A Spectral–Spatial Approach for the Classification of Tree Cover Density in Mediterranean Biomes Using Sentinel-2 Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Input Data
2.3. Training Patterns
2.4. Classification Methodology
2.5. Accuracy Assessment
3. Results
3.1. Study Area A
3.2. Study Area B
3.3. Study Area C
4. Discussion
5. Conclusions
- The introduction of GLCM textural features in the classification process as a means of extracting spatial information, overall, did not yield any consistent results, allowing better identification of certain tree cover density classes only.
- Similarly, the aggregation of GLCM information inside object boundaries did help enhance classification performance.
- The extraction of spatial information, as the median of Sentinel-2 spectral values for pixels that belong in the same segment, provided the most accurate results and consistently improved performance when compared to the other alternatives.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dong, J.; Kaufmann, R.K.; Myneni, R.B.; Tucker, C.J.; Kauppi, P.E.; Liski, J.; Buermann, W.; Alexeyev, V.; Hughes, M.K. Remote Sensing Estimates of Boreal and Temperate Forest Woody Biomass: Carbon Pools, Sources, and Sinks. Remote Sens. Environ. 2003, 84, 393–410. [Google Scholar] [CrossRef]
- Foody, G.M. Status of Land Cover Classification Accuracy Assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Wulder, M.A.; Franklin, S.E. (Eds.) Understanding Forest Disturbance and Spatial Pattern. In Remote Sensing and GIS Approaches; CRC Press: Boca Raton, FL, USA, 2006; ISBN 978-0-429-11443-4. [Google Scholar]
- Gschwantner, T.; Schadauer, K.; Vidal, C.; Lanz, A.; Tomppo, E.; Di Cosmo, L.; Robert, N.; Englert Duursma, D.; Lawrence, M. Common Tree Definitions for National Forest Inventories in Europe. Silva Fenn. 2009, 43, 463. [Google Scholar] [CrossRef]
- Sadeghi, S.M.M.; Gordon, D.A.; Van Stan, J.T., II. A Global Synthesis of Throughfall and Stemflow Hydrometeorology. In Precipitation Partitioning by Vegetation; Van Stan, J.T., II, Gutmann, E., Friesen, J., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 49–70. ISBN 978-3-030-29701-5. [Google Scholar]
- Xu, H.; Hu, X.; Guan, H.; Zhang, B.; Wang, M.; Chen, S.; Chen, M. A Remote Sensing Based Method to Detect Soil Erosion in Forests. Remote Sens. 2019, 11, 513. [Google Scholar] [CrossRef]
- Li, S.; Hou, Z.; Ge, J.; Wang, T. Assessing the Effects of Large Herbivores on the Three-Dimensional Structure of Temperate Forests Using Terrestrial Laser Scanning. For. Ecol. Manag. 2022, 507, 119985. [Google Scholar] [CrossRef]
- Awasthi, N.; Aryal, K.; Bahadur Khanal Chhetri, B.; Bhandari, S.K.; Khanal, Y.; Gotame, P.; Baral, K. Reflecting on Species Diversity and Regeneration Dynamics of Scientific Forest Management Practices in Nepal. For. Ecol. Manag. 2020, 474, 118378. [Google Scholar] [CrossRef]
- Korhonen, L.; Korhonen, K.; Rautiainen, M.; Stenberg, P. Estimation of Forest Canopy Cover: A Comparison of Field Measurement Techniques. Silva Fenn. 2006, 40, 315. [Google Scholar] [CrossRef]
- Song, C.; Schroeder, T.; Cohen, W. Predicting Temperate Conifer Forest Successional Stage Distributions with Multitemporal Landsat Thematic Mapper Imagery. Remote Sens. Environ. 2007, 106, 228–237. [Google Scholar] [CrossRef]
