Identifying the Determinants of the Increase in Native Forests in Southern Chile
Abstract
:1. Introduction
2. Methods
2.1. Information Sources and Study Area
- 29 for having a size smaller than the minimum mappable unit,
- 15 not having complete information within the survey,
- and 12 having more than one point within the limits of a property (which would mean that a subdivision process was experienced).
2.2. Native and Mixed Forest Surface Estimation
- Internal Revenue Service Roles: Layer that contains the boundaries of non-urban properties. These properties are identified by the role, which are numbers that are used to identify properties or real estate and that are unique at the community level.
- Cadastre and Evaluation of Chile’s Native Vegetation Resources: Layers prepared by the National Forestry Corporation that classify land use classes and subclasses. For this study, the area of native and mixed forest defined by the following parameters were quantified [34]:
- ○
- Native Forest, ecosystem in which the tree layer is made up of native species that have a height ≥ 2 m and a crown cover ≥ 25%.
- ○
- Mixed Forest, which corresponds to a combination of two situations: mixture of native forest (adult or sapling) and planted species in proportions that fluctuate between 33% and 66% coverage. Native forest with feral exotics: corresponds to a mixture of native forest (adult or sapling) and exotic species that have regenerated naturally in proportions that fluctuate between 25% and 75% coverage for each of the categories that it contains.
- Surveyed points: Spatially locates the owners who participated in the SIMEF survey and assigns them an identifier number made up of the region number and the surveyed number. The survey comprises the following sections: general information; decision maker information; income sources; productive characteristics; among other questions.
2.3. The Probit Model
3. Results and Discussion
3.1. Change in the Area of Native Forests in the Timeframe
3.2. Characteristics of the Owners Surveyed
3.3. Probit Model Fitted
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variable | Age | Schooling | Animal Units | Native Forests Share | Scrub Share | Forests Plantations Share | Farm Size Q1 (Omitted) | Farm Size Q2 | Farm Size Q3 | Farm Size Q4 | Araucanía | Los Ríos | Los Lagos (Omitted) | Gender | Forest Management Plan | Technical Advisory |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Age | 1 | |||||||||||||||
Schooling | −0.29 | 1 | ||||||||||||||
Animal units | −0.10 | 0.15 | 1 | |||||||||||||
Native forests share | −0.10 | 0.08 | −0.11 | 1 | ||||||||||||
Scrub share | −0.06 | −0.04 | −0.07 | −0.16 | 1 | |||||||||||
Forest plantations share | −0.02 | 0.08 | −0.05 | −0.17 | −0.11 | 1 | ||||||||||
Farm size Q1 (omitted) | −0.02 | −0.36 | −0.13 | −0.06 | −0.05 | −0.03 | 1 | |||||||||
Farm size Q2 | 0.07 | −0.18 | −0.13 | 0.04 | 0.01 | −0.04 | −0.33 | 1 | ||||||||
Farm size Q3 | 0.11 | 0.21 | −0.02 | −0.24 | −0.02 | 0.10 | −0.33 | −0.33 | 1 | |||||||
Farm size Q4 | −0.16 | 0.33 | 0.27 | 0.25 | 0.07 | −0.03 | −0.33 | −0.33 | −0.33 | 1 | ||||||
Araucanía | 0.19 | 0.03 | −0.08 | −0.13 | −0.15 | 0.23 | 0.06 | 0.06 | 0.01 | −0.12 | 1 | |||||
Los Ríos | −0.08 | 0.03 | 0.09 | −0.06 | 0.32 | 0.07 | −0.25 | −0.10 | 0.01 | 0.34 | −0.34 | 1 | ||||
Los Lagos (omitted) | −0.06 | −0.05 | −0.03 | 0.15 | −0.20 | −0.23 | 0.21 | 0.06 | −0.01 | −0.25 | −0.38 | −0.73 | 1 | |||
Gender | 0.02 | −0.06 | −0.08 | 0.13 | 0.03 | 0.01 | −0.03 | 0.01 | −0.07 | 0.08 | −0.15 | 0.04 | 0.07 | 1 | ||
Forest management plan | −0.12 | 0.18 | 0.10 | 0.18 | −0.06 | 0.14 | −0.23 | 0.03 | 0.02 | 0.17 | 0.09 | 0.02 | −0.09 | 0.09 | 1 | |
Technical advisory | 0.08 | 0.25 | 0.16 | 0.16 | −0.16 | 0.14 | −0.33 | −0.03 | 0.04 | 0.31 | −0.02 | 0.11 | −0.09 | 0.12 | 0.43 | 1 |
References
- Bologna, M.; Aquino, G. Deforestation and world population sustainability: A quantitative analysis. Sci. Rep. 2020, 10, 7631. [Google Scholar] [CrossRef]
- Samii, C.; Lisiecki, M.; Kulkarni, P.; Paler, L.; Chavis, L. Decentralized Forest Management for Reducing Deforestation and Poverty in Low-and Middle-Income Countries: A Systematic Review. Systematic Review 16, International Initiative for Impact Evaluation 3ie. 2015. Available online: http://3ieimpact.org/evidence-hub/publications/systematic-reviews/decentralised-forest-management-reducing-deforestation (accessed on 25 April 2023).
