, J.H. A preliminary study on planning technical model for close-to-nature forest management. J. Southwest For. Univ. 2010, 30, 1–5. [Google Scholar] [CrossRef]
- Thomas, M.S. Crop tree release improves competitiveness of northern red oak growing in association with black cherry. North. J. Appl. For. 2006, 23, 77–82. [Google Scholar] [CrossRef]
- Wang, Y.X.; Zhang, S.G.; Lu, Y.C.; Meng, J.H.; Zeng, J. Initial effects of crop trees growth after crop tree release on Pinus massoniana plantation. Sci. Silvae Sin. 2014, 50, 67–73. [Google Scholar]
- Zhu, J.J.; Liu, S.R. Conception of secondary forest and its relation to ecological disturbance degree. Chin. J. Ecol. 2007, 26, 1085–1093. [Google Scholar]
- Wang, X.C.; Wang, J.Y.; Jiang, Z.P. Studies on the secondary forest management techniques in the Xiaolongshan Mountain in Gansu Province. J. Northwest For. Univ. 2008, 23, 142–146. [Google Scholar]
- Zeng, S.Q.; Xiao, H.S.; Liu, F.L.; Lv, Y.; She, J.Y. Study on Management Techniques of Secondary Forests: Schima Superba Gardn.et Champ and Castanopsis sclerophylla (Lindl.) Schott; China Forestry Publishing House: Beijing, China, 2015. [Google Scholar]
- Brearley, F.Q.; Prajadinata, S.; Kidd, P.S.; Proctor, J. Structure and floristics of an old secondary rain forest in Central Kalimantan, Indonesia, and a comparison with adjacent primary forest. For. Ecol. Manag. 2004, 195, 385–397. [Google Scholar] [CrossRef]
- Zhu, J.J.; Li, X.F.; Liu, Z.G.; Cao, W.; Gonda, Y.; Matsuzaki, T. Factors affecting the snow/wind induced damage of a montane secondary forest in northeastern China. Silva Fenn. 2006, 40, 37–51. [Google Scholar] [CrossRef]
- Von Gadow, K.; Hui, G.Y. Characterizing forest spatial structure and diversity. In Sustainable Forestry in Temperate; Björk, L., Ed.; University of Lund: Lund, Sweden, 2001; pp. 20–30. [Google Scholar]
- Hui, G.Y.; Hu, Y.B.; Zhao, Z.H. Research progress of structure-based forest management. For. Res. 2018, 31, 85–93. [Google Scholar] [CrossRef]
- Hui, G.Y.; Gadow, K.V. Principles of Structure-Based Forest Management; China Forestry Publishing House: Beijing, China, 2016. [Google Scholar]
- Hui, G.Y.; Gadow, K.V.; Hu, Y.B.; Xu, H. Structure-Based Forest Management; China Forestry Publishing House: Beijing, China, 2007. [Google Scholar]
- Dong, L.B.; Wei, H.Y.; Liu, Z.G. Optimizing forest spatial structure with neighborhood-based indices: Four case studies from Northeast China. Forests 2020, 11, 413. [Google Scholar] [CrossRef]
- Dong, L.B.; Bettinger, P.; Liu, Z.G. Optimizing neighborhood-based stand spatial structure: Four cases of boreal forests. For. Ecol. Manag. 2022, 506, 119965. [Google Scholar] [CrossRef]
- Ledermann, T. Evaluating the performance of semi-distance-independent competition indices in predicting the basal area growth of individual trees. Can. J. For. Res. 2010, 40, 796–805. [Google Scholar] [CrossRef]
- Peet, R.K.; Christensen, N.L. Competition and tree death. BioScience 1987, 37, 586–595. [Google Scholar] [CrossRef]
- Pickett, S.T.A.; Carson, W.P. Ecology: Individuals, populations and communities. Brittonia 1987, 39, 407–408. [Google Scholar] [CrossRef]
- Alder, D. A distance-independent tree model for exotic conifer plantations in East of Africa. For. Sci. 1979, 25, 59–71. [Google Scholar] [CrossRef]
- Daniels, R.F.; Burkhart, H.E.; Clason, T.R. A comparison of competition measures for predicting growth of loblolly pine trees. Can. J. For. Res. 1986, 16, 1230–1237. [Google Scholar] [CrossRef]
