Understory Vegetation Preservation Offsets the Decline in Soil Organic Carbon Stock Caused by Aboveground Litter Removal in a Subtropical Chinese Fir Plantation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Soil Sampling
2.4. SOC Fractions Analyses
2.5. Soil Physico-Chemical Analyses
2.6. Soil Microbial Biomass Analyses
2.7. Soil Enzyme Activities Analyses
2.8. Statistics Analyses
3. Results
3.1. Soil Organic Carbon and Its Fractions
3.2. Soil Physico-Chemical Properties
3.3. Soil Microbial Biomass and Enzyme Activities
3.4. Correlations Among Soil Organic Carbon Fractions, Physico-Chemical and Biological Properties
4. Discussion
4.1. Does Aboveground Litter Removal Decrease SOC Fractions with Decreasing Available Nutrients?
4.2. Does Understory Vegetation Decrease SOC Fractions Along a Soil Profile via Microbial Processes
4.3. Soil Depth Effect on SOC Fractions Varies with Understory Manipulation
4.4. The Potential Contributions of Aboveground Litter and Understory Vegetation
4.5. Limitations and Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jobbagy, E.; Jackson, R.B. The Vertical Distribution of Soil Organic Carbon and Its Relation to Climate and Vegetation. Ecol. Appl. 2000, 10, 423–436. [Google Scholar] [CrossRef]
- Amundson, R.; Biardeau, L. Soil carbon sequestration is an elusive climate mitigation tool. Proc. Natl. Acad. Sci. USA 2018, 115, 11652–11656. [Google Scholar] [CrossRef]
- Siddique, K.H.M.; Bolan, N.; Rehman, A.; Farooq, M. Enhancing crop productivity for recarbonizing soil. Soil Till. Res. 2024, 235, 105863. [Google Scholar] [CrossRef]
- Olk, D.C.; Gregorich, E.G. Overview of the symposium proceedings, meaningful pools in determining soil carbon and nitrogen dynamics. Soil Sci. Soc. Am. J. 2006, 70, 967–974. [Google Scholar] [CrossRef]
- Rovira, P.; Vallejo, V.R. Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: An acid hydrolysis approach. Geoderma 2002, 107, 109–141. [Google Scholar] [CrossRef]
- Blair, G.; Lefroy, R.; Lisle, L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Aust. J. Agr. Res. 1995, 46, 393–406. [Google Scholar] [CrossRef]
- Wander, M.M.; Traina, S.J.; Stinner, B.R.; Peters, S.E. Organic and Conventional Management Effects on Biologically Active Soil Organic Matter Pools. Soil Sci. Soc. Am. J. 1994, 58, 1130–1139. [Google Scholar] [CrossRef]
- Wang, L.F.; Zhou, Y.; Chen, Y.M.; Xu, Z.F.; Zhang, J.; Liu, Y.; Joly, F.X. Litter diversity accelerates labile carbon but slows recalcitrant carbon decomposition. Soil Biol. Biochem. 2022, 168, 108632. [Google Scholar] [CrossRef]
- Li, S.; Zhang, S.R.; Pu, Y.L.; Li, T.; Xu, X.X.; Jia, Y.X.; Deng, O.P.; Gong, G.S. Dynamics of soil labile organic carbon fractions and C-cycle enzyme activities under straw mulch in Chengdu Plain. Soil Till. Res. 2016, 155, 289–297. [Google Scholar] [CrossRef]
- Falloon, P.D.; Smith, P. Modelling refractory soil organic matter. Biol. Fert. Soils 2000, 30, 388–398. [Google Scholar]
- Sokol, N.W.; Bradford, M.A. Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nat. Geosci. 2019, 12, 46–53. [Google Scholar] [CrossRef]
- Feng, J.G.; He, K.Y.; Zhang, Q.F.; Han, M.G.; Zhu, B. Changes in plant inputs alter soil carbon and microbial communities in forest ecosystems. Glob. Chang. Biol. 2022, 28, 3426–3440. [Google Scholar] [CrossRef]
- Wu, J.J.; Zhang, D.D.; Chen, Q.; Feng, J.; Li, Q.X.; Yang, F.; Cheng, X.L. Shifts in soil organic carbon dynamics under detritus input manipulations in a coniferous forest ecosystem in subtropical China. Soil Biol. Biochem. 2018, 126, 1–10. [Google Scholar] [CrossRef]
- Chen, J.; Elsgaard, L.; van Groenigen, K.J.; Olesen, J.E.; Liang, Z.; Jiang, Y.; Lærke, P.E.; Zhang, Y.F.; Luo, Y.Q.; Hungate, B.A.; et al. Soil carbon loss with warming: New evidence from carbon-degrading enzymes. Glob. Chang. Biol. 2020, 26, 1944–1952. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef]
- Whalen, E.D.; Grandy, A.S.; Sokol, N.W.; Keiluweit, M.; Ernakovich, J.; Smith, R.G.; Frey, S.D. Clarifying the evidence for microbial- and plant-derived soil organic matter, and the path toward a more quantitative understanding. Glob. Chang. Biol. 2022, 28, 7167–7185. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Cheng, G.; Wixon, D.L.; Balser, T.C. An Absorbing Markov Chain approach to understanding the microbial role in soil carbon stabilization. Biogeochemistry 2011, 106, 303–309. [Google Scholar] [CrossRef]
- Curtin, D.; Campbell, C.A.; Jalil, A. Effects of acidity on mineralization: pH-dependence of organic matter mineralization in weakly acidic soils. Soil Biol. Biochem. 1998, 30, 57–64. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Tang, Z.X.; You, Y.M.; Guo, X.W.; Wu, C.J.; Liu, S.R.; Sun, O.J.X. Differential effects of forest-floor litter and roots on soil organic carbon formation in a temperate oak forest. Soil Biol. Biochem. 2023, 180, 109017. [Google Scholar] [CrossRef]
- Wang, D.; Wang, B.; Niu, X. Effects of natural forest types on soil carbon fractions in North-East China. J. Trop. For. Sci. 2014, 26, 362–370. [Google Scholar]
- Liu, J.; Liu, M.; Wu, M.; Jiang, C.Y.; Chen, X.F.; Cai, Z.J.; Wang, B.R.; Zhang, J.; Zhang, T.L.; Li, Z.P. Soil pH rather than nutrients drive changes in microbial community following long-term fertilization in acidic Ultisols of southern China. J. Soils Sediments 2018, 18, 1853–1864. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Shen, H.; He, X.H.; Thomas, B.W.; Lupwayi, N.Z.; Hao, X.Y.; Thomas, M.C.; Shi, X. Fertilization Shapes Bacterial Community Structure by Alteration of Soil pH. Front. Microbiol. 2017, 8, 1325. [Google Scholar] [CrossRef] [PubMed]
- Kemmitt, S.J.; Wright, D.; Goulding, K.W.T.; Jones, D.L. pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biol. Biochem. 2006, 38, 898–911. [Google Scholar] [CrossRef]
- Zhang, X.M.; Guo, J.H.; Vogt, R.D.; Mulder, J.; Wang, Y.J.; Qian, C.; Wang, J.G.; Zhang, X.S. Soil acidification as an additional driver to organic carbon accumulation in major Chinese croplands. Geoderma 2020, 366, 114234. [Google Scholar] [CrossRef]
