Is the Concentric Plot Design Reliable for Estimating Structural Parameters of Forest Stands?
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Production Parameters
3.2. Structural Parameters
3.3. Labour Intensity of Individual Designs
4. Discussion
5. Conclusions
- -
- The Gini index values indicate that the concentric design might need additional corrections for diameter diversity assessment, as lower values were recorded compared to those of larger fixed-radius plots.
- -
- The concentric plot design effectively captures height diversity, as measured by the Artenprofile index, performing similarly to larger fixed-radius plots.
- -
- The Shannon index results show that the concentric design is comparable to or better than that of large-radius plots in capturing species diversity.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kenk, G.; Guehne, S. Management of Transformation in Central Europe. For. Ecol. Manag. 2001, 151, 107–119. [Google Scholar] [CrossRef]
- Pach, M.; Sansone, D.; Ponette, Q.; Barreiro, S.; Mason, B.; Bravo-Oviedo, A.; Löf, M.; Bravo, F.; Pretzsch, H.; Lesiński, J.; et al. Silviculture of Mixed Forests: A European Overview of Current Practices and Challenges. In Dynamics, Silviculture and Management of Mixed Forests; Bravo-Oviedo, A., Pretzsch, H., del Río, M., Eds.; Springer International Publishing: New York, NY, USA, 2018; Volume 31, pp. 185–253. [Google Scholar]
- Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Avery, K.; Tignor, M.; Miller, H. Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; Volume 1. [Google Scholar]
- Brang, P.; Spathelf, P.; Larsen, J.B.; Bauhus, J.; Bonc ina, A.; Chauvin, C.; Drossler, L.; Garcia-Guemes, C.; Heiri, C.; Kerr, G.; et al. Suitability of Close-to-Nature Silviculture for Adapting Temperate European Forests to Climate Change. Forestry 2014, 87, 492–503. [Google Scholar] [CrossRef]
- Messmer, M.; Gómez-Navarro, J.J.; Raible, C.C. Sensitivity Experiments on the Response of Vb Cyclones to Sea Surface Temperature and Soil Moisture Changes. Earth Syst. Dyn. 2017, 8, 477–493. [Google Scholar] [CrossRef]
- Rohrer, M.; Brönnimann, S.; Martius, O.; Raible, C.C.; Wild, M. Decadal Variations of Blocking and Storm Tracks in Centennial Reanalyses. Tellus A Dyn. Meteorol. Oceanogr. 2019, 71, 1586236. [Google Scholar] [CrossRef]
- Patacca, M.; Lindner, M.; Lucas-Borja, M.E.; Cordonnier, T.; Fidej, G.; Gardiner, B.; Hauf, Y.; Jasinevičius, G.; Labonne, S.; Linkevičius, E.; et al. Significant Increase in Natural Disturbance Impacts on European Forests since 1950. Glob. Chang. Biol. 2023, 29, 1359–1376. [Google Scholar] [CrossRef]
- Netherer, S.; Panassiti, B.; Pennerstorfer, J.; Matthews, B. Acute Drought Is an Important Driver of Bark Beetle Infestation in Austrian Norway Spruce Stands. Front. For. Glob. Chang. 2019, 2, 39. [Google Scholar] [CrossRef]
- Hlásny, T.; Zimová, S.; Merganičová, K.; Štěpánek, P.; Modlinger, R.; Turčáni, M. Devastating Outbreak of Bark Beetles in the Czech Republic: Drivers, Impacts, and Management Implications. For. Ecol. Manag. 2021, 490, 119075. [Google Scholar] [CrossRef]
- Senf, C.; Pflugmacher, D.; Zhiqiang, Y.; Sebald, J.; Knorn, J.; Neumann, M.; Hostert, P.; Seidl, R. Canopy Mortality Has Doubled in Europe’s Temperate Forests over the Last Three Decades. Nat. Commun. 2018, 9, 4978. [Google Scholar] [CrossRef] [PubMed]
- Hlásny, T.; Křístek, Š.; Holuša, J.; Trombik, J.; Urbaňcová, N. Snow Disturbances in Secondary Norway Spruce Forests in Central Europe: Regression Modeling and Its Implications for Forest Management. For. Ecol. Manag. 2011, 262, 2151–2161. [Google Scholar] [CrossRef]
- Tavankar, F.; Lo Monaco, A.; Nikooy, M.; Venanzi, R.; Bonyad, A.; Picchio, R. Snow Damages on Trees of an Uneven Age in Mixed Broadleaf Forests: Effects of Topographical Conditions and Tree Characteristics. J. For. Res. (Harbin) 2019, 30, 1383–1394. [Google Scholar] [CrossRef]
- Bolte, A.; Ammer, C.; Löf, M.; Madsen, P.; Nabuurs, G.-J.; Schall, P.; Spathelf, P.; Rock, J. Adaptive Forest Management in Central Europe: Climate Change Impacts, Strategies and Integrative Concept. Scand. J. For. Res. 2009, 24, 473–482. [Google Scholar] [CrossRef]
- Fernandez-Carrillo, A.; Patočka, Z.; Dobrovolný, L.; Franco-Nieto, A.; Revilla-Romero, B. Monitoring Bark Beetle Forest Damage in Central Europe. A Remote Sensing Approach Validated with Field Data. Remote Sens. 2020, 12, 3634. [Google Scholar] [CrossRef]
- Machado Nunes Romeiro, J.; Eid, T.; Antón-Fernández, C.; Kangas, A.; Trømborg, E. Natural Disturbances Risks in European Boreal and Temperate Forests and Their Links to Climate Change—A Review of Modelling Approaches. For. Ecol. Manag. 2022, 509, 120071. [Google Scholar] [CrossRef]
- Seidl, R.; Rammer, W.; Jäger, D.; Lexer, M.J. Impact of Bark Beetle (Ips typographus L.) Disturbance on Timber Production and Carbon Sequestration in Different Management Strategies under Climate Change. For. Ecol. Manag. 2008, 256, 209–220. [Google Scholar] [CrossRef]
- Fustel, T.L.-A.; Öhman, K.; Klapwijk, M.; Nordkvist, M.; Sängstuvall, L.; Lämås, T.; Eggers, J. Impact of Management Strategies on Forest Susceptibility to Spruce Bark Beetle Damage and Potential Trade-Offs with Timber Production and Biodiversity. For. Ecol. Manag. 2024, 563, 121964. [Google Scholar] [CrossRef]
- Jump, A.S.; Peñuelas, J. Running to Stand Still: Adaptation and the Response of Plants to Rapid Climate Change. Ecol. Lett. 2005, 8, 1010–1020. [Google Scholar] [CrossRef] [PubMed]
- Spiecker, H. Silvicultural Management in Maintaining Biodiversity and Resistance of Forests in Europe—Temperate Zone. J. Environ. Manag. 2003, 67, 55–65. [Google Scholar] [CrossRef]
- Pukkala, T.; Laiho, O.; Lähde, E. Continuous Cover Management Reduces Wind Damage. For. Ecol. Manag. 2016, 372, 120–127. [Google Scholar] [CrossRef]
- Pukkala, T. Plenterwald, Dauerwald, or Clearcut? For. Policy Econ. 2016, 62, 125–134. [Google Scholar] [CrossRef]
- Jactel, H.; Bauhus, J.; Boberg, J.; Bonal, D.; Castagneyrol, B.; Gardiner, B.; Gonzalez-Olabarria, J.R.; Koricheva, J.; Meurisse, N.; Brockerhoff, E.G. Tree Diversity Drives Forest Stand Resistance to Natural Disturbances. Curr. For. Rep. 2017, 3, 223–243. [Google Scholar] [CrossRef]
- Mohr, J.; Thom, D.; Hasenauer, H.; Seidl, R. Are Uneven-Aged Forests in Central Europe Less Affected by Natural Disturbances than Even-Aged Forests? For. Ecol. Manag. 2024, 559, 121816. [Google Scholar] [CrossRef]
- Fuller, A.K.; Harrison, D.J.; Lachowski, H.J. Stand Scale Effects of Partial Harvesting and Clearcutting on Small Mammals and Forest Structure. For. Ecol. Manag. 2004, 191, 373–386. [Google Scholar] [CrossRef]
- