Chronosequence and Temporal Changes in Soil Conditions, Vegetation Structure and Leaf Traits in a Tropical Dry Forest in Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Design
2.2.1. Characterization of Biotic and Abiotic Changes
2.2.2. Tree Species and Leaf Sampling
2.2.3. Leaf Polyphenol and Chlorophyll Contents
2.3. Statistical Analyses
2.3.1. Characterization of Biotic and Abiotic Changes
2.3.2. Leaf Functional Traits
3. Results
3.1. Characterization of Biotic and Abiotic Changes
3.2. Leaf Functional Traits
4. Discussion
4.1. Temporal Changes in Biotic and Abiotic Conditions
4.2. Chronosequence Variations in Leaf Traits
4.3. Temporal Differences in Leaf Traits
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- PePeña-Claros, M.; Poorter, L.; Alarcón, A.; Blate, G.; Choque, U.; Fredericksen, T.S.; Justiniano, M.J.; Leaño, C.; Licona, J.C.; Pariona, W.; et al. Soil effects on forest structure and diversity in a moist and a dry tropical forest. Biotropica 2012, 44, 276–283. [Google Scholar] [CrossRef]
- Arruda, D.M.; Schaefer, C.E.G.R.; Correa, G.R.; Rodrigues, P.M.S.; Duque-Brasil, R.; Ferreira, W.G., Jr.; Oliveira-Filho, A.T. Landforms and soil attributes determines the vegetation structure in the Brazilian semiarid. Folia Geobot. 2015, 50, 175–184. [Google Scholar] [CrossRef]
- Silva, J.O.; Souza-Silva, H.; Rodrigues, P.M.S.; Cuevas-Reyes, P.; Espírito-Santo, M.M. Soil resource availability, plant defense, and herbivory along a successional gradient in a tropical dry forest. Plant Ecol. 2021, 222, 625–637. [Google Scholar] [CrossRef]
- Vaca-Sánchez, M.S.; Maldonado-López, Y.; Oyama, K.; Delgado, G.; Aguilar-Peralta, J.S.; Borges, M.A.Z.; de Faria, M.L.; Fagundes, M.; López-Maldonado, M.C.; Cuevas-Reyes, P. Changes in herbivory patterns and insect herbivore assemblages associated to canopy of Quercus laurina: Importance of oak species diversity and foliar chemical defense. Trees 2022, 37, 699–715. [Google Scholar] [CrossRef]
- Alvarez-Añorve, M.Y.; Quesada, M.; Sánchez-Azofeifa, G.A.; Avila-Cabadilla, L.D.; Gamon, J.A. Functional regeneration and spectral reflectance of trees during succession in a highly diverse tropical dry forest ecosystem. Am. J. Botany 2012, 99, 816–826. [Google Scholar] [CrossRef]
- Alves, A.M.; Espírito-Santo, M.M.; Silva, J.O.; Faccion, G.; Sanchez-Azofeifa, A.; Ferreira, K.F. Successional and intraspecific variations in leaf traits, spectral reflectance indices and herbivory in a Brazilian tropical dry forest. Front. For. Glob. Chang. 2021, 4, 780299. [Google Scholar] [CrossRef]
- Faccion, G.; Alves, A.M.; Espírito-Santo, M.M.; Silva, J.O.; Sanchez-Azofeia, G.A.; Ferreira, K.F. Intra- and interspecific variations on plant functional traits along a successional gradient in a Brazilian tropical dry forest. Flora 2021, 279, 151–815. [Google Scholar] [CrossRef]
- Violle, C.; Enquist, B.J.; McGill, B.J.; Jiang, L.; Albert, C.H.; Hulshof, C.; Jung, V.; Messier, J. The return of the variance: Intraspecific variability in community ecology. Trends Ecol. Evol. 2012, 27, 244–252. [Google Scholar] [CrossRef]
- Fonseca, M.B.; Silva, J.O.; Falcão, L.A.D.; Dupin, M.G.V.; Melo, G.A.; Espírito-Santo, M.M. Leaf damage and functional traits along a successional gradient in Brazilian tropical dry forests. Plant Ecol. 2018, 219, 403–415. [Google Scholar] [CrossRef]
- Lebrija-Trejos, E.; Pérez-García, E.A.; Meave, J.A.; Bongers, F.; Poorter, L. Functional traits and environmental filtering drive community assembly in a species-rich tropical system. Ecology 2010, 91, 386–398. [Google Scholar] [CrossRef]
