Advancing Forest Plot Surveys: A Comparative Study of Visual vs. LiDAR SLAM Technologies
Abstract
:1. Introduction
2. Study Area
3. Methods
3.1. LiDAR SLAM
3.2. Visual SLAM
3.3. Accuracy Evaluation
4. Result
4.1. DBH Accuracy
4.2. Position Accuracy
4.3. Tree Height Accuracy
4.4. Survey Efficiency
5. Discussion
5.1. The Accuracy of Plot Surveys
5.2. Forest Environment Adaptability
5.3. Economic Cost
5.4. Limitations and Prospects
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, N.; Jin, M.; Wang, S.; Zhang, X.; Sun, H.; Cao, F. The Impact of Forestry Industry Integration on the Forest Farmers’ Income in China: A Theoretical and Empirical Study. Agric. Rural Stud. 2024, 2, 0004. [Google Scholar] [CrossRef]
- Xiang, B.; Wielgosz, M.; Kontogianni, T.; Peters, T.; Puliti, S.; Astrup, R.; Schindler, K. Automated forest inventory: Analysis of high-density airborne LiDAR point clouds with 3D deep learning. Remote Sens. Environ. 2024, 305, 114078. [Google Scholar] [CrossRef]
- Chen, S.W.; Nardari, G.V.; Lee, E.S.; Qu, C.; Liu, X.; Romero RA, F.; Kumar, V. Sloam: Semantic lidar odometry and mapping for forest inventory. IEEE Robot. Autom. Lett. 2019, 5, 612–619. [Google Scholar] [CrossRef]
- Vandendaele, B.; Martin-Ducup, O.; Fournier, R.A.; Pelletier, G.; Lejeune, P. Mobile laser scanning for estimating tree structural attributes in a temperate hardwood Forest. Remote Sens. 2022, 14, 4522. [Google Scholar] [CrossRef]
- Wu, H.; Xu, H. A Review of Sampling and Modeling Techniques for Forest Biomass Inventory. Agric. Rural Stud. 2023, 1, 0002. [Google Scholar] [CrossRef]
- Lei, X.D.; Tang, M.P.; Lu, Y.C.; Hong, L.X.; Tian, D.L. Forest inventory in China: Status and challenges. Int. For. Rev. 2009, 11, 52–63. [Google Scholar] [CrossRef]
- Bailey, T.; Durrant-Whyte, H. Simultaneous localization and mapping (SLAM): Part II. IEEE Robot. Autom. Mag. 2006, 13, 108–117. [Google Scholar] [CrossRef]
- Zhang, J.; Singh, S. LOAM: Lidar odometry and mapping in real-time. Robot. Sci. Syst. 2014, 2, 1–9. [Google Scholar]
- Yan, F.; Mohammad, R.U.; Gong, Y.; Feng, Z.; Chowdury, Y.; Wu, L. Use of a no prism total station for field measurements in Pinus tabulaeformis Carr. Stands in China. Biosyst. Eng. 2012, 113, 259–265. [Google Scholar] [CrossRef]
- Božić, M.; Čavlović, J.; Lukić, N.; Teslak, K.; Kos, D. Efficiency of ultrasonic Vertex III hypsometer compared to the most commonly used hypsometers in Croatian forestry. Croat. J. For. Eng. J. Theory Appl. For. Eng. 2005, 26, 91–99. [Google Scholar]
- Simonse, M.; Aschoff, T.; Spiecker, H.; Thies, M. Automatic determination of forest inventory parameters using terrestrial laserscanning. In Proceedings of the ScandLaser Scientific Workshop on Airborne Laser Scanning of Forest, Umea, Sweden, 3–4 September 2003; Volume 2003, pp. 252–258. [Google Scholar]
- Watt, P.J.; Donoghue, D.N.M.; Dunford, R.W. Forest Parameter Extraction Using Terrestrial Laser Scanning. 2016. Available online: http://www.natscan.uni-freiburg.de/suite/pdf/030916_1642_1.pdf (accessed on 15 June 2016).