- Rumpel, C.; Chabbi, A.; Marschner, B. Carbon Storage and Sequestration in Subsoil Horizons: Knowledge, Gaps and Potentials. In Recarbonization of the Biosphere; Lal, R., Lorenz, K., Hüttl, R.F., Schneider, B.U., von Braun, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 445–464. [Google Scholar]
- Six, J.; Elliott, E.T.; Paustian, K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 2000, 32, 2099–2103. [Google Scholar] [CrossRef]
- Kang, E.Z.; Li, Y.; Zhang, X.D.; Yan, Z.Q.; Wu, H.D.; Li, M.; Yan, L.; Zhang, K.R.; Wang, J.Z.; Kang, X.M. Soil pH and nutrients shape the vertical distribution of microbial communities in an alpine wetland. Sci. Total Environ. 2021, 774, 145780. [Google Scholar] [CrossRef]
- Nicholas, C.D.; Morgan, E.B.; Moreland, K.; Robert, C.G.; Asmeret, A.B.; Stephen, C.H. Depth dependence of climatic controls on soil microbial community activity and composition. ISME Commun. 2021, 1, 78. [Google Scholar]
- Yang, Y.; Dou, Y.X.; Wang, B.R.; Xue, Z.J.; Wang, Y.Q.; An, S.S.; Chang, S.X. Deciphering factors driving soil microbial life-history strategies in restored grasslands. iMeta 2023, 2, e66. [Google Scholar] [CrossRef]
- Wen, S.H.; Chen, J.Y.; Yang, Z.M.; Deng, L.; Feng, J.; Zhang, W.; Zeng, X.M.; Huang, Q.Y.; Manuel, D.G.; Liu, Y.R. Climatic seasonality challenges the stability of microbial-driven deep soil carbon accumulation across China. Glob. Chang. Biol. 2023, 29, 4430–4439. [Google Scholar] [CrossRef]
- Huang, Z.Q.; He, Z.M.; Wan, X.H.; Hu, Z.H.; Fan, S.H.; Yang, Y.S. Harvest residue management effects on tree growth and ecosystem carbon in a Chinese fir plantation in subtropical China. Plant Soil 2013, 364, 303–314. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, Y.; Hu, X.F.; Wan, S.Z.; Wang, H.M.; Liang, C.; Chen, F.S. Litter manipulation effects on microbial communities and enzymatic activities vary with soil depth in a subtropical Chinese fir plantation. Forest Ecol. Manag. 2021, 480, 118641. [Google Scholar] [CrossRef]
- Chen, X.M.; Zhang, D.Q.; Liang, G.H.; Qiu, Q.Y.; Liu, J.X.; Zhou, G.Y.; Liu, S.Z.; Chu, G.W.; Yan, J.H. Effects of precipitation on soil organic carbon fractions in three subtropical forests in southern China. J. Plant Ecol. 2015, 9, 10–19. [Google Scholar] [CrossRef]
- Fang, X.M.; Wang, G.G.; Xu, Z.J.; Zong, Y.Y.; Chen, F.S. Litter addition and understory removal influenced soil organic carbon quality and mineral nitrogen supply in a subtropical plantation forest. Plant Soil 2021, 460, 527–540. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Carter, M.R. Soil Quality for Sustainable Land Management. Agron. J. 2002, 94, 38–47. [Google Scholar]
- Kemper, W.D.; Rosenau, R.C. Aggregate Stability and Size Distribution. In Methods of Soil Analysis; Klute, A., Ed.; SSSA: Madison, WI, USA, 1986; pp. 425–442. [Google Scholar]
- Lu, R.K. Soil Agro-Chemistrical Annalysis; China Agricultural Sciences: Beijing, China, 2000. [Google Scholar]
- Faithfull, N. Methods in Agricultural Chemical Analysis: A Practical Handbook; Cabi: Wallingford, UK, 2002. [Google Scholar]
