Chilling and Forcing Requirements of Wintersweet (Chimonanthus praecox L.) Flowering in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Phenological and Meteorological Data
2.3. Chilling and Forcing Models
2.4. Determining the Chilling and Forcing Periods Based on PLS
3. Results
3.1. Trends in the First Flowering Date of the Wintersweet
3.2. Identification of Chilling and Forcing Periods
3.3. Quantification of Chilling and Forcing Requirements
4. Discussion
4.1. Phenological Change in Wintersweet at Different Sites
4.2. Response of Wintersweet FFD to Chilling and Forcing
4.3. Difference in Chilling and Forcing Requirements Between Sites, Species and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Menzel, A.; Sparks, T.H.; Estrella, N.; Koch, E.; Aasa, A.; Ahas, R.; Alm-KÜBler, K.; Bissolli, P.; BraslavskÁ, O.G.; Briede, A.; et al. European phenological response to climate change matches the warming pattern. Glob. Change Biol. 2006, 12, 1969–1976. [Google Scholar] [CrossRef]
- Liu, Q.; Fu, Y.H.; Zeng, Z.; Huang, M.; Li, X.; Piao, S. Temperature, precipitation, and insolation effects on autumn vegetation phenology in temperate China. Glob. Change Biol. 2016, 22, 644–655. [Google Scholar] [CrossRef] [PubMed]
- Menzel, A.; Yuan, Y.; Matiu, M.; Sparks, T.; Scheifinger, H.; Gehrig, R.; Estrella, N. Climate change fingerprints in recent European plant phenology. Glob. Change Biol. 2020, 26, 2599–2612. [Google Scholar] [CrossRef]
- Fraga, H.; Santos, J.A. Assessment of Climate Change Impacts on Chilling and Forcing for the Main Fresh Fruit Regions in Portugal. Front. Plant Sci. 2021, 12, 689121. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, W.; Cai, B.; Gao, Z.; Zhang, Z. Determination of chilling and heat requirements of 69 Japanese apricot cultivars. Eur. J. Agron. 2016, 74, 68–74. [Google Scholar] [CrossRef]
- Yang, Q.; Gao, Y.; Wu, X.; Moriguchi, T.; Bai, S.; Teng, Y. Bud endodormancy in deciduous fruit trees: Advances and prospects. Hortic. Res. 2021, 8, 139. [Google Scholar] [CrossRef]
- Zhang, R.; Lin, J.; Wang, F.; Shen, S.; Wang, X.; Rao, Y.; Wu, J.; Hänninen, H. The chilling requirement of subtropical trees is fulfilled by high temperatures: A generalized hypothesis for tree endodormancy release and a method for testing it. Agric. For. Meteorol. 2021, 298–299, 108296. [Google Scholar] [CrossRef]
- Luedeling, E.; Schiffers, K.; Fohrmann, T.; Urbach, C. PhenoFlex—An integrated model to predict spring phenology in temperate fruit trees. Agric. For. Meteorol. 2021, 307, 108491. [Google Scholar] [CrossRef]
- Fadón, E.; Rodrigo, J.; Luedeling, E. Temperature requirements for blooming in 12 sweet cherry cultivars. Acta Hortic. 2022, 1342, 103–110. [Google Scholar] [CrossRef]
- Fadón, E.; Fernandez, E.; Luedeling, E.; Rodrigo, J. Agroclimatic requirements and adaptation potential to global warming of Spanish cultivars of sweet cherry (Prunus avium L.). Eur. J. Agron. 2023, 145, 126774. [Google Scholar] [CrossRef]
- Du, Y.J.; Pan, Y.Q.; Ma, K.P. Moderate chilling requirement controls budburst for subtropical species in China. Agric. For. Meteorol. 2019, 278, 8. [Google Scholar] [CrossRef]
