Emission of Fire-Promoting Volatiles from Picea omorika (Pančić) Purk Needles in Different Forest Communities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Plant Material
2.3. Leaf Moisture Content
2.4. GC-SAW Volatile Analysis
2.5. Flammability Testing
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schwilk, D.W. Dimensions of plant flammability. New Phytol. 2015, 206, 486–488. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.-Q.; Dudareva, N. Plant specialized metabolism. Curr. Biol. 2023, 33, R473–R478. [Google Scholar] [CrossRef] [PubMed]
- Keeling, C.I.; Bohlmann, J. Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytol. 2006, 170, 657–675. [Google Scholar] [CrossRef] [PubMed]
- Blanch, J.-S.; Peñuelas, J.; Sardans, J.; Llusià, J. Drought, warming and soil fertilization effects on leaf volatile terpene concentrations in Pinus halepensis and Quercus ilex. Acta Physiol. Plant. 2009, 31, 207–218. [Google Scholar] [CrossRef]
- Kopaczyk, J.M.; Warguła, J.; Jelonek, T. The variability of terpenes in conifers under developmental and environmental stimuli. Environ. Exp. Bot. 2020, 180, 104197. [Google Scholar] [CrossRef]
- Bouwmeester, H.; Schuurink, R.C.; Bleeker, P.M.; Schiestl, F. The role of volatiles in plant communication. Plant J. 2019, 100, 892–907. [Google Scholar] [CrossRef]
- Copolovici, L.; Niinemets, Ü. Environmental Impacts on Plant Volatile Emission. In Deciphering Chemical Language of Plant Communication; Blande, J.D., Glinwood, R., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 35–59. [Google Scholar] [CrossRef]
- Manninen, A.-M.; Tarhanen, S.; Vuorinen, M.; Kainulainen, P. Comparing the Variation of Needle and Wood Terpenoids in Scots Pine Provenances. J. Chem. Ecol. 2002, 28, 211–228. [Google Scholar] [CrossRef]
- Andreani-Aksoyoglu, S.; Keller, J. Estimates of monoterpene and isoprene emissions from the forests in Switzerland. J. Atmos. Chem. 1995, 20, 71–87. [Google Scholar] [CrossRef]
- White, C.S. Monoterpenes: Their effects on ecosystem nutrient cycling. J. Chem. Ecol. 1994, 20, 1381–1406. [Google Scholar] [CrossRef]
- Owens, M.K.; Lin, C.-D.; Taylor, C.A.; Whisenant, S.G. Seasonal Patterns of Plant Flammability and Monoterpenoid Content in Juniperus ashei. J. Chem. Ecol. 1998, 24, 2115–2129. [Google Scholar] [CrossRef]
- Ormeño, E.; Mévy, J.P.; Vila, B.; Bousquet-Mélou, A.; Greff, S.; Bonin, G.; Fernandez, C. Water deficit stress induces different monoterpene and sesquiterpene emission changes in Mediterranean species. Relationship between terpene emissions and plant water potential. Chemosphere 2007, 67, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Ormeño, E.; Céspedes, B.; Sánchez, I.A.; Velasco-García, A.; Moreno, J.M.; Fernandez, C.; Baldy, V. The relationship between terpenes and flammability of leaf litter. For. Ecol. Manag. 2009, 257, 471–482. [Google Scholar] [CrossRef]
- Barboni, T.; Cannac, M.; Leoni, E.; Chiaramonti, N. Emission of biogenic volatile organic compounds involved in eruptive fire: Implications for the safety of firefighters. Int. J. Wildland Fire 2011, 20, 152–161. [Google Scholar] [CrossRef]
- Pausas, J.G.; Alessio, G.A.; Moreira, B.; Segarra-Moragues, J.G. Secondary compounds enhance flammability in a Mediterranean plant. Oecologia 2016, 180, 103–110. [Google Scholar] [CrossRef]
- Guerrero, F.; Carmona, C.; Hernández, C.; Toledo, M.; Arriagada, A.; Espinoza, L.; Bergmann, J.; Taborga, L.; Yañez, K.; Carrasco, Y.; et al. Drivers of Flammability of Eucalyptus globulus Labill Leaves: Terpenes, Essential Oils, and Moisture Content. Forests 2022, 13, 908. [Google Scholar] [CrossRef]
