Comparative Study on Vascular Bundle Morphological Characteristics of Parts of Branches, Culms, and Rhizomes of Oligostachyum sulcatum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Sampling Methods
2.2. Measurement of Vascular Bundle Size and Frequency
2.3. Scanning Electron Microscopy (SEM) Observation of Micromorphology
2.4. Feature Analysis
3. Results
3.1. Radial Variation in Vascular Bundle Morphological Characteristics
3.2. Comparative Analysis of Vascular Bundle Types
3.3. Comparative Analysis of Diameters of Vascular Bundles
3.4. Comparative Analysis of Vascular Bundle Distribution Frequency
3.5. Comparative Analysis of Vascular Bundle Morphological Characteristics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, W.; Hui, C.; Wang, F.; Wang, M.; Liu, G. Review of the resources and utilization of bamboo in China. In Bamboo—Current and Future Prospects; IntechOpen: London, UK, 2018. [Google Scholar]
- Wu, J.; Guo, Q. Bamboo resources and distribution in China. Text. Sci. Res. 2017, 3, 76–78. [Google Scholar]
- Dai, X.; Xu, C.; Dai, Q. Bamboo resources and research progress. J. Shandong For. Sci. Technol. 2009, 39, 107–111. [Google Scholar]
- Sharma, B.; Gatóo, A.; Bock, M.; Ramage, M. Engineered bamboo for structural applications. Constr. Build. Mater. 2015, 81, 66–73. [Google Scholar] [CrossRef]
- Shamsuri, A.; Main, N.M. Review on the paper making process from bamboo as a paper product. Prog. Eng. Appl. Technol. 2021, 2, 965–971. [Google Scholar]
- Tsubota, T.; Morita, M.; Kamimura, S.; Ohno, T. New approach for synthesis of activated carbon from bamboo. J. Porous Mater. 2016, 23, 349–355. [Google Scholar] [CrossRef]
- Zhou, D. Rapidly rising and transcending of the straw-based panel industry in China. China For. Prod. Ind. 2016, 43, 3–8. [Google Scholar]
- Zhu, G.; Shen, W. Global timber resources and China’s timber market prospects. China Wood-Based Panels. 2022, 29, 36–40. [Google Scholar]
- Zhao, X.; Ye, H.; Chen, F.; Cheng, H.; Gao, Z.; Qi, C.; Wang, G. Analysis of the bamboo button industry and processing technology based on bamboo as a substitution for plastic. J. Bamboo Res. 2024, 43, 19–27. [Google Scholar]
- Fan, Y. Studies on Biological Characteristics of Oligostachyum oedogonatum. Master’s Thesis, Nanjing Forestry University, Nanjing, China, 2013. [Google Scholar]
- Luo, H. Rapid propagation cultivation experiment of Oligostachyum sulcatum. Pract. For. Technol. 2004, 7, 24–25. [Google Scholar]
- Liese, W. Anatomy and properties of bamboo. In Proceedings of the International Bamboo Workshop, Hangzhou, China, 6–14 October 1985; pp. 196–208. [Google Scholar]
- Zhang, X.; Li, J.; Yu, Z.; Yu, Y.; Wang, H. Compressive failure mechanism and buckling analysis of the graded hierarchical bamboo structure. J. Mater. Sci. 2017, 52, 6999–7007. [Google Scholar] [CrossRef]
- Huang, D.; Zhou, A.; Li, H.; Su, Y.; Chen, G. Experimental study on the tensile properties of bamboo related to its distribution of vascular bundles. Key Eng. Mater. 2012, 517, 112–117. [Google Scholar] [CrossRef]
- Wei, X.; Zhou, H.; Chen, F.; Wang, G. Bending flexibility of moso bamboo (Phyllostachys edulis) with functionally graded structure. Materials 2019, 12, 2007. [Google Scholar] [CrossRef] [PubMed]
- Lo, T.Y.; Cui, H.; Tang, P.W.C.; Leung, H.C. Strength analysis of bamboo by microscopic investigation of bamboo fibre. Constr. Build. Mater. 2008, 22, 1532–1535. [Google Scholar] [CrossRef]
- Li, H.; Shen, S. The mechanical properties of bamboo and vascular bundles. J. Mater. Res. 2011, 26, 2749–2756. [Google Scholar] [CrossRef]
- Ji, S.; Mou, Q.; Li, T.; Li, X.; Cai, Z.; Li, X. The Novel Applications of Bionic Design Based on the Natural Structural Characteristics of Bamboo. Forests 2024, 5, 1205. [Google Scholar] [CrossRef]
- Grosser, D.; Liese, W. On the anatomy of Asian bamboos, with special reference to their vascular bundles. Wood Sci. Technol. 1971, 5, 290–312. [Google Scholar] [CrossRef]
- Jiang, X.; Li, Q. Preliminary observation on vascular bundles of domestic bamboos. J. Sichuan Agric. Coll. 1983, 1, 7–67. [Google Scholar]
- Wen, T.; Zhou, W. A preliminary study on the anatomical morphology of bamboo vascular bundles in China (I). J. Bamboo Res. 1984, 1, 1–21. [Google Scholar]
- Fang, W.; Huang, J.; Lu, M.; Qian, L.; Fu, W. Comparative anatomy on seventeen species of tufted bamboos. J. Zhejiang For. Coll. 1998, 15, 225–231. [Google Scholar]
- Hao, R.; Liu, W.; Chen, X. Investigation on bamboo chip bending process by microwave-heating softening. J. Cent. South Univ. For. Technol. 2014, 34, 111–113. [Google Scholar]
- Li, J.; Lu, W.; Liu, Y.; Ge, M. The stereological microscopy is applicable for wood anatomy. J. Northeast For. Univ. 1986, 3, 92–98. [Google Scholar]
- How to Understand Z-Test and T-Test? Available online: https://zhuanlan.zhihu.com/p/49468324 (accessed on 15 September 2024).