- Hansen, M.C.; DeFries, R.S.; Townshend, J.R.G.; Carroll, M.; Dimiceli, C.; Sohlberg, R.A. Global Percent Tree Cover at a Spatial Resolution of 500 Meters: First Results of the MODIS Vegetation Continuous Fields Algorithm. Earth Interact. 2003, 7, 1–15. [Google Scholar] [CrossRef]
- Sexton, J.O.; Song, X.-P.; Feng, M.; Noojipady, P.; Anand, A.; Huang, C.; Kim, D.-H.; Collins, K.M.; Channan, S.; DiMiceli, C.; et al. Global, 30-m Resolution Continuous Fields of Tree Cover: Landsat-Based Rescaling of MODIS Vegetation Continuous Fields with Lidar-Based Estimates of Error. Int. J. Digit. Earth 2013, 6, 427–448. [Google Scholar] [CrossRef]
- Cohen, W.B.; Goward, S.N. Landsat’s Role in Ecological Applications of Remote Sensing. Bioscience 2004, 54, 535. [Google Scholar] [CrossRef]
- Wulder, M.A.; White, J.C.; Goward, S.N.; Masek, J.G.; Irons, J.R.; Herold, M.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Landsat Continuity: Issues and Opportunities for Land Cover Monitoring. Remote Sens. Environ. 2008, 112, 955–969. [Google Scholar] [CrossRef]
- Yang, J.; Weisberg, P.J.; Bristow, N.A. Landsat Remote Sensing Approaches for Monitoring Long-Term Tree Cover Dynamics in Semi-Arid Woodlands: Comparison of Vegetation Indices and Spectral Mixture Analysis. Remote Sens. Environ. 2012, 119, 62–71. [Google Scholar] [CrossRef]
- Carreiras, J.M.B.; Pereira, J.M.C.; Pereira, J.S. Estimation of Tree Canopy Cover in Evergreen Oak Woodlands Using Remote Sensing. For. Ecol. Manag. 2006, 223, 45–53. [Google Scholar] [CrossRef]
- Donmez, C.; Berberoglu, S.; Erdogan, M.A.; Tanriover, A.A.; Cilek, A. Response of the Regression Tree Model to High Resolution Remote Sensing Data for Predicting Percent Tree Cover in a Mediterranean Ecosystem. Environ. Monit. Assess. 2015, 187, 4. [Google Scholar] [CrossRef]
- Griffiths, P.; Kuemmerle, T.; Baumann, M.; Radeloff, V.C.; Abrudan, I.V.; Lieskovsky, J.; Munteanu, C.; Ostapowicz, K.; Hostert, P. Forest Disturbances, Forest Recovery, and Changes in Forest Types across the Carpathian Ecoregion from 1985 to 2010 Based on Landsat Image Composites. Remote Sens. Environ. 2014, 151, 72–88. [Google Scholar] [CrossRef]
- Halperin, J.; LeMay, V.; Coops, N.; Verchot, L.; Marshall, P.; Lochhead, K. Canopy Cover Estimation in Miombo Woodlands of Zambia: Comparison of Landsat 8 OLI versus RapidEye Imagery Using Parametric, Nonparametric, and Semiparametric Methods. Remote Sens. Environ. 2016, 179, 170–182. [Google Scholar] [CrossRef]
- Kobayashi, T.; Tsend-Ayush, J.; Tateishi, R. A New Global Tree-Cover Percentage Map Using MODIS Data. Int. J. Remote Sens. 2016, 37, 969–992. [Google Scholar] [CrossRef]
- Korhonen, L.; Ali-Sisto, D.; Tokola, T. Tropical Forest Canopy Cover Estimation Using Satellite Imagery and Airborne Lidar Reference Data. Silva Fenn. 2015, 49, 1405. [Google Scholar] [CrossRef]
- Cilek, A.; Berberoglu, S.; Donmez, C.; Sahingoz, M. The Use of Regression Tree Method for Sentinel-2 Satellite Data to Mapping Percent Tree Cover in Different Forest Types. Environ. Sci. Pollut. Res. 2022, 29, 23665–23676. [Google Scholar] [CrossRef]
- Korhonen, L.; Hadi; Packalen, P.; Rautiainen, M. Comparison of Sentinel-2 and Landsat 8 in the Estimation of Boreal Forest Canopy Cover and Leaf Area Index. Remote Sens. Environ. 2017, 195, 259–274. [Google Scholar] [CrossRef]
- Anchang, J.Y.; Prihodko, L.; Ji, W.; Kumar, S.S.; Ross, C.W.; Yu, Q.; Lind, B.; Sarr, M.A.; Diouf, A.A.; Hanan, N.P. Toward Operational Mapping of Woody Canopy Cover in Tropical Savannas Using Google Earth Engine. Front. Environ. Sci. 2020, 8, 4. [Google Scholar] [CrossRef]
- Zhang, W.; Brandt, M.; Wang, Q.; Prishchepov, A.V.; Tucker, C.J.; Li, Y.; Lyu, H.; Fensholt, R. From Woody Cover to Woody Canopies: How Sentinel-1 and Sentinel-2 Data Advance the Mapping of Woody Plants in Savannas. Remote Sens. Environ. 2019, 234, 111465. [Google Scholar] [CrossRef]
- Astola, H.; Häme, T.; Sirro, L.; Molinier, M.; Kilpi, J. Comparison of Sentinel-2 and Landsat 8 Imagery for Forest Variable Prediction in Boreal Region. Remote Sens. Environ. 2019, 223, 257–273. [Google Scholar] [CrossRef]
- Bera, D.; Das Chatterjee, N.; Bera, S.; Ghosh, S.; Dinda, S. Comparative Performance of Sentinel-2 MSI and Landsat-8 OLI Data in Canopy Cover Prediction Using Random Forest Model: Comparing Model Performance and Tuning Parameters. Adv. Space Res. 2023, 71, 4691–4709. [Google Scholar] [CrossRef]
- Lucas, R.M.; Clewley, D.; Accad, A.; Butler, D.; Armston, J.; Bowen, M.; Bunting, P.; Carreiras, J.; Dwyer, J.; Eyre, T.; et al. Mapping Forest Growth and Degradation Stage in the Brigalow Belt Bioregion of Australia through Integration of ALOS PALSAR and Landsat-Derived Foliage Projective Cover Data. Remote Sens. Environ. 2014, 155, 42–57. [Google Scholar] [CrossRef]
- Smith, A.M.S.; Falkowski, M.J.; Hudak, A.T.; Evans, J.S.; Robinson, A.P.; Steele, C.M. A Cross-Comparison of Field, Spectral, and Lidar Estimates of Forest Canopy Cover. Can. J. Remote Sens. 2009, 35, 447–459. [Google Scholar] [CrossRef]
- Alexander, C.; Bøcher, P.K.; Arge, L.; Svenning, J.-C. Regional-Scale Mapping of Tree Cover, Height and Main Phenological Tree Types Using Airborne Laser Scanning Data. Remote Sens. Environ. 2014, 147, 156–172. [Google Scholar] [CrossRef]
- Adjognon, G.S.; Rivera-Ballesteros, A.; Van Soest, D. Satellite-Based Tree Cover Mapping for Forest Conservation in the Drylands of Sub Saharan Africa (SSA): Application to Burkina Faso Gazetted Forests. Dev. Eng. 2019, 4, 100039. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Duro, D.C.; Franklin, S.E.; Dubé, M.G. A Comparison of Pixel-Based and Object-Based Image Analysis with Selected Machine Learning Algorithms for the Classification of Agricultural Landscapes Using SPOT-5 HRG Imagery. Remote Sens. Environ. 2012, 118, 259–272. [Google Scholar] [CrossRef]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random Forests for Land Cover Classification. Pattern Recognit. Lett. 2006, 27, 294–300. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Chica-Olmo, M.; Abarca-Hernandez, F.; Atkinson, P.M.; Jeganathan, C. Random Forest Classification of Mediterranean Land Cover Using Multi-Seasonal Imagery and Multi-Seasonal Texture. Remote Sens. Environ. 2012, 121, 93–107. [Google Scholar] [CrossRef]