- Bossio, D.A.; Scow, K.M. Impacts of Carbon and Flooding on Soil Microbial Communities: Phospholipid Fatty Acid Profiles and Substrate Utilization Patterns. Microb. Ecol. 1998, 35, 265–278. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, Z.A.; Wang, F.M.; Zou, B.; Chen, Y.; Zhao, J.; Mo, Q.F.; Li, Y.W.; Li, X.B.; Xia, H.P. Effects of nitrogen and phosphorus addition on soil microbial community in a secondary tropical forest of China. Biol. Fert. Soils 2015, 51, 207–215. [Google Scholar] [CrossRef]
- Frostegård, Å.; Tunlid, A.; Bååth, E. Use and misuse of PLFA measurements in soils. Soil Biol. Biochem. 2011, 43, 1621–1625. [Google Scholar] [CrossRef]
- Saiya-Cork, K.R.; Sinsabaugh, R.L.; Zak, D.R. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol. Biochem. 2002, 34, 1309–1315. [Google Scholar] [CrossRef]
- Tao, F.; Huang, Y.Y.; Hungate, B.A.; Manzoni, S.; Frey, S.D.; Schmidt, M.W.I.; Reichstein, M.; Carvalhais, N.; Ciais, P.; Jiang, L.F.; et al. Microbial carbon use efficiency promotes global soil carbon storage. Nature 2023, 618, 981–985. [Google Scholar] [CrossRef]
- Ying, J.Y.; Li, X.X.; Wang, N.N.; Lan, Z.C.; He, J.Z.; Bai, Y.F. Contrasting effects of nitrogen forms and soil pH on ammonia oxidizing microorganisms and their responses to long-term nitrogen fertilization in a typical steppe ecosystem. Soil Biol. Biochem. 2017, 107, 10–18. [Google Scholar] [CrossRef]
- Lu, X.F.; Hou, E.Q.; Guo, J.Y.; Gilliam, F.S.; Li, J.L.; Tang, S.B.; Kuang, Y.W. Nitrogen addition stimulates soil aggregation and enhances carbon storage in terrestrial ecosystems of China: A meta-analysis. Glob. Chang. Biol. 2021, 27, 2780–2792. [Google Scholar] [CrossRef]
- Fierer, N.; Allen, A.S.; Schimel, J.P.; Holden, P.A. Controls on microbial CO2 production: A comparison of surface and subsurface soil horizons. Glob. Chang. Biol. 2003, 9, 1322–1332. [Google Scholar] [CrossRef]
- Dzwonko, Z.; Gawroński, S. Effect of litter removal on species richness and acidification of a mixed oak-pine woodland. Biol. Conserv. 2002, 106, 389–398. [Google Scholar] [CrossRef]
- Sayer, E.J. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biol. Rev. 2006, 81, 1–31. [Google Scholar] [CrossRef]
- Souza, L.F.T.; Hirmas, D.R.; Sullivan, P.L.; Reuman, D.C.; Kirk, M.F.; Li, L.; Ajami, H.; Wen, H.; Sarto, M.V.M.; Loecke, T.D.; et al. Root distributions, precipitation, and soil structure converge to govern soil organic carbon depth distributions. Geoderma 2023, 437, 116569. [Google Scholar] [CrossRef]
- Kaiser, K.; Kalbitz, K. Cycling downwards—Dissolved organic matter in soils. Soil Biol. Biochem. 2012, 52, 29–32. [Google Scholar] [CrossRef]
- Button, E.S.; Pett-Ridge, J.; Murphy, D.V.; Kuzyakov, Y.; Chadwick, D.R.; Jones, D.L. Deep-C storage: Biological, chemical and physical strategies to enhance carbon stocks in agricultural subsoils. Soil Biol. Biochem. 2022, 170, 108697. [Google Scholar] [CrossRef]
- Wang, X.L.; Zhang, W.X.; Shao, Y.H.; Zhao, J.; Zhou, L.X.; Zou, X.M.; Fu, S.L. Fungi to bacteria ratio: Historical misinterpretations and potential implications. Acta Oecol. 2019, 95, 1–11. [Google Scholar] [CrossRef]