- Sanaphre-Villanueva, L.; Dupuy, J.M.; Andrade, J.L.; Reyes-García, C.; Jackson, P.C.; Paz, H. Patterns of plant functional variation and specialization along secondary succession and topography in a tropical dry forest. Environ. Res. Lett. 2017, 12, 055004. [Google Scholar] [CrossRef]
- Mantero, G.; Morresi, D.; Marzano, R.; Motta, R.; Mladenoff, D.J.; Garbarino, M. The influence of land abandonment on forest disturbance regimes: A global review. Landsc. Ecol. 2020, 35, 2723–2744. [Google Scholar] [CrossRef]
- Jakovac, C.C.; Junqueira, A.B.; Crouzeilles, R.; Peña-Claros, M.; Mesquita, R.C.G.; Bongers, F. The role of land-use history in driving successional pathways and its implications for the restoration of tropical forests. Biol. Rev. 2021, 96, 1114–1134. [Google Scholar] [CrossRef] [PubMed]
- Espírito-Santo, M.M.; Olívio-Leite, L.; Neves, F.S.; Nunes, Y.R.F.; Zazá-Borges, M.A.; Falcão, L.A.D.; Fonseca-Pezzini, F.; Louro-Berbara, R.; Maia-Valério, H.; Fernandes, G.W.; et al. Tropical dry forests of northern Minas Gerais, Brazil: Diversity, conservation status, and natural regeneration. In Tropical Dry Forests in the Americas: Ecology, Conservation, and Management; Sánchez-Azofeifa, A., Powers, J.S., Fernandes, G.W., Quesada, M., Eds.; CRC Press: Boca Raton, FL, USA, 2014; pp. 69–81. [Google Scholar]
- Ayala-Orozco, B.; Gavito, M.E.; Mora, F.; Siddique, I.; Balvanera, P. Resilience of soil properties to land-use change in a tropical dry forest ecosystem. Land Degrad. Dev. 2018, 29, 315–325. [Google Scholar] [CrossRef]
- van der Sande, M.T.; Powers, J.S.; Kuyper, T.W.; Norden, N.; Salgado-Negret, B.; de Almeida, J.S.; Bongers, F.; Delgado, D.; Dent, D.H.; Derroire, G.; et al. Soil resistance and recovery during neotropical forest succession. Philos. Trans. R. Soc. B 2023, 378, 20210074. [Google Scholar] [CrossRef]
- Poorter, L.; Amissah, L.; Bongers, F.; Hordijk, I.; Kok, J.; Laurance, S.G.; van der Sande, M.T. Successional theories. Biol. Rev. 2023, 98, 2049–2077. [Google Scholar] [CrossRef]
- Rosenfield, M.F.; Jakovac, C.C.; Vieira, D.L.M.; Poorter, L.; Brancalion, P.H.S.; Vieira, I.C.G.; Almeida, D.R.A.; Massoca, P.; Schietti, J.; Albernaz, A.L.M.; et al. Ecological integrity of tropical secondary forests: Concepts and indicators. Biol. Rev. 2022, 98, 662–676. [Google Scholar] [CrossRef]
- Chazdon, R.L.; Lindenmayer, D.; Guariguata, M.R.; Crouzeilles, R.; Benayas, J.M.R.; Chavero, E.L. Fostering natural forest regeneration on former agricultural land through economic and policy interventions. Environ. Res. Lett. 2020, 15, 043002. [Google Scholar] [CrossRef]
- Crouzeilles, R.; Beyer, H.L.; Monteiro, L.M.; Feltran-Barbieri, R.; Pessôa, A.C.; Barros, F.S.; Strassburg, B.B. Achieving cost-effective landscape-scale forest restoration through targeted natural regeneration. Conserv. Lett. 2020, 13, e12709. [Google Scholar] [CrossRef]
- Chazdon, R. Chance and determinism in tropical forest succession. In Tropical Forest Community Ecology; Carson, W., Schnitzer, F., Eds.; Wiley-Blackwell: Sussex, UK, 2008; pp. 384–408. [Google Scholar]
- Lebrija-Trejos, E.; Meave, J.A.; Poorter, L.; Pérez-García, E.A.; Bongers, F. Pathways, mechanisms and predictability of vegetation change during tropical dry forest succession. Perspect. Plant Ecol. 2010, 12, 267–275. [Google Scholar] [CrossRef]
- Lohbeck, M.; Poorter, L.; Lebrija-Trejos, E.; Martínez-Ramos, M.; Meave, J.A.; Paz, H.; Pérez-García, E.A.; Romero-Pérez, I.E.; Tauro, A.; Bongers, F. Successional changes in functional composition contrast for dry and wet tropical forest. Ecology 2013, 94, 1211–1216. [Google Scholar] [CrossRef] [PubMed]
- Lohbeck, M.; Lebrija-Trejos, E.; Martínez- Ramos, M.; Meave, J.A.; Poorter, L.; Bongers, F. Functional trait strategies of trees in dry and wet tropical forests are similar but differ in their consequences for succession. PLoS ONE 2015, 10, 0123741. [Google Scholar] [CrossRef] [PubMed]
- Poorter, L.; Rozendaal, D.M.A.; Bongers, F.; de Almeida-Cortez, J.S.; Zambrano, A.M.A.; Álvarez, F.S.; Andrade, J.L.; Villa, L.F.A.; Balvanera, P.; Becknell, J.M.; et al. Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. Nat. Ecol. Evol. 2019, 5, eaau3114. [Google Scholar] [CrossRef] [PubMed]
- Poorter, L.; Craven, D.; Jakovac, C.C.; van der Sande, M.T.; Amissah, L.; Bongers, F.; Chazdon, R.L.; Farrior, C.E.; Kambach, S.; Meave, J.A.; et al. Multidimensional tropical forest recovery. Science 2021, 374, 1370–1376. [Google Scholar] [CrossRef]
- Lebrija-Trejos, E.; Bongers, F.; Pérez-García, E.A.; Meave, J.A. Successional change and resilience of a very dry tropical deciduous forest following shifting agriculture. Biotropica 2008, 40, 422–431. [Google Scholar] [CrossRef]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Villar, R. The worldwide leaf economics spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef]
- Miner, B.G.; Sultan, S.E.; Morgan, S.G.; Padilla, D.K.; Relyea, R.A. Ecological consequences of phenotypic plasticity. Trends Ecol. Evol. 2005, 20, 685–692. [Google Scholar] [CrossRef]
- Pezzini, F.F.; Ranieri, B.D.; Brandão, D.O.; Fernandes, G.W.; Quesada, M.; Espírito-Santo, M.M.; Jacobi, C.M. Changes in tree phenology along natural regeneration in a seasonally dry tropical forest. Plant Biosyst. 2014, 148, 965–974. [Google Scholar] [CrossRef]
- Vasques, G.M.; Coelho, M.R.; Dart, R.O.; Oliveira, R.P.; Teixeira, W.G. Mapping soil carbon, particle-size fractions, and water retention in tropical dry forest in Brazil. Pesqui Agropecu. Bras. 2016, 5, 1371–1385. [Google Scholar] [CrossRef]
- Coelho, M.R.; Dart, R.D.O.; Vasques, G.D.M.; Teixeira, W.G.; Oliveira, R.P.; Brefin, M.; Berbara, R. Levantamento Pedológico Semi-Detalhado (1: 30.000) do Parque Estadual da Mata Seca, Município de Manga-MG; Boletim de Pesquisa e Desenvolvimento 217; Embrapa Solos: Rio de Janeiro, Brazil, 2013; pp. 1–264. [Google Scholar]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Koppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Antunes, F.Z. Caracterização Climática—Caatinga do Estado de Minas Gerais. Info. Agropec. 1994, 17, 15–19. [Google Scholar]
- Madeira, B.G.; Espírito-Santo, M.M.; D’Angelo-Neto, S.; Nunes, Y.R.F.; Sánchez-Azofeifa, G.A.; Fernandes, G.W.; Quesada, M. Changes in tree and liana communities along a successional gradient in a tropical dry forest in south-eastern Brazil. For. Ecol Manag. 2009, 201, 291–304. [Google Scholar] [CrossRef]
- Holdridge, L.R.; Grenke, W.C.; Hatheway, W.H.; Liang, T.; Tosi, J.A.J.R. Forest Environments in Tropical Life Zones: A Pilot Study; Pergamon Press: New York, NY, USA, 1971. [Google Scholar]
- Müeller-Dombois, D.; Ellenberg, H.A. Aims and Methods of Vegetation Ecology; John Wiley: New York, NY, USA, 1974. [Google Scholar]
- Rasband, W.S. ImageJ; U.S. National Institutes of Health: Bethesda, MD, USA, 2006. Available online: http://rsb.info.nih.gov/ij (accessed on 26 January 2019).
- Cornelissen, J.H.C.; Lavorel, S.; Garnier, E.; Díaz, S.; Buchmann, N.; Gurvich, D.E.; Poorter, H. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 2003, 51, 335–380. [Google Scholar] [CrossRef]
- Cartelat, A.; Cerovic, Z.; Goulas, Y.; Meyer, S.; Lelarge, C.; Prioul, J.-L.; Barbottin, A.; Jeuffroy, M.-H.; Gate, P.; Agati, G.; et al. Optically assessed contents of leaf polyphenolics and chlorophyll as indicators of nitrogen deficiency in wheat (Triticum aestivum L.). Field Crop. Res. 2005, 91, 35–49. [Google Scholar] [CrossRef]
- Goulas, Y.; Cerovic, Z.G.; Cartelat, A.; Moya, I. Dualex: A new instrument for field measurements of epidermal UV-absorbance by chlorophyll fluorescence. Appl. Opt. 2004, 43, 4488–4496. [Google Scholar] [CrossRef]
- Hiscox, J.; Israelstam, G.F. A method for the extraction of chlorophyll from leaf tissue without maceration. Canad. J. Bot. 1979, 57, 1332–1334. [Google Scholar] [CrossRef]
- Mackinney, G. Absorption of light by chlorophyll solutions. J. Biol. Chem. 1941, 140, 315–322. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper Enzymes in Isolated Chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. Available online: https://www.jstor.org/stable/4258165 (accessed on 1 May 2019). [CrossRef]
- Reis-Jr, R.; Oliveira, M.L.; Borges, G.R.A. RT4Bio: R Tools for Biologists. 2015. Available online: https://sourceforge.net/projects/rt4bio/ (accessed on 26 June 2020).
- Crawley, M.J. Statistical Computing—An Introduction to Data Analysis Using S-Plus; John Wiley & Sons: London, UK, 2007. [Google Scholar]
- R Development Core Team R. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; ISBN 3-900051-07-0. Available online: http://www.R-project.org. (accessed on 12 June 2019).
- Hammer, Ø.; Harper, D.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 1–9. Available online: https://palaeo-electronica.org/2001_1/past/issue1_01.htm (accessed on 21 April 2019).
- Becknell, J.M.; Powers, J.S. Stand age and soils as drivers of plant functional traits and aboveground biomass in secondary tropical dry forest. Can. J. For. Res. 2014, 44, 604–613. [Google Scholar] [CrossRef]
- Bretfeld, M.; Ewers, B.E.; Hall, J.S. Plant water use responses along secondary forest succession during the 2015-2016 El Niño drought in Panama. New Phytol. 2018, 219, 885–899. [Google Scholar] [CrossRef] [PubMed]
- Rowland, L.; da Costa, A.C.L.; Galbraith, D.R.; Oliveira, R.S.; Binks, O.J.; Oliveira, A.A.R.; Pullen, A.M.; Doughty, C.E.; Metcalfe, D.B.; Vasconcelos, S.S.; et al. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 2015, 528, 119–122. [Google Scholar] [CrossRef] [PubMed]
- Meakem, V.; Tepley, A.J.; Gonzalez-Akre, E.B.; Herrmann, V.; Muller-Landau, H.C.; Wright, S.J.; Hubbell, S.P.; Condit, R.; Anderson-Teixeira, K.J. Role of tree size in moist tropical forest carbon cycling and water deficit responses. New Phytol. 2017, 47, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Bennett, A.C.; de Sousa, T.R.; Monteagudo-Mendoza, A.; Esquivel-Muelbert, A.; Morandi, P.S.; de Souza, F.C.; Castro, W.; Duque, L.F.; Llampazo, G.F.; dos Santos, R.M.; et al. Sensitivity of South American tropical forests to an extreme climate anomaly. Nat. Clim. Chang. 2023, 13, 967–974. [Google Scholar] [CrossRef]