- Chan, J.C.-W.; Paelinckx, D. Evaluation of Random Forest and Adaboost Tree-Based Ensemble Classification and Spectral Band Selection for Ecotope Mapping Using Airborne Hyperspectral Imagery. Remote Sens. Environ. 2008, 112, 2999–3011. [Google Scholar] [CrossRef]
- Son, N.-T.; Chen, C.-F.; Chen, C.-R.; Minh, V.-Q. Assessment of Sentinel-1A Data for Rice Crop Classification Using Random Forests and Support Vector Machines. Geocarto Int. 2017, 33, 587–601. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Baccini, A.; Laporte, N.; Goetz, S.J.; Sun, M.; Dong, H. A First Map of Tropical Africa’s above-Ground Biomass Derived from Satellite Imagery. Environ. Res. Lett. 2008, 3, 045011. [Google Scholar] [CrossRef]
- Eisavi, V.; Homayouni, S.; Yazdi, A.M.; Alimohammadi, A. Land Cover Mapping Based on Random Forest Classification of Multitemporal Spectral and Thermal Images. Environ. Monit. Assess. 2015, 187, 291. [Google Scholar] [CrossRef]
- Freeman, E.A.; Moisen, G.G.; Coulston, J.W.; Wilson, B.T. Random Forests and Stochastic Gradient Boosting for Predicting Tree Canopy Cover: Comparing Tuning Processes and Model Performance. Can. J. For. Res. 2016, 46, 323–339. [Google Scholar] [CrossRef]
- Coulston, J.W.; Moisen, G.G.; Wilson, B.T.; Finco, M.V.; Cohen, W.B.; Brewer, C.K. Modeling Percent Tree Canopy Cover: A Pilot Study. Photogramm. Eng. Remote Sens. 2012, 78, 715–727. [Google Scholar] [CrossRef]
- Goldblatt, R.; Rivera Ballesteros, A.; Burney, J. High Spatial Resolution Visual Band Imagery Outperforms Medium Resolution Spectral Imagery for Ecosystem Assessment in the Semi-Arid Brazilian Sertão. Remote Sens. 2017, 9, 1336. [Google Scholar] [CrossRef]
- Puletti, N.; Chianucci, F.; Castaldi, C. Use of Sentinel-2 for Forest Classification in Mediterranean Environments. Ann Silv. Res 2018, 42, 32–38. [Google Scholar]
- Powell, S.L.; Cohen, W.B.; Healey, S.P.; Kennedy, R.E.; Moisen, G.G.; Pierce, K.B.; Ohmann, J.L. Quantification of Live Aboveground Forest Biomass Dynamics with Landsat Time-Series and Field Inventory Data: A Comparison of Empirical Modeling Approaches. Remote Sens. Environ. 2010, 114, 1053–1068. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef]
- Kayitakire, F.; Hamel, C.; Defourny, P. Retrieving Forest Structure Variables Based on Image Texture Analysis and IKONOS-2 Imagery. Remote Sens. Environ. 2006, 102, 390–401. [Google Scholar] [CrossRef]
- Huang, H.; Wang, Z.; Chen, J.; Shi, Y. Improving Tree Cover Estimation for Sparse Trees Mixed with Herbaceous Vegetation in Drylands Using Texture Features of High-Resolution Imagery. Forests 2024, 15, 847. [Google Scholar] [CrossRef]
- Karlson, M.; Ostwald, M.; Reese, H.; Sanou, J.; Tankoano, B.; Mattsson, E. Mapping Tree Canopy Cover and Aboveground Biomass in Sudano-Sahelian Woodlands Using Landsat 8 and Random Forest. Remote Sens. 2015, 7, 10017–10041. [Google Scholar] [CrossRef]
- Guirado, E.; Alcaraz-Segura, D.; Cabello, J.; Puertas-Ruíz, S.; Herrera, F.; Tabik, S. Tree Cover Estimation in Global Drylands from Space Using Deep Learning. Remote Sens. 2020, 12, 343. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, D. Estimating Fractional Vegetation Cover from Multispectral Unmixing Modeled with Local Endmember Variability and Spatial Contextual Information. ISPRS J. Photogramm. Remote Sens. 2024, 209, 481–499. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef]
- Mora, B.; Tsendbazar, N.-E.; Herold, M.; Arino, O. Global Land Cover Mapping: Current Status and Future Trends. In Land Use and Land Cover Mapping in Europe; Manakos, I., Braun, M., Eds.; Remote Sensing and Digital Image Processing; Springer: Dordrecht, The Netherlands, 2014; Volume 18, pp. 11–30. ISBN 978-94-007-7968-6. [Google Scholar]
- Asner, G.P. Automated Mapping of Tropical Deforestation and Forest Degradation: CLASlite. J. Appl. Remote Sens. 2009, 3, 033543. [Google Scholar] [CrossRef]
- Lehmann, E.A.; Wallace, J.F.; Caccetta, P.A.; Furby, S.L.; Zdunic, K. Forest Cover Trends from Time Series Landsat Data for the Australian Continent. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 453–462. [Google Scholar] [CrossRef]
- Fisher, A.; Day, M.; Gill, T.; Roff, A.; Danaher, T.; Flood, N. Large-Area, High-Resolution Tree Cover Mapping with Multi-Temporal SPOT5 Imagery, New South Wales, Australia. Remote Sens. 2016, 8, 515. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting Trends in Forest Disturbance and Recovery Using Yearly Landsat Time Series: 1. LandTrendr—Temporal Segmentation Algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- DiMiceli, C.M.; Carroll, M.L.; Sohlberg, R.A.; Huang, C.; Hansen, M.C.; Townshend, J.R. Annual Global Automated MODIS Vegetation Continuous Fields (MOD44B) at 250 m Spatial Resolution for Data Years Beginning Day 65, 2000–2010, Collection 5 Percent Tree Cover; University of Maryland: College Park, MD, USA, 2011. [Google Scholar]
- McRoberts, R.E.; Cohen, W.B.; Næsset, E.; Stehman, S.V.; Tomppo, E.O. Using Remotely Sensed Data to Construct and Assess Forest Attribute Maps and Related Spatial Products. Scand. J. For. Res. 2010, 25, 340–367. [Google Scholar] [CrossRef]
- Chen, G.; Hay, G.J.; St-Onge, B. A GEOBIA Framework to Estimate Forest Parameters from Lidar Transects, Quickbird Imagery and Machine Learning: A Case Study in Quebec, Canada. Int. J. Appl. Earth Obs. Geoinf. 2012, 15, 28–37. [Google Scholar] [CrossRef]
- Stojanova, D.; Panov, P.; Gjorgjioski, V.; Kobler, A.; Džeroski, S. Estimating Vegetation Height and Canopy Cover from Remotely Sensed Data with Machine Learning. Ecol. Inform. 2010, 5, 256–266. [Google Scholar] [CrossRef]
- Hilker, T.; Wulder, M.A.; Coops, N.C. Update of Forest Inventory Data with Lidar and High Spatial Resolution Satellite Imagery. Can. J. Remote Sens. 2008, 34, 5–12. [Google Scholar] [CrossRef]
- Aragoneses, E.; García, M.; Salis, M.; Ribeiro, L.M.; Chuvieco, E. Classification and Mapping of European Fuels Using a Hierarchical, Multipurpose Fuel Classification System. Earth Syst. Sci. Data 2023, 15, 1287–1315. [Google Scholar] [CrossRef]
- Brandt, J.; Ertel, J.; Spore, J.; Stolle, F. Wall-to-Wall Mapping of Tree Extent in the Tropics with Sentinel-1 and Sentinel-2. Remote Sens. Environ. 2023, 292, 113574. [Google Scholar] [CrossRef]
- Moreira, F.; Viedma, O.; Arianoutsou, M.; Curt, T.; Koutsias, N.; Rigolot, E.; Barbati, A.; Corona, P.; Vaz, P.; Xanthopoulos, G.; et al. Landscape—Wildfire Interactions in Southern Europe: Implications for Landscape Management. J. Environ. Manag. 2011, 92, 2389–2402. [Google Scholar] [CrossRef] [PubMed]
- Sismanis, M.; Stefanidou, A.; Stavrakoudis, D.; Gitas, I.Z. Wildland Fuel Type Mapping in Attica Using Sentinel-2 Time-Series. In Proceedings of the 2023 8th International Conference on Smart and Sustainable Technologies (SpliTech), Split/Bol, Croatia, 20–23 June 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–5. [Google Scholar]
- Stefanidou, A.; Gitas, I.Z.; Katagis, T. A National Fuel Type Mapping Method Improvement Using Sentinel-2 Satellite Data. Geocarto Int. 2022, 37, 1022–1042. [Google Scholar] [CrossRef]
- Mutanga, O.; Masenyama, A.; Sibanda, M. Spectral Saturation in the Remote Sensing of High-Density Vegetation Traits: A Systematic Review of Progress, Challenges, and Prospects. ISPRS J. Photogramm. Remote Sens. 2023, 198, 297–309. [Google Scholar] [CrossRef]
- Li, Z.; Ota, T.; Mizoue, N. Monitoring Tropical Forest Change Using Tree Canopy Cover Time Series Obtained from Sentinel-1 and Sentinel-2 Data. Int. J. Digit. Earth 2024, 17, 2312222. [Google Scholar] [CrossRef]
- Tompoulidou, M.; Stefanidou, A.; Grigoriadis, D.; Dragozi, E.; Stavrakoudis, D.; Gitas, I.Z. The Greek National Observatory of Forest Fires (NOFFi). In Proceedings of the RSCy2016 Fourth International Conference on Remote Sensing and Geoinformation of Environment, Paphos, Cyprus, 4–8 April 2016; Themistocleous, K., Hadjimitsis, D.G., Michaelides, S., Papadavid, G., Eds.; SPIE: Bellingham, WA, USA, 2016; p. 96880N. [Google Scholar]
- Hall-Beyer, M. Practical Guidelines for Choosing GLCM Textures to Use in Landscape Classification Tasks over a Range of Moderate Spatial Scales. Int. J. Remote Sens. 2017, 38, 1312–1338. [Google Scholar] [CrossRef]
- Salembier, P.; Serra, J. Flat Zones Filtering, Connected Operators, and Filters by Reconstruction. IEEE Trans. Image Process. 1995, 4, 1153–1160. [Google Scholar] [CrossRef]
- Benediktsson, J.A.; Palmason, J.A.; Sveinsson, J.R. Classification of Hyperspectral Data from Urban Areas Based on Extended Morphological Profiles. IEEE Trans. Geosci. Remote Sens. 2005, 43, 480–491. [Google Scholar] [CrossRef]
- Fauvel, M.; Chanussot, J.; Benediktsson, J.A. A Spatial–Spectral Kernel-Based Approach for the Classification of Remote-Sensing Images. Pattern Recognit. 2012, 45, 381–392. [Google Scholar] [CrossRef]
- Goutte, C.; Gaussier, E. A Probabilistic Interpretation of Precision, Recall and F-Score, with Implication for Evaluation. In Advances in Information Retrieval; Losada, D.E., Fernández-Luna, J.M., Eds.; Lecture Notes in Computer Science; Springer: Heidelberg/Berlin, Germany, 2005; Volume 3408, pp. 345–359. ISBN 978-3-540-25295-5. [Google Scholar]
- Manning, C.D.; Raghavan, P.; Schütze, H. Introduction to Information Retrieval, 1st ed.; Cambridge University Press: Cambridge, UK, 2008; ISBN 978-0-521-86571-5. [Google Scholar]
- Sokolova, M.; Lapalme, G. A Systematic Analysis of Performance Measures for Classification Tasks. Inf. Process. Manag. 2009, 45, 427–437. [Google Scholar] [CrossRef]
- Yang, G.; Pu, R.; Zhang, J.; Zhao, C.; Feng, H.; Wang, J. Remote Sensing of Seasonal Variability of Fractional Vegetation Cover and Its Object-Based Spatial Pattern Analysis over Mountain Areas. ISPRS J. Photogramm. Remote Sens. 2013, 77, 79–93. [Google Scholar] [CrossRef]