- Ibell, P.T.; Xu, Z.H.; Blumfield, T.J.; Wright, C.; Blumfield, T.J. The influence of weed control on foliar δ15N, δ13C and tree growth in an 8 year-old exotic pine plantation of subtropical Australia. Plant Soil 2013, 369, 199–217. [Google Scholar] [CrossRef]
- Zhou, X.G.; Zhu, H.G.; Wen, Y.G.; Goodale, U.M.; Li, X.Q.; You, Y.M.; Ye, D.; Liang, H.W. Effects of understory management on trade-offs and synergies between biomass carbon stock, plant diversity and timber production in eucalyptus plantations. Forest Ecol. Manag. 2018, 410, 164–173. [Google Scholar] [CrossRef]
- López-Mondéjar, R.; Tláskal, V.; Větrovský, T.; Štursová, M.; Toscan, R.; Nunes da Rocha, U.; Baldrian, P. Metagenomics and stable isotope probing reveal the complementary contribution of fungal and bacterial communities in the recycling of dead biomass in forest soil. Soil Biol. Biochem. 2020, 148, 107875. [Google Scholar] [CrossRef]
- Glassman, S.I.; Weihe, C.; Li, J.H.; Albright, M.B.N.; Looby, C.I.; Martiny, A.C.; Treseder, K.K.; Allison, S.D.; Martiny, J.B.H. Decomposition responses to climate depend on microbial community composition. Proc. Natl. Acad. Sci. USA 2018, 115, 11994–11999. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.F.; Cheng, R.M.; Xiao, W.F.; Yang, S.; Guo, Y.; Wang, N.; Zeng, L.X.; Lei, L.; Wang, X.R. Labile organic carbon pools and enzyme activities of Pinus massoniana plantation soil as affected by understory vegetation removal and thinning. Sci. Rep. 2018, 8, 573. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, X.Y.; Zhang, C.; Wang, H.M.; Fu, X.L.; Chen, F.S.; Wan, S.Z.; Sun, X.M.; Wen, X.; Wang, J.F. Understory vegetation plays the key role in sustaining soil microbial biomass and extracellular enzyme activities. Biogeosciences 2018, 15, 4481–4494. [Google Scholar] [CrossRef]
- Alarcón-Gutiérrez, E.; Floch, C.; Augur, C.; Petit, J.L.; Ziarelli, F.; Criquet, S. Spatial variations of chemical composition, microbial functional diversity, and enzyme activities in a Mediterranean litter (Quercus ilex L.) profile. Pedobiologia 2009, 52, 387–399. [Google Scholar] [CrossRef]
- Crowther, T.W.; van den Hoogen, J.; Wan, J.; Mayes, M.A.; Keiser, A.D.; Mo, L.; Averill, C.; Maynard, D.S. The global soil community and its influence on biogeochemistry. Science 2019, 365, eaav0550. [Google Scholar] [CrossRef]
- Zhou, T.; Lv, Y.L.; Xie, B.L.; Xu, L.; Zhou, Y.F.; Mei, T.T.; Li, Y.F.; Yuan, N.; Shi, Y.J. Topography and Soil Organic Carbon in Subtropical Forests of China. Forests 2023, 14, 1023. [Google Scholar] [CrossRef]
- Mao, X.L.; Zheng, J.Y.; Yu, W.; Guo, X.W.; Xu, K.; Zhao, R.Y.; Xiao, L.J.; Wang, M.M.; Jiang, Y.F.; Zhang, S.; et al. Climate-induced shifts in composition and protection regulate temperature sensitivity of carbon decomposition through soil profile. Soil Biol. Biochem. 2022, 172, 108743. [Google Scholar] [CrossRef]
- Wardak, D.L.R.; Padia, F.N.; de Heer, M.I.; Sturrock, C.J.; Mooney, S.J. Zero tillage has important consequences for soil pore architecture and hydraulic transport: A review. Geoderma 2022, 422, 115927. [Google Scholar] [CrossRef]