- Barros, E.; Curmi, P.; Hallaire, V.; Chauvel, A.; Lavelle, P. The role of macrofauna in the transformation and reversibility of soil structure of an oxisol in the process of forest to pasture conversion. Geoderma 2001, 100, 193–213. [Google Scholar] [CrossRef]
- Satdichanh, M.; Dossa, G.G.; Yan, K.; Tomlinson, K.W.; Barton, K.E.; Crow, S.E.; Harrison, R.D. Drivers of soil organic carbon stock during tropical forest succession. J. Ecol. 2023, 111, 1722–1734. [Google Scholar] [CrossRef]
- Xing, G.; Wang, X.; Jiang, Y.; Yang, H.; Mai, S.; Xu, W.; Long, W. Variations and influencing factors of soil organic carbon during the tropical forest succession from plantation to secondary and old–growth forest. Front. Ecol. Evol. 2023, 10, 1104369. [Google Scholar] [CrossRef]
- Kramer, T.; and Kozlowski, T. Physiology of Woody Plants; Academic Press: New York, NY, USA, 1979. [Google Scholar]
- Bojović, B.; Marković, A. Correlation between nitrogen and chlorophyll content in wheat (Triticum aestivum L.). Kragujevac J. Sci. 2009, 31, 69–74. [Google Scholar]
- Nogueira, P.D.M.; Sena Júnior, D.G.; Ragagnin, V.A. Clorofila foliar e nodulação em soja adubada com nitrogênio em cobertura. Global Sci. Technol. 2010, 3, 117–124. [Google Scholar]
- Gonçalves, C.J.F.; Marenco, A.R.; Vieira, G. Concentration of photosynthetic pigments and chlorophyll fluorescence of Mahogany and Tonka bean under two light environments. Rev. Bras. Fisiol. Veg. 2001, 13, 149–157. [Google Scholar] [CrossRef]
- Li, Y.; Liu, C.; Zhang, J.; Yang, H.; Xu, L.; Wang, Q.; He, N. Variation in leaf chlorophyll concentration from tropical to cold-temperate forests: Association with gross primary productivity. Ecol. Indic. 2018, 85, 383–389. [Google Scholar] [CrossRef]
- Johnson, E.A.; Miyanishi, K. Testing the assumptions of chronosequences in succession. Ecol. Lett. 2008, 11, 419–431. [Google Scholar] [CrossRef] [PubMed]
Tree Species | Family | Successional Stage | |||
---|---|---|---|---|---|
IV | Early | Intermediate | Late | ||
2009 | |||||
Astronium urundeuva (M.Allemão) Engl. | Anacardiaceae | 32.54 | X | ||
Handroanthus chrysotrichus (Mart. ex DC.) | Bignoniaceae | 26.63 | X | ||
Tabebuia reticulata A.H. Gentry | Bignoniaceae | 22.13 | X | X | |
Combretum duarteanum Loefl. | Combretaceae | 20.92 | X | X | |
Commiphora leptophloeos (Mart.) J.B.Gillett | Burseraceae | 11.97 | X | X | |
Senna spectabilis (DC.) H.S.Irwin & Barneby | Fabaceae | 9.49 | X | ||
Cenostigma pluviosum (DC.) Gagnon & G.P.Lewis | Fabaceae | 9.43 | X | X | X |
Terminalia fagifolia L. | Combretaceae | 9.31 | X | X | |
Handroanthus ochraceus (Cham.) Mattos | Bignoniaceae | 8.60 | X | ||