- Gong, Z.; Zhao, H. Study on the anatomical structure of bamboo rhizomes. J. Nanjing Norm. Univ. 1988, 4, 81–88. [Google Scholar]
- Li, S.; Yang, S.; Shang, L.; Liu, X.; Ma, J.; Ma, Q.; Tian, G. 3D visualization of bamboo node’s vascular bundle. Forests 2021, 12, 1799. [Google Scholar] [CrossRef]
- Ding, Y.; Liese, W. On the nodal structure of bamboo. J. Bamboo Res. 1995, 14, 24–32. [Google Scholar]
- Zhan, H.; Niu, C.; Li, C.; Wang, C.; Wang, S. Chemical and Anatomical Properties of Dendrocalamus giganteus Sheaths as Pulp Fiber. For. Prod. J. 2017, 67, 474–480. [Google Scholar] [CrossRef]
- Pu, X.; Du, F. Anatomical studies on the culm and variation of Dendrocalamus sinicus. J. Southwest For. Coll. 2003, 23, 1–5. [Google Scholar]
- Xiang, E.; Liu, X.; Tian, G.; Ma, J.; Yang, S.; Wang, Y. Anatomical characteristics of four sympodial bamboo in Guangxi autonomous region. Trans. China Pulp Pap. 2019, 34, 1–6. [Google Scholar]
- Huang, X.; Xie, J.; Hao, J.; Qin, J.; Chen, B. Variation in anatomical characteristics of bamboo, Bambusa rigida. Sains Malays. 2015, 44, 17–23. [Google Scholar]
- Su, W.; Fang, S.; Peng, Y.; Yu, Y.; Zhang, D. Fiber forms and tissue measurements of Bambusa sinospinosa, Bambusa blumeana and Dendrocalamus yunnanicus stem. J. Zhejiang For. Coll. 2011, 28, 5. [Google Scholar]
- Liu, X.; Hu, F.; Wang, Y.; Fei, B.; Zhou, X.; Zhang, L.; Gao, L.; Lu, J. Main anatomical characteristics of Bamdusa pervariadilis × Dendrocalamopsis daii. J. Anhui Agric. Univ. 2013, 40, 1–4. [Google Scholar]
- Zhang, K.; Yu, L.; Dai, F.; Chen, Y.; Jiang, Z.; Wang, Y.; Tian, G. Bamboo Structure and Its Impact on Mechanical Properties: A Case Study of Bambusa arundinaceae. Forests 2024, 15, 762. [Google Scholar] [CrossRef]
- Chung, K.; Yu, W. Mechanical properties of structural bamboo for bamboo scaffoldings. Eng. Struct. 2002, 24, 429–442. [Google Scholar] [CrossRef]
- Liu, P.; Zhou, Q.; Jiang, N.; Zhang, H.; Tiam, J. Fundamental Research on Tensile Properties of Phyllostachys Bamboo. Results Mater. 2020, 7, 100076. [Google Scholar] [CrossRef]
Information | Plants Number | ||||
---|---|---|---|---|---|
No. 1 | No. 2 | No. 3 | |||
age (years) | 3 | 3 | 3 | ||
height (m) | 12.40 | 12.53 | 13.00 | ||
height to the first branch (m) | 3.30 | 5.70 | 5.66 | ||
Branches (middle living branches) | height of the sampled branch (m) | 6.10 | 6.30 | 6.25 | |
branch length (cm) | 133.00 | 107.00 | 115.00 | ||
internode length (cm) | 8.30 | 6.44 | 5.30 | ||
internode diameter (mm) | 7.38 | 7.90 | 6.77 | ||
Culm (ground stem) at 1.5 M | internode length (cm) | 35.50 | 38.80 | 43.00 | |
outer diameter (mm) | south and north | 79.49 | 70.88 | 77.74 | |
east and west | 78.05 | 74.08 | 77.01 | ||
inner diameter (mm) | south and north | 63.40 | 59.08 | 63.21 | |
east and west | 63.12 | 62.24 | 65.11 | ||
Rhizome (underground stem) | third internode of coming parts of rhizome | length (mm) | 63.79 | 48.79 | 52.75 |
diameter (mm) | 30.46 | 19.52 | 13.20 | ||