- Zeng, X.; Du, Y.; Vitasse, Y. Untangling winter chilling and spring forcing effects on spring phenology of subtropical tree seedlings. Agric. For. Meteorol. 2023, 335, 109456. [Google Scholar] [CrossRef]
- Jewaria, P.K.; Hänninen, H.; Li, X.; Bhalerao, R.P.; Zhang, R. A hundred years after: Endodormancy and the chilling requirement in subtropical trees. New Phytol. 2021, 231, 565–570. [Google Scholar] [CrossRef]
- Luedeling, E.; Zhang, M.; McGranahan, G.; Leslie, C. Validation of winter chill models using historic records of walnut phenology. Agric. For. Meteorol. 2009, 149, 1854–1864. [Google Scholar] [CrossRef]
- Maulión, E.; Valentini, G.H.; Kovalevski, L.; Prunello, M.; Monti, L.L.; Daorden, M.E.; Quaglino, M.; Cervigni, G.D.L. Comparison of methods for estimation of chilling and heat requirements of nectarine and peach genotypes for flowering. Sci. Hortic. 2014, 177, 112–117. [Google Scholar] [CrossRef]
- Delgado, A.; Egea, J.A.; Fernandez, E.; Campoy, J.A.; Egea, J.; Dicenta, F.; Ruiz, D. Discrepancies in methodologies to determine chill requirements in temperate fruit trees constrain guidelines for future plantings in a global warming context. Agric. For. Meteorol. 2024, 349, 109970. [Google Scholar] [CrossRef]
- Borgini, N.; Benmoussa, H.; Ghrab, M.; Mimoun, M.B. Key insights for improved climate change adaptation strategies: Assessing chilling and heat requirements of Prunus cultivars (Prunus sp.) in warm climate regions. Sci. Hortic. 2024, 325, 112683. [Google Scholar] [CrossRef]
- Harrington, C.A.; Gould, P.J. Tradeoffs between chilling and forcing in satisfying dormancy requirements for Pacific Northwest tree species. Front. Plant Sci. 2015, 6, 120. [Google Scholar] [CrossRef] [PubMed]
- Parkes, H.; Darbyshire, R.; White, N. Chilling requirements of apple cultivars grown in mild Australian winter conditions. Sci. Hortic. 2020, 260, 108858. [Google Scholar] [CrossRef]
- Guo, J.; Ma, Q.; Xu, H.; Luo, Y.; He, D.; Wang, F.; Wu, J.; Fu, Y.H.; Liu, J.; Zhang, R.; et al. Meta-analytic and experimental evidence that warmer climate leads to shift from advanced to delayed spring phenology. Agric. For. Meteorol. 2023, 342, 109721. [Google Scholar] [CrossRef]
- Fu, Y.H.; Zhao, H.; Piao, S.; Peaucelle, M.; Peng, S.; Zhou, G.; Ciais, P.; Huang, M.; Menzel, A.; Peñuelas, J.; et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 2015, 526, 104–107. [Google Scholar] [CrossRef] [PubMed]
- Asse, D.; Chuine, I.; Vitasse, Y.; Yoccoz, N.G.; Delpierre, N.; Badeau, V.; Delestrade, A.; Randin, C.F. Warmer winters reduce the advance of tree spring phenology induced by warmer springs in the Alps. Agric. For. Meteorol. 2018, 252, 220–230. [Google Scholar] [CrossRef]
- Millan, M.; Ramos-Lafargue, M.G.; Quero-Garcia, J.; Charlot, G.J.I.C. Evaluation des besoins en froid du cerisier. Infos Ctifl 2009, 257, 29–35. [Google Scholar]
- Delgado, A.; Egea, J.A.; Luedeling, E.; Dapena, E. Agroclimatic requirements and phenological responses to climate change of local apple cultivars in northwestern Spain. Sci. Hortic. 2021, 283, 110093. [Google Scholar] [CrossRef]
- Fernandez, E.; Krefting, P.; Kunz, A.; Do, H.; Fadón, E.; Luedeling, E. Boosting statistical delineation of chill and heat periods in temperate fruit trees through multi-environment observations. Agric. For. Meteorol. 2021, 310, 108652. [Google Scholar] [CrossRef]