Machaerium acutifolium Vogel. | Fabaceae | 5.59 | X | ||
Mimosa tenuiflora (Wild.) Poir. | Fabaceae | 4.47 | X | ||
Senegalia polyphylla (DC.) Britton & Rose | Fabaceae | 3.87 | X | ||
Spondias tuberosa Arruda | Anacardiaceae | 3.77 | X | ||
2018 | |||||
Astronium urundeuva (M.Allemão) Engl. | Anacardiaceae | 31.44 | X | X | |
Handroanthus chrysotrichus (Mart. ex DC.) | Bignoniaceae | 24.45 | X | ||
Tabebuia reticulata A.H. Gentry | Bignoniaceae | 21.32 | X | X | |
Combretum duarteanum Loefl | Combretaceae | 19.12 | X | X | |
Commiphora leptophloeus (Mart.) J.B.Gillett | Burseraceae | 10.77 | X | X | |
Terminalia fagifolia L. | Combretaceae | 8.87 | X | X | |
Handroanthus ochraceus (Cham.) Mattos | Bignoniaceae | 7.99 | X | ||
Handroanthus spongiosus (Rizzini) S. Grose | Bignoniaceae | 7.69 | X | ||
Cenostigma pluviosum (DC.) Gagnon & G.P.Lewis | Fabaceae | 7.47 | X | X | |
Enterolobium contortisiliquum (Vell.) Morong | Fabaceae | 7.21 | X | ||
Aspidosperma parvifolium A.DC. | Apocynaceae | 6.78 | X | ||
Cochlospermum vitifolium (Wild.) Spreng. | Bixaceae | 5.71 | X | ||
Coccoloba schwackeana Lindau | Polygonaceae | 5.29 | X | ||
Machaerium acutifolium Vogel. | Fabaceae | 4.99 | X | ||
Leutzelburgia andradelimae H.C.Lima | Fabaceae | 4.83 | X | ||
Manihot anomala Mill. | Euphorbiaceae | 4.32 | X | ||
Randia armata (Sw.) DC. | Rubiaceae | 4.21 | X | ||
Acosmium lentiscifolium Schott | Fabaceae | 3.98 | X | ||
Aralia warmegiana (Marchal) J.Wen | Araliaceae | 3.91 | X | ||
Cordia incognita Gottschling & J.S.Mill | Cordiaceae | 3.87 | X | ||
Pereskia bahiensis Gürke | Cactaceae | 3.76 | X | ||
Platymiscium floribundum Vogel | Fabaceae | 3.45 | X | ||
Sapium glandulosum (L.) Morong | Euphorbiaceae | 3.32 | X | ||
Schinopsis brasiliensis Engl. | Anacardiaceae | 3.12 | X |
Parameter | Early | Intermediate | Late | ||||||
---|---|---|---|---|---|---|---|---|---|
Year | Year | Year | |||||||
2009 | 2018 | Change | 2009 | 2018 | Change | 2009 | 2018 | Change | |
Basal area (m2 ha−1) | 0.50 ± 0.09 a | 0.68 ± 0.16 d | +36% | 1.73 ± 0.16 b | 1.23 ± 0.12 e | −28% | 2.56 ± 0.17 c | 2.15 ± 0.17 f | −16% |
Height (m) | 6.07 ± 0.39 a | 7.34 ± 0.77 d | +20% | 8.92 ± 0.22 b | 8.51 ± 0.50 d | −4% | 10.0 ± 0.64 c | 9.49 ± 0.29 e | −5% |
Density (ha−0.1) | 47.6 ± 0.77 a | 57.5 ± 10.5 d | +20% | 50.4 ± 0.58 a | 44.1 ± 3.54 e | −12% | 62.3 ± 0.42 b | 56.9 ± 3.01 d | −8% |
Species richness | 12.3 ± 1.22 a | 10.3 ± 1.22 d | −16% | 22.2 ± 1.19 b | 19.0 ± 1.21 e | −14% | 21.8 ± 1.40 b | 19.3 ± 1.30 e | −15% |
HCI | 2.42 ± 0.88 a | 3.94 ± 1.38 d | +62% | 17.9 ± 3.53 b | 8.64 ± 1.08 e | −51% * | 35.3 ± 5.02 c | 22.5 ± 2.58 f | −36% * |
Parameters | Early | Intermediate | Late | ||||||
---|---|---|---|---|---|---|---|---|---|
Year | Year | Year | |||||||
2009 | 2018 | 2009 | 2018 | 2009 | 2018 | ||||
Chemical | Change | Change | Change | ||||||
pH | 6.8 ± 0.11 a | 6.36 ± 0.14 d | −6.0% | 5.3 ± 0.05 b | 5.16 ± 0.0 e | −2.0% | 6.63 ± 0.16 a | 6.36 ± 0.03 d | −4.0% |