- Aschoff, T.; Thies, M.; Spiecker, H. Describing forest stands using terrestrial laser-scanning. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004, 35, 237–241. [Google Scholar]
- Tang, J.; Chen, Y.; Kukko, A.; Kaartinen, H.; Jaakkola, A.; Khoramshahi, E.; Hakala, T.; Hyyppä, J.; Holopainen, M.; Hyyppä, H. SLAM-Aided Stem Mapping for Forest Inventory with Small-Footprint Mobile LiDAR. Forests 2015, 6, 4588–4606. [Google Scholar] [CrossRef]
- Bienert, A.; Georgi, L.; Kunz, M.; Maas, H.G.; Von Oheimb, G. Comparison and combination of mobile and terrestrial laser scanning for natural forest inventories. Forests 2018, 9, 395. [Google Scholar] [CrossRef]
- Khairuddin, A.R.; Talib, M.S.; Haron, H. Review on simultaneous localization and mapping (SLAM). In Proceedings of the IEEE International Conference on Control System, Computing and Engineering (ICCSCE), Penang, Malaysia, 27–29 November 2015; pp. 85–90. [Google Scholar] [CrossRef]
- Holopainen, M.; Kankare, V.; Vastaranta, M.; Liang, X.; Lin, Y.; Vaaja, M.; Alho, P. Tree mapping using airborne, terrestrial and mobile laser scanning–A case study in a heterogeneous urban forest. Urban For. Urban Green. 2013, 12, 546–553. [Google Scholar] [CrossRef]
- Roßmann, J.; Krahwinkler, P.; Schlette, C. Navigation of mobile robots in natural environments: Using sensor fusion in forestry. J. Syst. Cybern. Inform. 2010, 8, 67–71. [Google Scholar]
- Shao, J.; Zhang, W.; Mellado, N.; Wang, N.; Jin, S.; Cai, S.; Luo, L.; Lejemble, T.; Yan, G. SLAM-aided forest plot mapping combining terrestrial and mobile laser scanning. ISPRS J. Photogramm. Remote Sens. 2020, 163, 214–230. [Google Scholar] [CrossRef]
- Tatsumi, S.; Yamaguchi, K.; Furuya, N. ForestScanner: A mobile application for measuring and mapping trees with LiDAR-equipped iPhone and iPad. Methods Ecol. Evol. 2023, 14, 1603–1609. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, X.Y. Measuring method of tree height based on digital image processing technology. In Proceedings of the 2009 First International Conference on Information Science and Engineering, Nanjing, China, 26–28 December 2009; pp. 1327–1331. [Google Scholar] [CrossRef]
- Tomaštík, J.; Saloň, Š.; Tunák, D.; Chudý, F.; Kardoš, M. Tango in forests–An initial experience of the use of the new Google technology in connection with forest inventory tasks. Comput. Electron. Agric. 2017, 141, 109–117. [Google Scholar] [CrossRef]
- Täll, K. Accuracy of Mobile Forest Inventory Application KatamTM Forest. 2020. Available online: https://stud.epsilon.slu.se/15936/ (accessed on 24 August 2020).