- Dey, D.C.; Knapp, B.O.; Battaglia, M.A.; Deal, R.L.; Hart, J.L.; O’Hara, K.L.; Schweitzer, C.J.; Schuler, T.M. Barriers to natural regeneration in temperate forests across the USA. New For. 2019, 50, 11–40. [Google Scholar] [CrossRef]
- Poudyal, N.C.; Joshi, O.; Hodges, D.G.; Hoyt, K. Factors Related with Nonindustrial Private Forest Landowners’ Forest Conversion Decision in Cumberland Plateau, Tennessee. For. Sci. 2014, 60, 988–993. [Google Scholar] [CrossRef]
- Joseph, L.; Yaranga Cano, R.M.; Arizapana-Almonacid, M.; Venelli Pyles, M.; Freire de Siqueira, F.; van den Berg, E. Socioeconomic Conditions and Landowners’ Perception Affect the Intention to Restore Polylepis Forests in the Central Andes of Peru. Forests 2021, 12, 118. [Google Scholar] [CrossRef]
- Thorn, S.; Leverkus, A.B.; Thorn, C.J.; Beudert, B. Education and knowledge determine preference for bark beetle control measures in El Salvador. J. Environ. Manag. 2019, 232, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Okumu, B.; Muchapondwa, E. Determinants of successful collective management of forest resources: Evidence from Kenyan Community Forest Associations. For. Policy Econ. 2020, 113, 102122. [Google Scholar] [CrossRef]
- Owusu, R.; Kimengsi, J.N.; Moyo, F. Community-based Forest Landscape Restoration (FLR): Determinants and policy implications in Tanzania. Land Use Policy 2021, 109, 105664. [Google Scholar] [CrossRef]
- Adhikari, S.; Kingi, T.; Ganesh, S. Incentives for community participation in the governance and management of common property resources: The case of community forest management in Nepal. For. Policy Econ. 2014, 44, 1–9. [Google Scholar] [CrossRef]
- Pokharel, R.K.; Neupane, P.R.; Tiwari, K.R.; Köhl, M. Assessing the sustainability in community-based forestry: A case from Nepal. For. Policy Econ. 2015, 58, 75–84. [Google Scholar] [CrossRef]
- Silva, J.S.; Vaz, P.; Moreira, F.; Catry, F.; Rego, F.C. Wildfires as a major driver of landscape dynamics in three fire-prone areas of Portugal. Landsc. Urban Plan. 2011, 101, 349–358. [Google Scholar] [CrossRef]
- Plieninger, T.; Schaich, H. Socialist and postsocialist land-use legacies determine farm woodland composition and structure: Lessons from Eastern Germany. Eur. J. For. Res. 2014, 133, 597–610. [Google Scholar] [CrossRef]
- INFOR. Anuario Forestal 2019. Boletín Estadístico N° 168; Ministerio de Agricultura: Instituto Forestal, Santiago, Chile, 2020; Available online: https://wef.infor.cl/index.php/publicaciones/boletines-estadisticos/anuario-forestal (accessed on 25 April 2023).