P Meh | 4.0 ± 0.57 a | 1.0 ± 0.07 d | −75% * | 3.0 ± 0.00 a | 1.0 ± 0.07 d | −66% * | 3.0 ± 0.44 a | 1.0 ± 0.33 d | −200% * |
K | 143.0 ± 18.9 a | 96.0 ± 7.96 d | −32% | 64.0 ± 2.6 b | 53.0 ± 1.6 e | −17% | 126.0 ± 12.8 a | 108.0 ± 9.13 d | −14% |
Ca | 8.0 ± 0.18 a | 8.0 ± 0.78 d | 0% | 3.0 ± 0.58 b | 3.0 ± 0.24 e | 0% | 8.0 ± 0.50 a | 8.0 ± 0.37 d | 0% |
Mg | 2.0 ± 0.38 a | 3.0 ± 0.76 d | +50% | 1.0 ± 0.03 b | 1.0 ± 0.08 e | 0% | 2.0 ± 0.15 a | 3.0 ± 0.09 d | +50% |
Organic matter | 3.0 ± 0.09 a | 7.09 ± 0.07 d | +133% * | 3.0 ± 0.02 a | 5.0 ± 0.06 d | +66% * | 3.0 ± 0.05 a | 6.0 ± 0.06 d | +100% * |
Organic C | 2.0 ± 0.05 a | 4.0 ± 0.04 d | +100% * | 1.0 ± 0.12 a | 3.0 ± 0.03 d | +200% * | 3.0 ± 0.06 a | 4.0 ± 0.39 d | +33% |
Parameter | Expected | Observed Trend | ||
---|---|---|---|---|
Chronosequence 2009 | Chronosequence 2018 | Temporal (2009–2018) | ||
Biotic and abiotic changes | ||||
HCI | Increase | Increase | Increase | Decreases in the intermediate and late |
PAR | Decrease | Decrease | Higher in the intermediate | Decrease |
Soil nutrients | Increase | Lower in the intermediate | Lower in the intermediate | Decrease in P and increase in organic matter |
Soil WHC | Increase | Higher in the intermediate | Higher in the intermediate | Decrease in the early and late |
Leaf functional traits | ||||
SLA | Increase | Increase | Higher in the intermediate | Decrease |
Polyphenols | Decrease | Decrease | Higher in the intermediate | Decrease in early, increases in intermediate and late |
Total chlorophyll | Increase | Lower in the intermediate | No significant differences | No significant differences |
Chlorophylls a/b | Increase | No significant differences | No significant differences | Increase |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, K.F.; Silva, J.O.; Cuevas-Reyes, P.; Falcão, L.A.D.; Espírito-Santo, M.M. Chronosequence and Temporal Changes in Soil Conditions, Vegetation Structure and Leaf Traits in a Tropical Dry Forest in Brazil. Forests 2024, 15, 1700. https://doi.org/10.3390/f15101700
Ferreira KF, Silva JO, Cuevas-Reyes P, Falcão LAD, Espírito-Santo MM. Chronosequence and Temporal Changes in Soil Conditions, Vegetation Structure and Leaf Traits in a Tropical Dry Forest in Brazil. Forests. 2024; 15(10):1700. https://doi.org/10.3390/f15101700
Chicago/Turabian StyleFerreira, Kleiperry F., Jhonathan O. Silva, Pablo Cuevas-Reyes, Luiz Alberto Dolabela Falcão, and Mário M. Espírito-Santo. 2024. "Chronosequence and Temporal Changes in Soil Conditions, Vegetation Structure and Leaf Traits in a Tropical Dry Forest in Brazil" Forests 15, no. 10: 1700. https://doi.org/10.3390/f15101700
APA StyleFerreira, K. F., Silva, J. O., Cuevas-Reyes, P., Falcão, L. A. D., & Espírito-Santo, M. M. (2024). Chronosequence and Temporal Changes in Soil Conditions, Vegetation Structure and Leaf Traits in a Tropical Dry Forest in Brazil. Forests, 15(10), 1700. https://doi.org/10.3390/f15101700