- Fan, Y.; Feng, Z.; Shen, C.; Khan, T.U.; Mannan, A.; Gao, X.; Chen, P.; Saeed, S. A trunk-based SLAM backend for smartphones with online SLAM in large-scale forest inventories. ISPRS J. Photogramm. Remote Sens. 2020, 162, 41–49. [Google Scholar] [CrossRef]
- Shan, T.; Englot, B.; Meyers, D.; Wang, W.; Ratti, C.; Rus, D. Lio-sam: Tightly-coupled lidar inertial odometry via smoothing and mapping. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24 January 2021; pp. 5135–5142. [Google Scholar] [CrossRef]
- Zhang, J.; Singh, S. Low-drift and Real-time Lidar Odometry and Mapping. Auton. Robot. 2017, 41, 401–416. [Google Scholar] [CrossRef]
- Shan, T.; Englot, B. LeGO-LOAM: Lightweight and Groundoptimized Lidar Odometry and Mapping on Variable Terrain. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Madrid, Spain, 1–5 October 2018; pp. 4758–4765. [Google Scholar]
- Fan, Y.; Feng, Z.; Yan, F.; Shen, C.; Guan, T.; Su, J. Design and Experiment of Monocular SLAM Augmented Reality Tree Measurement System. Trans. Chin. Soc. Agric. Mach. 2023, 54, 259–266. (In Chinese) [Google Scholar]
- Gollob, C.; Ritter, T.; Nothdurft, A. Forest Inventory with Long Range and High-Speed Personal Laser Scanning (PLS) and Simultaneous Localization and Mapping (SLAM) Technology. Remote Sens. 2020, 12, 1509. [Google Scholar] [CrossRef]
- Cabo, C.; del Pozo, S.; Rodríguez-Gonzálvez, P.; Ordóñez, C.; González-Aguilera, D. Comparing Terrestrial Laser Scanning (TLS) and Wearable Laser Scanning (WLS) for Individual Tree Modeling at Plot Level. Remote Sens. 2018, 10, 540. [Google Scholar] [CrossRef]
- Bauwens, S.; Bartholomeus, H.; Calders, K.; Lejeune, P. Forest Inventory with Terrestrial LiDAR: A Comparison of Static and Hand-Held Mobile Laser Scanning. Forests 2016, 7, 127. [Google Scholar] [CrossRef]
- Raumonen, P.; Kaasalainen, M.; Åkerblom, M.; Kaasalainen, S.; Kaartinen, H.; Vastaranta, M.; Holopainen, M.; Disney, M.; Lewis, P. Fast automatic precisiontree models from terrestrial laser scanner data. Remote Sens. 2013, 5, 491–520. [Google Scholar] [CrossRef]
- Calders, K.; Newnham, G.; Burt, A.; Murphy, S.; Raumonen, P.; Herold, M.; Culvenor, D.; Avitabile, V.; Disney, M.; Armston, J.; et al. Nondestructive estimates of above-ground biomass using terrestrial laser scanning. Methods Ecol. Evol. 2015, 6, 198–208. [Google Scholar] [CrossRef]
- Gonzalez de Tanago, J.; Lau, A.; Bartholomeus, H.; Herold, M.; Avitabile, V.; Raumonen, P.; Martius, C.; Goodman, R.C.; Disney, M.; Manuri, S.; et al. Estimation of above-ground biomass of large tropical trees with terrestrial LiDAR. Methods Ecol. Evol. 2018, 9, 223–234. [Google Scholar] [CrossRef]
- Fan, G.; Nan, L.; Dong, Y.; Su, X.; Chen, F. AdQSM: A new method for estimating above-ground biomass from TLS point clouds. Remote Sens. 2020, 12, 3089. [Google Scholar] [CrossRef]
- Pérez-Martín, E.; López-Cuervo Medina, S.; Herrero-Tejedor, T.; Pérez-Souza, M.A.; Aguirre de Mata, J.; Ezquerra-Canalejo, A. Assessment of tree diameter estimation methods from mobile laser scanning in a historic garden. Forests 2021, 12, 1013. [Google Scholar] [CrossRef]