- Verhegghen, A.; Kuzelova, K.; Syrris, V.; Eva, H.; Achard, F. Mapping Canopy Cover in African Dry Forests from the Combined Use of Sentinel-1 and Sentinel-2 Data: Application to Tanzania for the Year 2018. Remote Sens. 2022, 14, 1522. [Google Scholar] [CrossRef]
- Nasiri, V.; Sadeghi, S.M.M.; Moradi, F.; Afshari, S.; Deljouei, A.; Griess, V.C.; Maftei, C.; Borz, S.A. The Influence of Data Density and Integration on Forest Canopy Cover Mapping Using Sentinel-1 and Sentinel-2 Time Series in Mediterranean Oak Forests. ISPRS Int. J. Geo-Inf. 2022, 11, 423. [Google Scholar] [CrossRef]
- Godinho, S.; Guiomar, N.; Gil, A. Estimating Tree Canopy Cover Percentage in a Mediterranean Silvopastoral Systems Using Sentinel-2A Imagery and the Stochastic Gradient Boosting Algorithm. Int. J. Remote Sens. 2018, 39, 4640–4662. [Google Scholar] [CrossRef]
Study Area | NUTS3 Regions | Total Area (km2) |
---|---|---|
A | Achaia, Ilia, and Etoloakarnania | 11,312 |
B | Ioannina and Arta | 6599 |
C | Pella, Imathia, and Pieria | 5732 |
Study Area | Acquisition Data | Type |
---|---|---|
A | 16 August 2022 | Sentinel-2A MSI L2A |
B | 15 July 2022 | Sentinel-2A MSI L2A |
C | 22 July 2022 | Sentinel-2A MSI L2A |
Class Name | Tree Cover Density | Types of Vegetation Cover |
---|---|---|
Non-forest | <15% | Shrublands, grasslands, and non-vegetated areas |
Open forest | ≥15% and <70% | Broadleaved and needleleaved forest species |
Closed forest | ≥70% | Broadleaved and needleleaved forest species |
Classes | Training Points | Study Area |
---|---|---|
Non-forest | 599 | A |
Open forest | 364 | |
Closed forest | 267 | |
Total | 1230 | |
Non-forest | 1597 | B |
Open forest | 916 | |
Closed forest | 998 | |
Total | 3511 | |
Non-forest | 631 | C |
Open forest | 258 | |
Closed forest | 1652 | |
Total | 2541 |
Name | Formula | Description |
---|---|---|
Entropy | Measures the degree of the disorder of neighboring pixels | |
Correlation | Measures the linear dependency of gray levels of neighboring pixels | |
Contrast | Measures the contrast based on the local gray-level distribution | |
Inverse Difference Moment | Measures the smoothness (homogeneity) of the gray-level distribution |
Study Area | Validation Points |
---|---|
A | 810 |
B | 1748 |
C | 751 |
Total | 3309 |
Method | Classes | Precision (%) | Recall (%) | F1-Score (%) | Support | OA (%) |
---|---|---|---|---|---|---|
Sentinel-2 | Non-forest | 89.29 | 86.58 | 87.92 | 626 | 79.36 |
Open forest | 41.03 | 52.03 | 45.88 | 123 | ||
Closed forest | 78.26 | 60 | 67.92 | 60 | ||
Average | 69.53 | 66.20 | 67.24 | |||
Sentinel-2 + GLCM | Non-forest | 88.59 | 83.07 | 85.74 | 626 | 76.39 |
Open forest | 35.23 | 50.41 | 41.47 | 123 | ||
Closed forest | 78.26 | 60 | 67.92 | 60 | ||
Average | 67.36 | 64.49 | 65.04 | |||
Sentinel-2 + GLCM (object-based) | Non-forest | 88.58 | 85.46 | 86.99 | 626 | 78 |
Open forest | 36.36 | 45.53 | 40.43 | 123 | ||
Closed forest | 78.43 | 66.67 | 72.07 | 60 | ||
Average | 67.79 | 65.89 | 66.50 | |||
Sentinel-2 + object statistics (median) | Non-forest | 91.44 | 92.17 | 91.81 | 626 | 85.54 |
Open forest | 57.94 | 59.35 | 58.63 | 123 | ||