- Tomé, M.; Burkhart, H.E. Distance-dependent competition measures for predicting growth of individual trees. For. Sci. 1989, 35, 816–831. [Google Scholar]
- Burkhart, H.E.; Tomé, M. Indices of individual-tree competition. In Modeling Forest Trees and Stands; Springer: Dordrecht, The Netherlands, 2012; pp. 201–232. [Google Scholar]
- Hegyi, F. A simulation model for managing jack-pine stands. In Growth Models for Tree and Stand Simulation; Fries, J., Ed.; Royal College of Forestry: Stockholm, Sweden, 1974; pp. 74–90. [Google Scholar]
- Spurr, S.H. A measure of point density. For. Sci. 1962, 8, 85–96. [Google Scholar] [CrossRef]
- Opie, J.E. Predictability of individual tree growth using various definitions of competing basal area. For. Sci. 1968, 14, 314–323. [Google Scholar] [CrossRef]
- Daniels, R.F. Simple competition indices and their correlation with annual loblolly-pine tree growth. For. Sci. 1976, 22, 454–456. [Google Scholar] [CrossRef]
- Hui, G.Y.; Hu, Y.B.; Zhao, Z.H.; Shi, Y.; Liu, W.Z. A forest competition index based on intersection angle. Sci. Silvae Sin. 2013, 49, 68–73. [Google Scholar] [CrossRef]
- Long, S.S.; Zeng, S.Q.; Liu, F.L.; Wang, G.X. Influence of slope, aspect and competition index on the height-diameter relationship of Cyclobalanopsis glauca trees for improving prediction of height in mixed forests. Silva Fenn. 2020, 54, 10242. [Google Scholar] [CrossRef]
- Hof, J.; Bevers, M. Optimizing forest stand management with natural regeneration and single-tree choice variables. For. Res. 2000, 46, 168–175. [Google Scholar] [CrossRef]
- Buongiorno, J.; Peyron, J.L.; Houllier, F.; Bruciamacchie, M. Growth and management of mixed-species, uneven-Aged forests in the French Jura: Implications for economic returns and tree diversity. For. Res. 1995, 41, 397–429. [Google Scholar] [CrossRef]
- Yang, C.S.; Shao, G.Y.; Liu, W.M.; Zhang, J.C. System Theory Information Theory Cybernetics; China Radio and Television Press: Beijing, China, 1987; pp. 23–24. [Google Scholar]
- Hu, Y.B.; Hui, G.Y. A discussion on forest management method optimizing forest spatial structure. For. Res. 2006, 19, 1–8. [Google Scholar] [CrossRef]
- Tang, M.P.; Tang, S.Z.; Lei, X.D.; Li, X.F. Study on spatial structure optimizing model of stand selection cutting. Sci. Silvae Sin. 2004, 40, 25–31. [Google Scholar] [CrossRef]
- Chen, C.X.; Liu, J.; Yu, K.Y.; Ge, Y.Q. Simulated cutting for the mixed forest of Pinus massoniana and broad-leaved tree species based on optimized spatial structure. J. Southwest For. Univ. 2010, 30, 29–32. [Google Scholar] [CrossRef]
- Song, Y.F. Individual Tree Growth Models and Competitors Harvesting Simulation for Target Tree-Oriented Management; Chinese Academy of Forestry: Beijing, China, 2015. [Google Scholar]
- Zhang, H.R.; Tang, S.Z. Research on Sustainable Management Technology of Natural Forests in Northeast China; China Forestry Publishing House: Beijing, China, 2011. [Google Scholar]
- Hui, G.Y.; Li, L.; Zhao, Z.H.; Dang, P.X. Analysis method of forest spatial distribution layout. Acta Ecol. Sin. 2007, 27, 4717–4728. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Zhang, H.Q.; Chen, Y.F.; Li, Y.L.; Ma, L.Y. Study of tree competition index based on crown feature. For. Res. 2016, 29, 80–84. [Google Scholar] [CrossRef]
- Zhou, H.M.; Hui, G.Y.; Zhao, Z.H.; Hu, Y.B. Treatment methods of plot boundary trees in spatial forest sructure analysis. Sci. Silvae Sin. 2009, 45, 1–5. [Google Scholar] [CrossRef]
- GB/T 15781-2015; Regulations for forest tending. Standardization Administration of China: Beijing, China, 2015.