- Olson, D.M.; Dinerstein, E. The Global 200: Priority ecoregions for global conservation. Ann. Mo. Bot. Gard. 2002, 89, 199–224. [Google Scholar] [CrossRef]
- Jullien, C.; Nahuelhual, L.; Mazzorana, B.; Aguayo, M. Assessment of the ecosystem service of water regulation under scenarios of conservation of native vegetation and expansion of forest plantations in south-central Chile. Bosque Valdivia 2018, 39, 277–289. [Google Scholar] [CrossRef]
- Oyarzún, C.E.; Nahuelhual, L.; Núñez, D. Los servicios ecosistémicos del bosque templado lluvioso: Producción de agua y su valoración económica. Ambiente Desarro. 2005, 21, 87–98. [Google Scholar]
- Heilmayr, R.; Echeverría, C.; Lambin, E.F. Impacts of Chilean forest subsidies on forest cover, carbon and biodiversity. Nat. Sustain. 2020, 3, 701–709. [Google Scholar] [CrossRef]
- Echeverría, C.; Newton, A.; Nahuelhual, L.; Coomes, D.; Rey-Benayas, J.M. How landscapes change: Integration of spatial patterns and human processes in temperate landscapes of southern Chile. Appl. Geogr. 2012, 32, 822–831. [Google Scholar] [CrossRef]
- Donoso, P.J.; Romero, J.E. Towards a New Forest Model for Chile: Managing Forest Ecosystems to Increase Their Social, Ecological and Economic Benefits. In Ecological Economic and Socio Ecological Strategies for Forest Conservation; Fuders, F., Donoso, P., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Lara, A.; Solari, M.E.; Prieto, M.D.; Peña, M.P. Reconstrucción de la cobertura de la vegetación y uso del suelo hacia 1550 y sus cambios a 2007 en la ecorregión de los bosques valdivianos lluviosos de Chile (35°–43° 30′ S). Bosque Valdivia 2012, 33, 13–23. [Google Scholar] [CrossRef]
- Jaque Castillo, E.; Ojeda, C.G.; Fuentes Robles, R. Landscape fragmentation at Arauco Province in the Chilean forestry model context (1976–2916). Land 2022, 11, 1992. [Google Scholar] [CrossRef]
- Reyes, R.; Blanco, G.; Laraguirre, A.; Rojas, F. Ley de Bosque Nativo: Desafíos Socioculturales para su Implementación; Instituto Forestal y Universidad Austral de Chile, Informe Interno: Santiago, Chile, 2016; 82p. [Google Scholar] [CrossRef]
- Reyes, R.; Sepúlveda, C.; Astorga, L. Gobernanza del sector forestal chileno: Tensiones y conflictos entre las fuerzas de mercado y las demandas de la ciudadanía. In Ecología Forestal. Bases Para el Manejo Sustentable y Conservación de los Bosques Nativos de Chile; Donoso, C., González, M.E., Lara, A., Eds.; Ediciones UACh: Valdivia, Chile, 2014; pp. 693–720. [Google Scholar]
- Cabaña Chávez, C. Reseña Histórica de la Aplicación del DL 701, de 1974, Sobre Fomento Forestal; Corporación Nacional Forestal: Santiago, Chile, 2011; Available online: https://www.corma.cl/wp-content/uploads/2020/03/resena-historica-de-la-aplicacion-del-dl-701-de-1974-sobre-fomento-forestal.pdf (accessed on 25 April 2023).
- INFOR. Anuario Forestal 2016. Boletín Estadístico N° 154; Ministerio de Agricultura, Instituto Forestal: Santiago, Chile, 2016. [Google Scholar] [CrossRef]
- Miranda, A.; Altamirano, A.; Cayuela, L.; Lara, A.; González, M. Native Forest loss in the Chilean biodiversity hotspot: Revealing the evidence. Reg. Environ. Chang. 2017, 17, 285–297. [Google Scholar] [CrossRef]
- De la Fuente, J.; Calderón, C.; Torres, J. Informe Final Programa Ley de Bosque Nativo; Ministerio de Agricultura: Santiago, Chile, 2013; Available online: https://www.dipres.gob.cl/597/articles-139791_informe_final.pdf (accessed on 24 April 2023).
- DIPRES. Resumen Ejecutivo e Informe de Comentarios a los Resultados de la Evaluación a Programas Gubernamentales Programa Ley del Bosque Nativo. Dirección de Presupuestos, Gobierno de Chile. 2013. Available online: https://www.dipres.gob.cl/597/articles-139791_r_ejecutivo_institucional.pdf (accessed on 25 April 2023).