- Chen, F.; Si, L.; Zhao, F.; Wang, M. Volatile Oil in Pinus yunnanensis Potentially Contributes to Extreme Fire Behavior. Fire 2023, 6, 113. [Google Scholar] [CrossRef]
- Della Rocca, G.; Madrigal, J.; Marchi, E.; Michelozzi, M.; Moya, B.; Danti, R. Relevance of terpenoids on flammability of Mediterranean species: An experimental approach at a low radiant heat flux. Iforest Biogeosci. For. 2017, 10, 766–775. [Google Scholar] [CrossRef]
- Romero, B.; Fernandez, C.; Lecareux, C.; Ormeño, E.; Ganteaume, A. How terpene content affects fuel flammability of wildland–urban interface vegetation. Int. J. Wildland Fire 2019, 28, 614–627. [Google Scholar] [CrossRef]
- Alessio, G.A.; Peñuelas, J.; De Lillis, M.; Llusià, J. Implications of foliar terpene content and hydration on leaf flammability of Quercus ilex and Pinus halepensis. Plant Biol. 2008, 10, 123–128. [Google Scholar] [CrossRef]
- Ganteaume, A.; Romero, B.; Fernandez, C.; Ormeño, E.; Lecareux, C. Volatile and semi-volatile terpenes impact leaf flammability: Differences according to the level of terpene identification. Chemoecology 2021, 31, 259–275. [Google Scholar] [CrossRef]
- Peñuelas, J.; Llusià, J. Effects of Carbon Dioxide, Water Supply, and Seasonality on Terpene Content and Emission by Rosmarinus officinalis. J. Chem. Ecol. 1997, 23, 979–993. [Google Scholar] [CrossRef]
- De Lillis, M.; Bianco, P.M.; Loreto, F. The influence of leaf water content and isoprenoids on flammability of some Mediterranean woody species. Int. J. Wildland Fire 2009, 18, 203–212. [Google Scholar] [CrossRef]
- Ormeño, E.; Goldstein, A.; Niinemets, Ü. Extracting and trapping biogenic volatile organic compounds stored in plant species. TrAC Trends Anal. Chem. 2011, 30, 978–989. [Google Scholar] [CrossRef]
- Miresmailli, S.; Bradbury, R.; Isman, M.B. Qualitative assessment of an ultra-fast portable gas chromatograph (zNoseTM) for analyzing volatile organic chemicals and essential oils in laboratory and greenhouses. Arthropod-Plant Interact. 2010, 4, 175–180. [Google Scholar] [CrossRef]
- Rahman, M.S.; Al-Farsi, K.; Al-Maskari, S.S.; Al-Habsi, N.A. Stability of electronic nose (e-nose) as determined by considering date-pits heated at different temperatures. Int. J. Food Prop. 2018, 21, 850–857. [Google Scholar] [CrossRef]
- Aleksić, J.M.; Ballian, D.; Isajev, D.; Mataruga, M.; Christian, T.; Gardner, M. IUCN Red List of Threatened Species: Picea omorika. 2016. Available online: https://www.iucnredlist.org/species/30313/84039544 (accessed on 17 November 2024).
- Horvat, I.; Glavač, V.; Ellenberg, H. Vegetation Südosteuropas = Vegetation of Southeast-Europe; Gustav Fischer Verlag: Stuttgart, Germany, 1974. [Google Scholar]
- Čolić, D.B. Spontana obnova Pančićeve omorike (Picea omorika Panč.) posle požara [Spontaneous regeneration of Serbian spruce (Picea omorika Panč.) after the fire]. Zaštita Prir. 1987, 40, 37–56. [Google Scholar]
- Dell’Oro, M.; Mataruga, M.; Sass-Klaassen, U.; Fonti, P. Climate change threatens on endangered relict Serbian spruce. Dendrochronologia 2020, 59, 125651. [Google Scholar] [CrossRef]
- Cornelissen, J.H.C.; Lavorel, S.; Garnier, E.; Díaz, S.; Buchmann, N.; Gurvich, D.E.; Reich, P.B.; Steege, H.; Morgan, H.D.; van der Heijden, M.G.A.; et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 2003, 51, 335–380. [Google Scholar] [CrossRef]
- Ministry for Environmental Protection. Digital Climate and Climate Change Atlas of the Republic of Serbia. Project “Advancing Medium and Long-Term Adaptation Planning in the Republic of Serbia”. 2022. Available online: https://atlas-klime.eko.gov.rs (accessed on 17 November 2023).