- Fernandez, E.; Schiffers, K.; Urbach, C.; Luedeling, E. Unusually warm winter seasons may compromise the performance of current phenology models—Predicting bloom dates in young apple trees with PhenoFlex. Agric. For. Meteorol. 2022, 322, 109020. [Google Scholar] [CrossRef]
- Gao, Z.; Zhuang, W.; Wang, L.; Shao, J.; Luo, X.; Cai, B.; Zhang, Z. Evaluation of Chilling and Heat Requirements in Japanese Apricot with Three Models. HortScience 2012, 47, 1826–1831. [Google Scholar] [CrossRef]
- Ruiz, D.; Egea, J.; Salazar, J.A.; Campoy, J.A. Chilling and heat requirements of Japanese plum cultivars for flowering. Sci. Hortic. 2018, 242, 164–169. [Google Scholar] [CrossRef]
- Weinberger, J.H. Chilling requirements of peach varieties. Proc. Am. Soc. Hortic. Sci. 1950, 56, 122–128. [Google Scholar]
- Arlo Richardson, E.; Seeley, S.D.; Walker, D.R. A Model for Estimating the Completion of Rest for ‘Redhaven’ and ‘Elberta’ Peach Trees1. HortScience 1974, 9, 331–332. [Google Scholar] [CrossRef]
- Fishman, S.; Erez, A.; Couvillon, G.A. The temperature dependence of dormancy breaking in plants: Mathematical analysis of a two-step model involving a cooperative transition. J. Theor. Biol. 1987, 124, 473–483. [Google Scholar] [CrossRef]
- Anderson, J.L.; Richardson, E.A.; Kesner, C.D. Validation of Chill Unit and Flower Bud Phenology Models for ‘Montmorency’ Sour Cherry. In I International Symposium on Computer Modelling in Fruit Research and Orchard Management; ISHS: Hohenheim, Germany, 1986. [Google Scholar]
- Luedeling, E.; Kunz, A.; Blanke, M.M. Identification of chilling and heat requirements of cherry trees—A statistical approach. Int. J. Biometeorol. 2013, 57, 679–689. [Google Scholar] [CrossRef]
- Wang, H.; Zhong, S.; Tao, Z.; Dai, J.; Ge, Q. Changes in flowering phenology of woody plants from 1963 to 2014 in North China. Int. J. Biometeorol. 2019, 63, 579–590. [Google Scholar] [CrossRef]
- Dai, J.; Xu, Y.; Wang, H.; Alatalo, J.; Tao, Z.; Ge, Q. Variations in the temperature sensitivity of spring leaf phenology from 1978 to 2014 in Mudanjiang, China. Int. J. Biometeorol. 2019, 63, 569–577. [Google Scholar] [CrossRef]
- Pearson, K.D. Spring- and fall-flowering species show diverging phenological responses to climate in the Southeast USA. Int. J. Biometeorol. 2019, 63, 481–492. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Y.; Li, X.; He, S.; Zhong, M.; Shang, F. Spatiotemporal Variation of Osmanthus fragrans Phenology in China in Response to Climate Change From 1973 to 1996. Front. Plant Sci. 2022, 12, 716071. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Wang, H.; Ge, Q. The spatial pattern of leaf phenology and its response to climate change in China. Int. J. Biometeorol. 2014, 58, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Fu, Y.H.; Du, Y.; Huang, Z. Global warming increases latitudinal divergence in flowering dates of a perennial herb in humid regions across eastern Asia. Agric. For. Meteorol. 2021, 296, 108209. [Google Scholar] [CrossRef]