- Lapola, D.; Pinho, P.; Barlow, J.; Aragao, L.; Berenguer, E.; Carmenta, R.; Liddy, H.M.; Seixas, H.; Silva, C.V.J.; Silva-Junior, C.H.L.; et al. The drivers and impacts of Amazon Forest degradation. Science 2023, 379, 6630. [Google Scholar] [CrossRef]
- Wu, W.; Zhu, Y.; Wang, Y. Spatio-Temporal Pattern, Evolution and Influencing Factors of Forest Carbon Sinks in Zhejiang Province, China. Forests 2023, 14, 445. [Google Scholar] [CrossRef]
- Sarricolea, P.; Herrera-Ossandon, M.; Meseguer-Ruíz, O. Climatic regionalization of continental Chile. J. Maps 2017, 13, 66–73. [Google Scholar] [CrossRef]
- Rull, V.; Vegas-Vilarrúbia, T. Resilience of Pyrenean Forests after Recurrent Historical Deforestations. Forests 2023, 14, 567. [Google Scholar] [CrossRef]
- Falk, D.A.; van Mantgem, P.J.; Keeley, J.E.; Gregg, R.M.; Guiterman, C.H.; Tepley, A.J.; Young, D.J.N.; Marshall, L.A. Mechanisms of forest resilience. For. Ecol. Manag. 2022, 512, 120–129. [Google Scholar] [CrossRef]
- CONAF. Monitoreo de Cambios, Corrección Cartográfica y Actualización del Catastro de los Recursos Vegetacionales Nativos de la Región del Maule. Resumen Ejecutivo. 2018; 50p. Available online: http://biblioteca.digital.gob.cl/handle/123456789/2341 (accessed on 24 April 2023).
- Gujarati, D.N.; Porter, D.C.; Gunasekart, S. Basic Econometrics; Tata McGraw-Hill Education: New York, NY, USA, 2012. [Google Scholar]
- Ekanayake, E.M.B.P.; Xie, Y.; Ahmad, S. Rural Residents’ Participation Intention in Community Forestry-Challenge and Prospect of Community Forestry in Sri Lanka. Forests 2021, 12, 1050. [Google Scholar] [CrossRef]
- Garcia, S.; Petucco, C.; Thorsen, B.J.; Vedel, S.E. Modelling the Choice Between Multiple-Use vs. Specialized Forest Management and its Impact on Forest Management Costs. Environ. Model. Assess. 2021, 26, 591–608. [Google Scholar] [CrossRef]
- Li, M.; Yu, B.; Zheng, B.; Gao, L. Collection of Non-Timber Forest Products in Chinese Giant Panda Reserves: The Effect of Religious Beliefs. Forests 2021, 12, 46. [Google Scholar] [CrossRef]
- Bashir, A.; Sjølie, H.K.; Solberg, B. Determinants of Nonindustrial Private Forest Owners’ Willingness to Harvest Timber in Norway. Forests 2020, 11, 60. [Google Scholar] [CrossRef]
- Tschopp, M.; Ceddia, M.G.; Inguiggiato, C.; Bardsley, N.O.; Hernández, H. Understanding the adoption of sustainable silvopastoral practices in Northern Argentina: What is the role of land tenure? Land Use Policy 2020, 99, 105092. [Google Scholar] [CrossRef]
- Zhunusova, E.; Sen, L.T.; Schröder, J.M.; Ziegler, S.; Dieter, M.; Günter, S. Smallholder decision-making on sawlog production: The case of Acacia plantation owners in central Vietnam. Forests 2019, 10, 969. [Google Scholar] [CrossRef]
- Min, S.; Bai, J.; Huang, J.; Waibel, H. Willingness of smallholder rubber farmers to participate in ecosystem protection: Effects of household wealth and environmental awareness. For. Policy Econ. 2018, 87, 70–84. [Google Scholar] [CrossRef]
- Long, J.S. Regression Models for Categorical and Limited Dependent Variables; Sage: Southend Oaks, CA, USA, 1997; Volume 7. [Google Scholar]
- Miranda, A.; Lara, A.; Altamirano, A.; Zamorano-Elgueta, C.; Hernández, H.J.; González, M.E.; Pauchard, A.; Promis, A. Monitoreo de la superficie de los bosques nativos de Chile: Un desafío pendiente. Bosque Valdivia 2018, 39, 265–275. [Google Scholar] [CrossRef]
- Guereña, A. Unearthed: Land, Power, and Inequality in Latin America. Oxfam International. 2016; 21p. Available online: https://oi-files-d8-prod.s3.eu-west-2.amazonaws.com/s3fs-public/file_attachments/bp-land-power-inequality-latin-america-301116-en.pdf (accessed on 25 April 2023).