- Du, X.; Olmstead, J.; Rouseff, R. Comparison of fast gas chomatography-surface acoustic wave (FGC-SAW) detection and GC-MS for characterizing blueberry cultivars and maturity. J. Agric. Food Chem. 2012, 60, 5099–5106. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy; Allured Publishing Corporation: Carol Stream, IL, USA, 2001. [Google Scholar]
- Nikolić, B.; Ljujić, J.; Bojović, S.; Mitić, Z.; Rajčević, N.; Tešević, V.; Marin, P.D. Headspace volatiles isolated from twigs of Picea omorika from Serbia. Arch. Biol. Sci. 2020, 72, 445–452. [Google Scholar] [CrossRef]
- Bianchi, L.O.; Defossé, G.E. Live fuel moisture content and leaf ignition of forest species in Andean Patagonia, Argentina. Int. J. Wildland Fire 2015, 24, 340–348. [Google Scholar] [CrossRef]
- Kauf, Z.; Fangmeier, A.; Rosavec, R.; Španjol, Ž. Seasonal and Local Differences in Leaf Litter Flammability of Six Mediterranean Tree Species. Environ. Manag. 2015, 55, 687–701. [Google Scholar] [CrossRef] [PubMed]
- R Foundation for Statistical Computing. R Core Team R: A Language and Environment for Statistical Computing. 2022. Available online: https://www.R-project.org (accessed on 17 November 2024).
- Večeřová, K.; Klem, K.; Veselá, B.; Holub, P.; Grace, J.; Urban, O. Combined Effect of Altitude, Season and Light on the Accumulation of Extractable Terpenes in Norway Spruce Needles. Forests 2021, 12, 1737. [Google Scholar] [CrossRef]
- Inoue, Y.; Shiraishi, A.; Hada, T.; Hamashima, H.; Shimada, J. The Antibacterial Effects of Myrcene on Staphylococcus aureus and Its Role in the Essential Oil of the Tea Tree (Melaleuca alternifolia). Nat. Med. 2004, 58, 10–14. [Google Scholar]
- da Silva, A.C.R.; Lopes, P.M.; de Azevedo, M.M.B.; Costa, D.C.M.; Alviano, C.S.; Alviano, D.S. Biological Activities of α-Pinene and β-Pinene Enantiomers. Molecules 2012, 17, 6305–6316. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Chen, Y.-W.; Hou, C.-Y. Antioxidant and antibacterial activity of seven predominant terpenoids. Int. J. Food Prop. 2019, 22, 230–238. [Google Scholar] [CrossRef]
- de Macêdo Andrade, A.C.; Rosalen, P.L.; Freires, I.A.; Scotti, L.; Scotti, M.T.; Aquino, S.G.; de Castro, R.D. Antifungal Activity, Mode of Action, Docking Prediction and Anti-biofilm Effects of (+)-β-pinene Enantiomers against Candida spp. Curr. Top. Med. Chem. 2018, 18, 2481–2490. [Google Scholar] [CrossRef]
- Albayrak, G.; Yörük, E.; Teker, T.; Sefer, Ö. Investigation of antifungal activities of myrcene on Fusarium reference strains. Arch. Microbiol. 2023, 205, 82. [Google Scholar] [CrossRef]
- Cofer, T.M.; Seidl-Adams, I.; Tumlinson, J.H. From Acetoin to (Z)-3-Hexen-1-ol: The Diversity of Volatile Organic Compounds that Induce Plant Responses. J. Agric. Food Chem. 2018, 66, 11197–11208. [Google Scholar] [CrossRef]
- Aung, K.; Jiang, Y.; He, S.Y. The role of water in plant–microbe interactions. Plant J. 2018, 93, 771–780. [Google Scholar] [CrossRef]
- Sharkey, T.D.; Yeh, S. Isoprene Emission from Plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001, 52, 407–436. [Google Scholar] [CrossRef] [PubMed]
- Sharkey, T.D.; Chen, X.; Yeh, S. Isoprene Increases Thermotolerance of Fosmidomycin-Fed Leaves. Plant Physiol. 2001, 125, 2001–2006. [Google Scholar] [CrossRef] [PubMed]
- Ellenberg, H. Vegetation Ecology of Central Europe, 4th ed.; Cambridge University Press: Cambridge, UK, 1988. [Google Scholar]
- Asfaw, M.D.; Kassa, S.M.; Lungu, E.M.; Bewket, W. Effects of temperature and rainfall in plant–herbivore interactions at different altitude. Ecol. Model. 2019, 406, 50–59. [Google Scholar] [CrossRef]
- Vagionas, K.; Graikou, K.; Ngassapa, O.; Runyoro, D.; Chinou, I. Composition and antimicrobial activity of the essential oils of three Satureja species growing in Tanzania. Food Chem. 2007, 103, 319–324. [Google Scholar] [CrossRef]
- Cutillas, A.-B.; Carrasco, A.; Martinez-Gutierrez, R.; Tomas, V.; Tudela, J. Composition and Antioxidant, Antienzymatic and Antimicrobial Activities of Volatile Molecules from Spanish Salvia lavandulifolia (Vahl) Essential Oils. Molecules 2017, 22, 1382. [Google Scholar] [CrossRef]