DBH Range (cm) | Avg. DBH (cm) | Trees [5,10) | Trees [10,20) | Trees [20,30) | Trees [30,40) | Trees [40,80) | Total | Tree Density (N/ha) | Number of Tree Species | Dominant Tree Species | |
---|---|---|---|---|---|---|---|---|---|---|---|
Plot 1 | 8.3–63.3 | 32 | 1 | 8 | 22 | 21 | 16 | 68 | 664 | 1 | Populus × beijingensis W. Y. Hsu |
Plot 2 | 5.5–42.7 | 19.4 | 6 | 26 | 6 | 7 | 2 | 47 | 459 | 4 | Acer buergerianum Miq. |
Plot 3 | 15–74.2 | 31.7 | 0 | 3 | 16 | 4 | 9 | 32 | 313 | 1 | Populus × beijingensis W. Y. Hsu |
Method | BIAS/cm | relBIAS/cm | RSME/cm | relRSME/cm | |
---|---|---|---|---|---|
Plot 1 | VSLAM | −0.39 | −1.40% | 0.82 | 3.40% |
LSLAM | −0.26 | −0.30% | 1.64 | 6.01% | |
Plot 2 | VSLAM | −0.4 | −2.50% | 0.72 | 4.45% |
LSLAM | 0.77 | 7.40% | 1.96 | 9.78% | |
Plot 3 | VSLAM | −0.43 | −1.70% | 0.85 | 3.14% |
LSLAM | 0.49 | 1.20% | 1.4 | 5.38% |
Tree Height Range (m) | Height Range (m) | Total | Avg. Height (m) | ||||
---|---|---|---|---|---|---|---|
(0,10] | (10,20] | (20,30] | (30,40] | ||||
Plot 1 | 7 | 11 | 24 | 26 | 5.2–36.5 | 68 | 25.3 |
Plot 2 | 20 | 26 | 1 | 0 | 3.7–22.2 | 47 | 11.1 |
Plot 3 | 0 | 6 | 24 | 2 | 15–30.3 | 32 | 22.3 |
Method | BIAS/m | relBIAS/% | RSME/m | relRSME/% | |
---|---|---|---|---|---|
Plot 1 | VSLAM | 0.19 | 1.49% | 2.34 | 12.60% |
LSLAM | −1.19 | −0.33% | 4.27 | 19.40% | |
Plot 2 | VSLAM | 0.3 | 1.43% | 1.19 | 10.22% |
LSLAM | −0.12 | 3.39% | 1.94 | 10.66% | |
Plot 3 | VSLAM | −0.55 | −2.17% | 1.36 | 5.60% |
LSLAM | −1.27 | −5.12% | 1.99 | 7.67% |
Plot 1 Duration (min) | Plot 2 Duration (min) | Plot 3 Duration (min) | Average Duration (min) | Average Efficiency (m2/min) | |
---|---|---|---|---|---|
Traditional methods | 42 | 31 | 28 | 33.7 | 30.4 |
VSLAM | 19 | 17 | 15 | 17 | 60.2 |
LSLAM | 7 | 6 | 6 | 6.3 | 162.5 |
Equipment Cost | Labor Cost | Time Cost | |
---|---|---|---|
Traditional methods | low | high | high |
VSLAM | medium | low | medium |
LSLAM | high | low | low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, T.; Shen, Y.; Wang, Y.; Zhang, P.; Wang, R.; Yan, F. Advancing Forest Plot Surveys: A Comparative Study of Visual vs. LiDAR SLAM Technologies. Forests 2024, 15, 2083. https://doi.org/10.3390/f15122083
Guan T, Shen Y, Wang Y, Zhang P, Wang R, Yan F. Advancing Forest Plot Surveys: A Comparative Study of Visual vs. LiDAR SLAM Technologies. Forests. 2024; 15(12):2083. https://doi.org/10.3390/f15122083
Chicago/Turabian StyleGuan, Tianshuo, Yuchen Shen, Yuankai Wang, Peidong Zhang, Rui Wang, and Fei Yan. 2024. "Advancing Forest Plot Surveys: A Comparative Study of Visual vs. LiDAR SLAM Technologies" Forests 15, no. 12: 2083. https://doi.org/10.3390/f15122083
APA StyleGuan, T., Shen, Y., Wang, Y., Zhang, P., Wang, R., & Yan, F. (2024). Advancing Forest Plot Surveys: A Comparative Study of Visual vs. LiDAR SLAM Technologies. Forests, 15(12), 2083. https://doi.org/10.3390/f15122083