- Alaniz, A.J.; Smith-Ramírez, C.; Rendón-Funes, A.; Hidalgo-Corrotea, C.; Carvajal, M.A.; Vergara, P.M.; Fuentes, N. Multiscale spatial analysis of headwater vulnerability in South-Central Chile reveals a high threat due to deforestation and climate change. Sci. Total Environ. 2022, 849, 157930. [Google Scholar] [CrossRef] [PubMed]
- Peña-Cortés, F.; Pincheira-Ulbrich, J.; Bertrán, C.; Tapia, J.; Hauenstein, E.; Fernández, E.; Rozas, D. A study of the geographic distribution of swamp forest in the coastal zone of the Araucanía Region, Chile. Appl. Geogr. 2011, 31, 545–555. [Google Scholar] [CrossRef]
- Reyes, R. Promotores Socioeconómicos de la Pérdida y Degradación del Bosque Nativo. Informe de Avance. Sistema Integrado de Monitoreo de Ecosistemas Forestales. 2018. Available online: https://simef.minagri.gob.cl/bibliotecadigital/handle/20.500.12978/12920 (accessed on 25 April 2023).
- DIPRES. Evaluación de Resultados del Decreto Ley N° 701 de 1974. Dirección de Presupuestos, Gobierno de Chile. 2014. Available online: https://www.dipres.gob.cl/597/articles-141195_informe_final.pdf (accessed on 24 April 2023).
- Bottaro, G.; Roco, L.; Pettenella, D.; Micheletti, S.; Vanhulst, J. Forest Plantations’ Externalities: An Application of the Analytic Hierarchy Process to Non-Industrial Forest Owners in Central Chile. Forests 2018, 9, 141. [Google Scholar] [CrossRef]
- CoatarPeter, P.; Gareau, P.J. Combining world-system and world polity approaches to analyze international environmental governance: A case study of forest governance in Chile. Environ. Sociol. 2023, 9, 67–79. [Google Scholar] [CrossRef]
- Skewes, J.C.; Guerra, D.; Rebolledo, S.; Palma, L. The forest recovery: Landscape, practices and ontologies in southern Chile. Estud. Atacameños 2020, 65, 385–405. [Google Scholar] [CrossRef]
- Manuschevich, D.; Sarricolea, P.; Galleguillos, M. Integrating socio-ecological dynamics into land use policy outcomes: A spatial scenario approach for native forest conservation in south-central Chile. Land Use Policy 2019, 84, 31–42. [Google Scholar] [CrossRef]
- Reid, N.; Dickinson, Y.; Smith, R.; Taylor, M.; Norton, D. Temperate Forest Restoration. In Ecological Restoration; Florentine, S., Gibson-Roy, P., Dixon, K.W., Broadhurst, L., Eds.; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Donoso, P.J.; Promis, A.; Loguercio, G.A.; Beltrán, H.A.; Caselli, M.; Chauchard, L.M.; Cruz, G.; González, M.; Martínez, G.; Navarro, C.; et al. Silviculture of South American temperate native forests. N. Z. J. For. Sci. 2022, 52, 2. [Google Scholar] [CrossRef]
- Auffret, A.G.; Thomas, A.D. Synergistic and antagonistic effects of land use and non-native species on community responses to climate change. Glob. Chang. Biol. 2019, 25, 4303–4314. [Google Scholar] [CrossRef]
- Emanuelli, P.; Milla, F. Alternativas de Productos Madereros del Bosque Nativo Chileno. Corporación Nacional Forestal. Sociedad Alemana de Cooperación Técnica (GTZ). 2006. Available online: http://dspace.utalca.cl/bitstream/1950/10408/1/42300.pdf (accessed on 25 April 2023).