- Dorman, H.J.D.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef]
- Sujatha, B.; Rashmi, H.; Palempalli, U.M.D. Antifungal activity of oxylipins against papaya fungal pathogens. J. Exp. Biol. Agric. Sci. 2013, 1, 139–145. [Google Scholar]
- Engelberth, J.; Contreras, C.F.; Dalvi, C.; Li, T.; Engelberth, M. Early Transcriptome Analyses of Z-3-Hexenol-Treated Zea mays Revealed Distinct Transcriptional Networks and Anti-Herbivore Defense Potential of Green Leaf Volatiles. PLoS ONE 2013, 8, e77465. [Google Scholar] [CrossRef]
- Dombrowski, J.E.; Martin, R.C. Activation of MAP kinases by green leaf volatiles in grasses. BMC Res. Notes 2018, 11, 79. [Google Scholar] [CrossRef]
- Djerrad, Z.; Kadik, L.; Djouahri, A. Chemical variability and antioxidant activities among Pinus halepensis Mill. essential oils provenances, depending on geographic variation and environmental conditions. Ind. Crops Prod. 2015, 74, 440–449. [Google Scholar] [CrossRef]
- Lakušić, D.V.; Ristić, M.S.; Slavkovska, V.N.; Šinžar-Sekulić, J.B.; Lakušić, B.S. Environment-Related Variations of the Composition of the Essential Oils of Rosemary (Rosmarinus officinalis L.) in the Balkan Penninsula. Chem. Biodivers. 2012, 9, 1286–1302. [Google Scholar] [CrossRef] [PubMed]
- Rajčević, N.; Nikolić, B.; Marin, P.D. Different responses to environmental factors in terpene composition of Pinus heldreichii and P. peuce: Ecological and chemotaxonomic considerations. Arch. Biol. Sci. 2019, 71, 629–637. [Google Scholar] [CrossRef]
- Broz, A.K.; Broeckling, C.D.; De-la-Peña, C.; Lewis, M.R.; Greene, E.; Callaway, R.M.; Sumner, L.W.; Vivanco, J.M. Plant neighbor identity influences plant biochemistry and physiology related to defense. BMC Plant Biol. 2010, 10, 115. [Google Scholar] [CrossRef] [PubMed]
- Meneguzzo, F.; Albanese, L.; Bartolini, G.; Zabini, F. Temporal and Spatial Variability of Volatile Organic Compounds in the Forest Atmosphere. Int. J. Environ. Res. Public Health 2019, 16, 4915. [Google Scholar] [CrossRef]
- Meiners, T. Ecological Role of Odour Diversity. In Deciphering Chemical Language of Plant Communication; Blande, J.D., Glinwood, R., Eds.; Signaling and Communication in Plants; Springer International Publishing: Cham, Switzerland, 2016; pp. 137–151. [Google Scholar] [CrossRef]
- Vuković, A.J.; Vujadinović, M.P.; Rendulić, S.M.; Djurdjević, V.S.; Ruml, M.M.; Babić, V.P.; Popović, D.P. Global warming impact on climate change in Serbia for the period 1961–2100. Therm. Sci. 2018, 22, 2267–2280. [Google Scholar] [CrossRef]
- Fernandez-Anez, N.; Krasovskiy, A.; Müller, M.; Vacik, H.; Baetens, J.; Hukić, E.; Kapovic Solomun, M.; Atanassova, I.; Glushkova, M.; Bogunović, I.; et al. Current Wildland Fire Patterns and Challenges in Europe: A Synthesis of National Perspectives. Air Soil Water Res. 2021, 14, 11786221211028185. [Google Scholar] [CrossRef]
- Sancho-Knapik, D.; Sanz, M.Á.; Peguero-Pina, J.J.; Niinemets, Ü.; Gil-Pelegrín, E. Changes of secondary metabolites in Pinus sylvestris L. needles under increasing soil water deficit. Ann. For. Sci. 2017, 74, 24. [Google Scholar] [CrossRef]
- Turtola, S.; Manninen, A.-M.; Rikala, R.; Kainulainen, P. Drought Stress Alters the Concentration of Wood Terpenoids in Scots Pine and Norway Spruce Seedlings. J. Chem. Ecol. 2003, 29, 1981–1995. [Google Scholar] [CrossRef]
- Holopainen, J.K.; Himanen, S.J.; Yuan, J.S.; Chen, F.; Stewart, C.N. Ecological Functions of Terpenoids in Changing Climates. In Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes; Ramawat, K.G., Mérillon, J.-M., Eds.; Springer: Berlin, Heidelberg, 2013; pp. 2913–2940. [Google Scholar] [CrossRef]
- Magro, C.; Gonçalves, O.C.; Morais, M.; Ribeiro, P.A.; Sério, S.; Vieira, P.; Raposo, M. Volatile Organic Compound Monitoring during Extreme Wildfires: Assessing the Potential of Sensors Based on LbL and Sputtering Films. Sensors 2022, 22, 6677. [Google Scholar] [CrossRef]
- PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 11 November 2024).