Closed forest | 80.77 | 70 | 75 | 60 | ||
Average | 76.72 | 73.84 | 75.15 |
Method | Classes | Precision (%) | Recall (%) | F1-Score (%) | Support | OA (%) |
---|---|---|---|---|---|---|
Sentinel-2 | Non-forest | 79.65 | 91.89 | 85.34 | 950 | 73.10 |
Open forest | 39.55 | 41.89 | 40.69 | 339 | ||
Closed forest | 89.73 | 57.21 | 69.87 | 458 | ||
Average | 69.64 | 63.66 | 65.30 | |||
Sentinel-2 + GLCM | Non-forest | 82.38 | 89.05 | 85.58 | 950 | 72.81 |
Open forest | 39.73 | 51.33 | 44.79 | 339 | ||
Closed forest | 89.36 | 55.02 | 68.11 | 458 | ||
Average | 70.49 | 65.13 | 66.16 | |||
Sentinel-2 + GLCM (object-based) | Non-forest | 79.57 | 92.63 | 85.60 | 950 | 73.10 |
Open forest | 39.61 | 41.59 | 40.58 | 339 | ||
Closed forest | 89.82 | 55.90 | 68.91 | 458 | ||
Average | 69.67 | 63.37 | 65.03 | |||
Sentinel-2 + object statistics (median) | Non-forest | 83.05 | 93.89 | 88.14 | 950 | 77.28 |
Open forest | 47.88 | 49.85 | 48.84 | 339 | ||
Closed forest | 90.31 | 63.10 | 74.29 | 458 | ||
Average | 73.75 | 68.95 | 70.43 |
Method | Classes | Precision (%) | Recall (%) | F1-Score (%) | Support | OA (%) |
---|---|---|---|---|---|---|
Sentinel-2 | Non-forest | 51.94 | 84.28 | 64.27 | 159 | 75.63 |
Open forest | 64.63 | 38.41 | 48.18 | 138 | ||
Closed forest | 92.70 | 83.92 | 88.09 | 454 | ||
Average | 69.76 | 68.87 | 66.85 | |||
Sentinel-2 + GLCM | Non-forest | 54.25 | 84.28 | 66.01 | 159 | 76.43 |
Open forest | 63.16 | 34.78 | 44.86 | 138 | ||
Closed forest | 91.59 | 86.34 | 88.89 | 454 | ||
Average | 69.67 | 68.47 | 66.59 | |||
Sentinel-2 + GLCM (object-based) | Non-forest | 53.33 | 80.50 | 64.16 | 159 | 75.77 |
Open forest | 62.16 | 33.33 | 43.40 | 138 | ||
Closed forest | 90.39 | 87.00 | 88.66 | 454 | ||
Average | 68.63 | 66.95 | 65.41 | |||
Sentinel-2 + object statistics (median) | Non-forest | 56.73 | 87.42 | 68.81 | 159 | 79.63 |
Open forest | 76.19 | 46.38 | 57.66 | 138 | ||
Closed forest | 93.60 | 87.00 | 90.18 | 454 | ||
Average | 75.51 | 73.60 | 72.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sismanis, M.; Gitas, I.Z.; Georgopoulos, N.; Stavrakoudis, D.; Gkounti, E.; Antoniadis, K. A Spectral–Spatial Approach for the Classification of Tree Cover Density in Mediterranean Biomes Using Sentinel-2 Imagery. Forests 2024, 15, 2025. https://doi.org/10.3390/f15112025
Sismanis M, Gitas IZ, Georgopoulos N, Stavrakoudis D, Gkounti E, Antoniadis K. A Spectral–Spatial Approach for the Classification of Tree Cover Density in Mediterranean Biomes Using Sentinel-2 Imagery. Forests. 2024; 15(11):2025. https://doi.org/10.3390/f15112025
Chicago/Turabian StyleSismanis, Michail, Ioannis Z. Gitas, Nikos Georgopoulos, Dimitris Stavrakoudis, Eleni Gkounti, and Konstantinos Antoniadis. 2024. "A Spectral–Spatial Approach for the Classification of Tree Cover Density in Mediterranean Biomes Using Sentinel-2 Imagery" Forests 15, no. 11: 2025. https://doi.org/10.3390/f15112025
APA StyleSismanis, M., Gitas, I. Z., Georgopoulos, N., Stavrakoudis, D., Gkounti, E., & Antoniadis, K. (2024). A Spectral–Spatial Approach for the Classification of Tree Cover Density in Mediterranean Biomes Using Sentinel-2 Imagery. Forests, 15(11), 2025. https://doi.org/10.3390/f15112025