Region | Year of the Properties Layer | Year of the First Layer of the Cadastre | Year of the Second Layer of the Cadastre | Timeframe of Analysis (Years) |
---|---|---|---|---|
Araucanía | 2000 | 1997 | 2014 | 17 |
Los Ríos | 2000 | 1997 | 2014 | 17 |
Los Lagos | 2016 | 1997 | 2013 | 16 |
Variable Name | Description | Mean | S. D. | Expected Effect |
---|---|---|---|---|
Continuous | ||||
Age | Age of the owner or decision maker in years | 57.7 | 13.4 | (−) |
Schooling | Number of years of formal education of the owner | 10.0 | 4.2 | (+) |
Animal units | Number of animal units (AU) in the farm | 112.8 | 437.6 | (−) |
Native forests share | Proportion of native forest area in relation to the total farm size (%) | 60.1 | 27.7 | (+) |
Scrub share | Proportion of scrub area in relation to the total farm size (%) | 3.4 | 9.2 | (+) |
Forest plantations share | Proportion of forest plantations area in relation to the total farm size (%) | 5.0 | 12.0 | (−) |
Binary | ||||
Farm size Q1 | Equals 1 if the farm size is in the first quartile (farm size > 30 ha), 0 otherwise | 0.25 | - | (−) |
Farm size Q2 | Equals 1 if the farm size is in the second quartile (30 ha ≤ farm size > 99.5 ha), 0 otherwise | 0.25 | - | (−) |
Farm size Q3 | Equals 1 if the farm size is in the third quartile (99.5 ha ≤ farm size > 565 ha), 0 otherwise | 0.25 | - | (+) |
Farm size Q4 | Equals 1 if the farm size is in the fourth quartile (farm size ≥ 565 ha), 0 otherwise | 0.25 | - | (+) |
Araucanía | Equals 1 if the farm is located in La Araucanía region, 0 otherwise | 0.15 | - | (+,−) |
Los Ríos | Equals 1 if the farm is located in Los Ríos region, 0 otherwise | 0.40 | - | (+,−) |
Los Lagos | Equals 1 if the farm is located in Los Lagos region, 0 otherwise, omitted variable | 0.45 | - | (+,−) |
Gender | Equals 1 if the owner indicates belonging to the male gender, 0 otherwise | 0.83 | - | (+,−) |
Forest management plan | Equals 1 if the owner indicates to have a forest management plan, 0 otherwise | 0.21 | - | (+) |
Technical advisory | Equals 1 if the owner indicates to have technical advisory for forest management, 0 otherwise | 0.50 | - | (+) |
Situation Region | Change in Native Forest Area Calculated in QGIS | ||
---|---|---|---|
Decrease | No Changes | Increase | |
Araucanía | 2 | 10 | 12 |
Los Ríos | 9 | 9 | 45 |
Los Lagos | 18 | 23 | 28 |
Total | 29 | 42 | 83 |
Variable | Coefficient | Robust Standard Error | Marginal Effects |
---|---|---|---|
Age | −0.0060 | 0.0088 | −0.0023792 |
Schooling | 0.0091 | 0.0313 | 0.0035906 |
Animal units | −0.0001 | 0.0002 | −0.0000482 |
Native forests share | 0.0002 | 0.0046 | 0.0000717 |
Scrub share | 0.0408 ** | 0.0190 | 0.0160993 ** |
Forest plantations share | −0.0201 ** | 0.0100 | −0.0079353 ** |
Farm size Q2 | 0.8089 *** | 0.3174 | 0.2954345 *** |
Farm size Q3 | 0.3887 | 0.3375 | 0.1493749 |
Farm size Q4 | 0.5068 | 0.4071 | 0.1924921 |
Araucanía | 0.4734 | 0.3555 | 0.1778919 |
Los Ríos | 0.7262 *** | 0.2739 | 0.2766469 *** |
Gender | 0.2696 | 0.2868 | 0.1062543 |
Forest management plan | 0.2503 | 0.2969 | 0.0970840 |
Technical advisory | −0.2996 | 0.2514 | −0.1176826 |
constant | −0.6324 | 0.8134 | - |
Log pseudolikelihood | −89.28 | ||
Pseudo R2 | 15.99% | ||
N | 154 |
Classified by the Model | Original Data | |
---|---|---|
Increase | Other | |
Classified positive | 62 (74.7%) | 25 (35.2%) |
Classified negative | 21 (25.3%) | 46 (64.8%) |
Mean | 70.13% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roco, L.; Grebe, J.; Rosales, P.; Bravo, C. Identifying the Determinants of the Increase in Native Forests in Southern Chile. Forests 2023, 14, 1926. https://doi.org/10.3390/f14091926
Roco L, Grebe J, Rosales P, Bravo C. Identifying the Determinants of the Increase in Native Forests in Southern Chile. Forests. 2023; 14(9):1926. https://doi.org/10.3390/f14091926
Chicago/Turabian StyleRoco, Lisandro, José Grebe, Patricia Rosales, and Carmen Bravo. 2023. "Identifying the Determinants of the Increase in Native Forests in Southern Chile" Forests 14, no. 9: 1926. https://doi.org/10.3390/f14091926