- Zhu, W.; Zheng, Z.; Jiang, N.; Zhang, D. A comparative analysis of the spatio-temporal variation in the phenologies of two herbaceous species and associated climatic driving factors on the Tibetan Plateau. Agric. For. Meteorol. 2018, 248, 177–184. [Google Scholar] [CrossRef]
- Wu, S.; Wu, W. Understanding spatio-temporal variation of autumn phenology in temperate China from 1982 to 2018. Front. Ecol. Evol. 2024, 11, 1332116. [Google Scholar] [CrossRef]
- Fu, Y.; Piao, S.; Vitasse, Y.; Zhao, H.; De Boeck, H.; Liu, Q.; Yang, H.; Weber, U.; Hänninen, H.; Janssens, I. Increased heat requirement for leaf flushing in temperate woody species over 1980–2012: Effects of chilling, precipitation and insolation. Glob. Change Biol. 2015, 21, 2687–2697. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wu, C.; Ciais, P.; Penuelas, J.; Dai, J.; Fu, Y.; Ge, Q. Overestimation of the effect of climatic warming on spring phenology due to misrepresentation of chilling. Nat. Commun. 2020, 11, 4945. [Google Scholar] [CrossRef]
- Zhang, H.; Chuine, I.; Regnier, P.; Ciais, P.; Yuan, W. Deciphering the multiple effects of climate warming on the temporal shift of leaf unfolding. Nat. Clim. Chang. 2022, 12, 193–199. [Google Scholar] [CrossRef]
- Fadón, E.; Do, H.; Blanke, M.; Rodrigo, J.; Luedeling, E. Apparent differences in agroclimatic requirements for sweet cherry across climatic settings reveal shortcomings in common phenology models. Agric. For. Meteorol. 2023, 333, 109387. [Google Scholar] [CrossRef]
- Kaufmann, H.; Blanke, M. Substitution of winter chilling by spring forcing for flowering using sweet cherry as model crop. Sci. Hortic. 2019, 244, 75–81. [Google Scholar] [CrossRef]
- Lundell, R.; Hänninen, H.; Saarinen, T.; Åström, H.; Zhang, R. Beyond rest and quiescence (endodormancy and ecodormancy): A novel model for quantifying plant–environment interaction in bud dormancy release. Plant Cell Environ. 2020, 43, 40–54. [Google Scholar] [CrossRef]
- Baumgarten, F.; Zohner, C.M.; Gessler, A.; Vitasse, Y. Chilled to be forced: The best dose to wake up buds from winter dormancy. New Phytol. 2021, 230, 1366–1377. [Google Scholar] [CrossRef]
- Flynn, D.F.B.; Wolkovich, E.M. Temperature and photoperiod drive spring phenology across all species in a temperate forest community. New Phytol. 2018, 219, 1353–1362. [Google Scholar] [CrossRef]
- Hänninen, H.; Kramer, K.; Tanino, K.; Zhang, R.; Wu, J.; Fu, Y.H. Experiments Are Necessary in Process-Based Tree Phenology Modelling. Trends Plant Sci. 2019, 24, 199–209. [Google Scholar] [CrossRef]
- Kovaleski, A.P. Woody species do not differ in dormancy progression: Differences in time to budbreak due to forcing and cold hardiness. Proc. Natl. Acad. Sci. USA 2022, 119, e2112250119. [Google Scholar] [CrossRef]
Sites | Chilling Period | Chilling Requirements/Mean ± sd | Forcing Period | Forcing Requirements/Mean ± sd | ||
---|---|---|---|---|---|---|
Start | End | Start | End | |||
Beijing | 7 October | 22 November | 355.6 ± 2.2 (CH) | 15 December | 19 February | 204.5 ± 3.7 (GDH) |
4 September | 16 November | −231.0 ± 3.3 (CU) | 15 December | 21 January | 51.7 ± 2.0 (GDH) | |
8 October | 26 November | 26.4 ± 0.1 (CP) | 11 November | 5 February | 227.9 ± 3.5 (GDH) | |
Tai’an | 26 September | 30 November | 658.9 ± 0.8 (CH) | 2 December | 10 January | 6.6 ± 0.4 (GDH) |