Sample Plot | Altitude (m) | Canopy Density | Number of Trees | Mean DBH/σ (cm) | Mean Tree Height/σ (m) | Tree Species Composition | Number of Trees | Mean DBH (cm) | Mean Tree Height (m) |
---|---|---|---|---|---|---|---|---|---|
YLK-1 | 742 | 0.59 | 732 | 15.58/8.81 | 15.39/7.12 | Ts | 121 | 11.68 | 10.92 |
An | 120 | 13.05 | 12.07 | ||||||
Lo | 92 | 22.23 | 22.82 | ||||||
Pj | 68 | 13.98 | 12.12 | ||||||
Pk | 59 | 17.66 | 13.65 | ||||||
Bc | 55 | 17.05 | 17.58 | ||||||
Am | 41 | 9.22 | 9.35 | ||||||
Bp | 21 | 17.10 | 19.84 | ||||||
Up | 13 | 15.25 | 13.21 | ||||||
Pl | 4 | 16.88 | 20.18 | ||||||
Fm | 3 | 19.43 | 22.93 | ||||||
Amm | 3 | 20.87 | 16.20 | ||||||
others | 132 | 8.11 | 9.24 | ||||||
YLK-2 | 752 | 0.66 | 913 | 14.74/9.06 | 114.85/7.83 | Ts | 158 | 10.04 | 10.41 |
An | 139 | 8.77 | 8.38 | ||||||
Am | 132 | 7.10 | 8.43 | ||||||
Lo | 102 | 21.62 | 22.81 | ||||||
Bc | 77 | 13.49 | 17.35 | ||||||
Pk | 57 | 19.95 | 14.88 | ||||||
Pj | 57 | 15.19 | 13.63 | ||||||
Up | 19 | 12.30 | 11.11 | ||||||
Pl | 18 | 24.45 | 25.09 | ||||||
Bp | 10 | 21.87 | 22.24 | ||||||
others | 144 | 7.32 | 9.08 |
Plot | N#1 | N#2 | N#3 | Metrics | CI | CII | ZCI |
---|---|---|---|---|---|---|---|
YLK-1 | 732 | 573 | 158 | Number of trees | 125 | 123 | 105 |
Intensity | 21.8% | 21.5% | 18.3 | ||||
0.478 | 0.478 | 0.492 | |||||
0.558 | |||||||
0.7460 | 0.7461 | 0.7462 | |||||
0.7381 | |||||||
YLK-2 | 913 | 751 | 217 | Number of trees | 160 | 158 | 138 |
Intensity | 21.3% | 21.1% | 18.4% | ||||
0.495 | 0.496 | 0.506 | |||||
0.570 | |||||||
0.7398 | 0.7394 | 0.7399 | |||||
0.7334 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, L.; Wang, G.; Sharma, R.P.; Lu, J.; Tang, X.; Fu, L. Simulation of Thinning by Integrating Tree Competition and Species Biodiversity for Target Tree-Based Management of Secondary Forests. Forests 2023, 14, 1896. https://doi.org/10.3390/f14091896
Pang L, Wang G, Sharma RP, Lu J, Tang X, Fu L. Simulation of Thinning by Integrating Tree Competition and Species Biodiversity for Target Tree-Based Management of Secondary Forests. Forests. 2023; 14(9):1896. https://doi.org/10.3390/f14091896
Chicago/Turabian StylePang, Lifeng, Guangxing Wang, Ram P. Sharma, Jun Lu, Xiaoming Tang, and Liyong Fu. 2023. "Simulation of Thinning by Integrating Tree Competition and Species Biodiversity for Target Tree-Based Management of Secondary Forests" Forests 14, no. 9: 1896. https://doi.org/10.3390/f14091896
APA StylePang, L., Wang, G., Sharma, R. P., Lu, J., Tang, X., & Fu, L. (2023). Simulation of Thinning by Integrating Tree Competition and Species Biodiversity for Target Tree-Based Management of Secondary Forests. Forests, 14(9), 1896. https://doi.org/10.3390/f14091896