third internode of going parts of rhizome | length (mm) | 57.26 | 58.72 | 36.74 | |
diameter (mm) | 20.14 | 18.70 | 13.97 |
Parts | AVG (μm) | Max (μm) | Min (μm) | RG(μm) | SD (μm) | QTY | |
---|---|---|---|---|---|---|---|
Coming parts of rhizome | tangential | 386.6 | 494.4 | 243.2 | 251.2 | 50.9 | 90 |
radial | 477.5 | 634.3 | 371.4 | 262.9 | 52.8 | 90 | |
Going parts of rhizome | tangential | 406.7 | 510.0 | 278.3 | 231.6 | 48.9 | 90 |
radial | 517.6 | 738.1 | 353.0 | 385.0 | 72.6 | 90 | |
Internode | tangential | 492.5 | 629.2 | 222.8 | 406.3 | 75.4 | 90 |
radial | 520 | 770.2 | 177.6 | 592.6 | 102.1 | 90 | |
Inside-stick | tangential | 390.3 | 578.1 | 194.9 | 383.2 | 79.4 | 30 |
radial | 466.4 | 665.5 | 251.7 | 413.7 | 101.8 | 30 | |
Branch | tangential | 194.8 | 263.2 | 112.9 | 150.3 | 30.7 | 90 |
radial | 212.3 | 293.5 | 135.9 | 157.5 | 32.7 | 90 |
Parts | AVG (Per mm2) | Max (Per mm2) | Min (Per mm2) | RG (Per mm2) | SD (Per mm2) | QTY |
---|---|---|---|---|---|---|
Coming parts of rhizome | 2.3 | 3.7 | 1.0 | 2.7 | 0.5 | 90 |
Going parts of rhizome | 1.9 | 3.5 | 1.0 | 2.5 | 0.5 | 90 |
Internode | 2.8 | 7.2 | 0.7 | 6.5 | 1.5 | 90 |
Inside-stick | 1.4 | 2.5 | 0.0 | 2.5 | 0.6 | 30 |
Branch | 11.8 | 16.0 | 8.2 | 7.7 | 1.8 | 90 |
Bamboo Species | Tangential Diameter (μm) | Radial Diameter (μm) | Distribution Frequency (Per mm2) |
---|---|---|---|
O. sulcatum | 438.8 | 374.2 | 4.0 |
Dendrocalamus giganteus [29] | 862.8 | 702.7 | 1.1 |
Dendrocalamus sinicus [30] | 670.0 | 680.0 | 5.9 |
Bambusa chungii [31] | 513.0 | 550.0 | 3.4 |
Dendrocalamus minor [31] | 423.0 | 578.0 | 3.2 |
Bambusa textilis [31] | 473.0 | 523.0 | 4.0 |
Bambusa rigida [32] | 762.9 | 640.2 | 1.6 |
Bambusa sinospinosa [33] | 710.1 | 742.4 | 1.0 |
B. pervariadilis × D. daii [34] | 778.4 | 700.1 | 1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, P.; Zhang, K.; Zhou, L.; Wei, J.; Tian, G.; Gao, W.; Jiang, Z.; Wang, Y. Comparative Study on Vascular Bundle Morphological Characteristics of Parts of Branches, Culms, and Rhizomes of Oligostachyum sulcatum. Forests 2024, 15, 1752. https://doi.org/10.3390/f15101752
Zhao P, Zhang K, Zhou L, Wei J, Tian G, Gao W, Jiang Z, Wang Y. Comparative Study on Vascular Bundle Morphological Characteristics of Parts of Branches, Culms, and Rhizomes of Oligostachyum sulcatum. Forests. 2024; 15(10):1752. https://doi.org/10.3390/f15101752
Chicago/Turabian StyleZhao, Peng, Kangjian Zhang, Liang Zhou, Jinguang Wei, Genlin Tian, Wenli Gao, Zehui Jiang, and Youhong Wang. 2024. "Comparative Study on Vascular Bundle Morphological Characteristics of Parts of Branches, Culms, and Rhizomes of Oligostachyum sulcatum" Forests 15, no. 10: 1752. https://doi.org/10.3390/f15101752
APA StyleZhao, P., Zhang, K., Zhou, L., Wei, J., Tian, G., Gao, W., Jiang, Z., & Wang, Y. (2024). Comparative Study on Vascular Bundle Morphological Characteristics of Parts of Branches, Culms, and Rhizomes of Oligostachyum sulcatum. Forests, 15(10), 1752. https://doi.org/10.3390/f15101752