4 October | 26 December | 756.1 ± 2.7 (CU) | 8 December | 10 January | 3.7 ± 0.3 (GDH) | |
5 October | 26 November | 34.9 ± 0.1 (CP) | 10 December | 10 January | 3.2 ± 0.2 (GDH) | |
Xi’an | 16 October | 20 November | 153.9 ± 2.6 (CH) | 5 November | 28 November | 1871.4 ± 26.5 (GDH) |
22 September | 30 October | −249.2 ± 4.9 (CU) | 6 November | 27 November | 1683.8 ± 26.2 (GDH) | |
8 October | 4 November | 7.3 ± 0.2 (CP) | 5 November | 27 November | 1835.4 ± 26.9 (GDH) | |
Baoji | 22 October | 31 October | 46.6 ± 2.5 (CH) | 26 October | 27 November | 2203.5 ± 24.7 (GDH) |
9 September | 23 October | −249.4 ± 4.5 (CU) | 28 October | 27 November | 1922.9 ± 23.8 (GDH) | |
8 September | 21 October | 6.9 ± 0.1 (CP) | 28 October | 27 November | 1922.9 ± 23.8 (GDH) | |
Chongqing | 10 November | 1 December | 8.6 ± 1.3 (CH) | 2 November | 15 December | 1006.4 ± 30.3 (GDH) |
13 November | 1 December | 56.3 ± 5.9 (CU) | 6 December | 12 December | 829.9 ± 28.5 (GDH) | |
10 November | 3 December | 8.2 ± 0.2 (CP) | 5 December | 12 December | 965.3 ± 28.1 (GDH) | |
Nanchang | 26 September | 24 November | 26.8 ± 1.1 (CH) | 24 November | 3 December | 1593.3 ± 48.0 (GDH) |
6 October | 13 November | −581.6 ± 4.1 (CU) | 14 November | 3 December | 3766.6 ± 53.7 (GDH) | |
26 October | 20 November | 3.2 ± 0.1 (CP) | 23 November | 2 December | 1656.3 ± 48.6 (GDH) | |
Changsha | 22 November | 11 December | 123.6 ± 4.0 (CH) | 12 December | 20 January | 1662.6 ± 28.8 (GDH) |
7 November | 16 December | 317.4 ± 5.3 (CU) | 15 December | 20 January | 1443.4 ± 27.9 (GDH) | |
4 November | 19 December | 21.6 ± 0.2 (CP) | 14 December | 20 January | 1513.7 ± 28.2 (GDH) | |
Guiyang | 16 October | 28 November | 124.9 ± 2.5 (CH) | 12 November | 6 December | 2807.5 ± 53.0 (GDH) |
10 September | 19 October | −513.9 ± 5.0 (CU) | 20 October | 44 December | 8203.7 ± 57.1 (GDH) | |
18 September | 15 October | 1.6 ± 0.1 (CP) | 19 October | 4 December | 8482.6 ± 57.3 (GDH) | |
Guilin | 4 November | 44 December | 21.4 ± 1.7 (CH) | 26 November | 16 January | 6857.9 ± 52.5 (GDH) |
22 October | 24 November | −404.6 ± 5.5 (CU) | 25 November | 15 January | 7018.3 ± 52.4 (GDH) | |
8 November | 20 November | 1.4 ± 0.2 (CP) | 22 November | 13 January | 7613.8 ± 53.0 (GDH) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, Y.; Dai, J.; Zhu, M.; Cao, L.; Shahzad, K. Chilling and Forcing Requirements of Wintersweet (Chimonanthus praecox L.) Flowering in China. Forests 2024, 15, 1832. https://doi.org/10.3390/f15101832
Hao Y, Dai J, Zhu M, Cao L, Shahzad K. Chilling and Forcing Requirements of Wintersweet (Chimonanthus praecox L.) Flowering in China. Forests. 2024; 15(10):1832. https://doi.org/10.3390/f15101832
Chicago/Turabian StyleHao, Yulong, Junhu Dai, Mengyao Zhu, Lijuan Cao, and Khurram Shahzad. 2024. "Chilling and Forcing Requirements of Wintersweet (Chimonanthus praecox L.) Flowering in China" Forests 15, no. 10: 1832. https://doi.org/10.3390/f15101832
APA StyleHao, Y., Dai, J., Zhu, M., Cao, L., & Shahzad, K. (2024). Chilling and Forcing Requirements of Wintersweet (Chimonanthus praecox L.) Flowering in China. Forests, 15(10), 1832. https://doi.org/10.3390/f15101832