Location | Composition of Forest Community | P. omorika Contribution (%) | Altitude (m) | MAT 1 (°C) | chMAT 2 (°C) | EQ 3 (°C/mm) | Coordintes |
---|---|---|---|---|---|---|---|
I Zmajevački potok | Picetum—Omorikae Excelsae pinetosum mixtum, dominated by P. abies and P. omorika, also present Abies alba, Pinus nigra, P. sylvestris, Betula pendula, Sorbus aucuparia. | 34 | 800 | 6.9 | 1.93 | 18.0 | 43°51′30″ 19°25′35″ |
II Bilo | Picetum—Omorikae abietis calcicolum, where P. omorika dominates and forms monospecies stands, and P. abies is present in much lesser extent. | 80 | 1200 | 8.2 | 1.81 | 20.7 | 43°55′19″ 19°20′08″ |
III Kanjon Brusnice | Erico—Picetum omorikae mixtum, mixed community with P. abies, P. omorika, P. nigra, Carpinus betulus, Betula pendula, Populus sp., Abies alba, Fraxinus nigra, Acer pseudoplatanus, Erica carnea. | 9 | 900 | 7.8 | 1.80 | 19.5 | 43°55′44″ 19°17′05″ |
IV Osluša | Plantation of P. abies and P. omorika. | 25 | 1000 | 8.7 | 1.79 | 21.7 | 43°56′50″ 19°28′55″ |
cis-3-Hexen-1-ol | α-Pinene | β-Pinene | Myrcene | Limonene | Bornyl Acetate | trans-Caryophyllene | TTI | MC | FD | |
---|---|---|---|---|---|---|---|---|---|---|
TTI | −0.33 | 0.16 | 0.39 * | 0.55 ** | −0.12 | −0.10 | 0 | 1 | ||
MC | −0.20 | 0.11 | 0.40 * | 0.48 ** | −0.13 | −0.18 | 0.10 | 0.85 *** | 1 | |
FD | 0.06 | −0.14 | −0.32 | −0.41 * | 0.20 | −0.18 | −0.09 | −0.81 *** | −0.82 *** | 1 |
Alt | 0.27 | −0.18 | −0.45 * | −0.55 ** | 0.18 | −0.03 | −0.13 | −0.91 *** | −0.93 *** | 0.90 *** |
MAT | 0.37 * | −0.05 | −0.18 | −0.46 * | 0.03 | 0.45 * | 0.30 | −0.65 *** | −0.73 *** | 0.35 |
chMAT | −0.16 | 0.05 | 0.26 | 0.41 * | −0.06 | −0.31 | −0.04 | 0.66 *** | 0.90 *** | −0.57 ** |
EQ | 0.42 * | −0.06 | −0.17 | −0.48 ** | 0.03 | 0.45 * | 0.34 | −0.66 *** | −0.70 *** | 0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vidaković, V.; Popović, Z. Emission of Fire-Promoting Volatiles from Picea omorika (Pančić) Purk Needles in Different Forest Communities. Forests 2024, 15, 2085. https://doi.org/10.3390/f15122085
Vidaković V, Popović Z. Emission of Fire-Promoting Volatiles from Picea omorika (Pančić) Purk Needles in Different Forest Communities. Forests. 2024; 15(12):2085. https://doi.org/10.3390/f15122085
Chicago/Turabian StyleVidaković, Vera, and Zorica Popović. 2024. "Emission of Fire-Promoting Volatiles from Picea omorika (Pančić) Purk Needles in Different Forest Communities" Forests 15, no. 12: 2085. https://doi.org/10.3390/f15122085
APA StyleVidaković, V., & Popović, Z. (2024). Emission of Fire-Promoting Volatiles from Picea omorika (Pančić) Purk Needles in Different Forest Communities. Forests, 15(12), 2085. https://doi.org/10.3390/f15122085