- Li, Y.; Sun, J.; Tian, D.S.; Wang, J.S.; Ha, D.L.; Qu, Y.X.; Jing, G.W.; Niu, S.L. Soil acid cations induced reduction in soil respiration under nitrogen enrichment and soil acidification. Sci. Total Environ. 2018, 615, 1535–1546. [Google Scholar] [CrossRef]
- Sun, X.L.; Minasny, B.; Wu, Y.J.; Wang, H.L.; Fan, X.H.; Zhang, G.L. Soil organic carbon content increase in the east and south of China is accompanied by soil acidification. Sci. Total Environ. 2023, 857, 159253. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk, B.; Sietiö, O.M.; Straková, P.; Prommer, J.; Wild, B.; Hagner, M.; Pihlatie, M.; Fritze, H.; Richter, A.; Heinonsalo, J. Plant roots increase both decomposition and stable organic matter formation in boreal forest soil. Nat. Commun. 2019, 10, 3982. [Google Scholar] [CrossRef]
- Bahram, M.; Netherway, T.; Frioux, C.; Ferretti, P.; Coelho, L.P.; Geisen, S.; Bork, P.; Hildebrand, F. Metagenomic assessment of the global diversity and distribution of bacteria and fungi. Environ. Microbiol. 2021, 23, 316–326. [Google Scholar] [CrossRef]
- Su, R.L.; Wu, X.; Hu, J.L.; Li, H.B.; Xiao, H.B.; Zhao, J.S.; Hu, R.G. Warming promotes the decomposition of oligotrophic bacterial-driven organic matter in paddy soil. Soil Biol. Biochem. 2023, 186, 109156. [Google Scholar] [CrossRef]
- Powlson, D.S.; Whitmore, A.P.; Goulding, K.W.T. Soil carbon sequestration to mitigate climate change: A critical re-examination to identify the true and the false. Eur. J. Soil Sci. 2011, 62, 42–55. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Soong, J.L.; Horton, A.J.; Campbell, E.E.; Haddix, M.L.; Wall, D.H.; Parton, W.J. Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nat. Geosci. 2015, 8, 776–779. [Google Scholar] [CrossRef]
- Lowdermilk, W.C. Influence of Forest Litter on Run-Off, Percolation, and Erosion. J. Forest. 1930, 28, 474–491. [Google Scholar]
- Kuzyakov, Y.; Friedel, J.K.; Stahr, K. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 2000, 32, 1485–1498. [Google Scholar] [CrossRef]
- Ravindran, A.; Yang, S.S. Effects of vegetation type on microbial biomass carbon and nitrogen in subalpine mountain forest soils. J. Microbiol. Immunol. 2015, 48, 362–369. [Google Scholar] [CrossRef]
- Balandier, P.; Mårell, A.; Prévosto, B.; Vincenot, L. Tamm review: Forest understorey and overstorey interactions: So much more than just light interception by trees. For. Ecol. Manag. 2022, 526, 120584. [Google Scholar] [CrossRef]
- Deng, J.J.; Fang, S.; Fang, X.M.; Jin, Y.Q.; Kuang, Y.W.; Lin, F.M.; Liu, J.Q.; Ma, J.R.; Nie, Y.X.; Ouyang, S.N.; et al. Forest understory vegetation study: Current status and future trends. For. Res. 2023, 3, 6. [Google Scholar] [CrossRef]
- Zhang, S.T.; Yang, X.; Li, D.B.; Li, S.C.; Chen, Z.; Wu, J.P. A meta-analysis of understory plant removal impacts on soil properties in forest ecosystems. Geoderma 2022, 426, 116116. [Google Scholar] [CrossRef]
- Balandier, P.; Gobin, R.; Prévosto, B.; Prévosto, B.; Korboulewsky, N. The contribution of understorey vegetation to ecosystem evapotranspiration in boreal and temperate forests: A literature review and analysis. Eur. J. Forest Res. 2022, 141, 979–997. [Google Scholar] [CrossRef]
- Landuyt, D.; De Lombaerde, E.; Perring, M.P.; Hertzog, L.R.; Ampoorter, E.; Maes, S.L.; De Frenne, P.; Ma, S.Y.; Proesmans, W.; Blondeel, H.; et al. The functional role of temperate forest understorey vegetation in a changing world. Glob. Chang. Biol. 2019, 25, 3625–3641. [Google Scholar] [CrossRef]
- He, W.; Xu, X.; Zhang, C.C.; Ma, Z.Y.; Xu, J.Y.; Ten, M.J.; Yan, Z.G.; Wang, B.; Wang, P.C. Understory vegetation removal reduces the incidence of non-additive mass loss during leaf litter decomposition in a subtropical Pinus massoniana plantation. Plant Soil 2020, 446, 529–541. [Google Scholar] [CrossRef]
- Shabtai, I.A.; Wilhelm, R.C.; Schweizer, S.A.; Höschen, C.; Buckley, D.H.; Lehmann, J. Calcium promotes persistent soil organic matter by altering microbial transformation of plant litter. Nat. Commun. 2023, 14, 6609. [Google Scholar] [CrossRef] [PubMed]
Variation | Explains (%) | F | P | Variation | Explains (%) | F | P |
0–10 cm | 10–20 cm | ||||||
pH | 32.10 | 3.30 | 0.026 | pH | 59.10 | 10.10 | 0.002 |
G− | 17.60 | 2.50 | 0.094 | CB | 15.90 | 6.10 | 0.014 |
NH4+-N | 15.60 | 1.80 | 0.178 | Olsen-P | 11.30 | 4.20 | 0.016 |
CB | 12.50 | 1.60 | 0.138 | NH4+-N | 8.20 | 3.80 | 0.054 |
BG | 10.20 | 1.30 | 0.060 | NO3−-N | 2.40 | 2.40 | 0.138 |
Fungi | 7.60 | 1.10 | 0.278 | Total N | 1.60 | 2.30 | 0.248 |
Variation | Explains (%) | F | P | Variation | Explains (%) | F | P |
20–40 cm | 40–60 cm | ||||||
G+ | 43.50 | 5.40 | 0.006 | G+ | 25.00 | 6.00 | 0.144 |
NH4+-N | 23.40 | 4.20 | 0.038 | Total P | 22.50 | 5.00 | 0.120 |
BG | 13.60 | 3.90 | 0.052 | NH4+-N | 18.20 | 3.00 | 0.372 |
Olsen-P | 8.10 | 3.80 | 0.083 | Fungi | 14.50 | 2.30 | 0.218 |
CB | 4.60 | 2.80 | 0.208 | CB | 10.70 | 1.60 | 0.226 |
Total P | 4.50 | 2.00 | 0.224 | Moisture | 6.50 | 1.40 | 0.302 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, B.; Wang, F.; Liang, K.; Liu, R.; Hu, X.; Wang, H.; Chen, F.; Yu, M. Understory Vegetation Preservation Offsets the Decline in Soil Organic Carbon Stock Caused by Aboveground Litter Removal in a Subtropical Chinese Fir Plantation. Forests 2024, 15, 2204. https://doi.org/10.3390/f15122204
Xu B, Wang F, Liang K, Liu R, Hu X, Wang H, Chen F, Yu M. Understory Vegetation Preservation Offsets the Decline in Soil Organic Carbon Stock Caused by Aboveground Litter Removal in a Subtropical Chinese Fir Plantation. Forests. 2024; 15(12):2204. https://doi.org/10.3390/f15122204
Chicago/Turabian StyleXu, Bingshi, Fangchao Wang, Kuan Liang, Ren Liu, Xiaofei Hu, Huimin Wang, Fusheng Chen, and Mingquan Yu. 2024. "Understory Vegetation Preservation Offsets the Decline in Soil Organic Carbon Stock Caused by Aboveground Litter Removal in a Subtropical Chinese Fir Plantation" Forests 15, no. 12: 2204. https://doi.org/10.3390/f15122204
APA StyleXu, B., Wang, F., Liang, K., Liu, R., Hu, X., Wang, H., Chen, F., & Yu, M. (2024). Understory Vegetation Preservation Offsets the Decline in Soil Organic Carbon Stock Caused by Aboveground Litter Removal in a Subtropical Chinese Fir Plantation. Forests, 15(12), 2204. https://doi.org/10.3390/f15122204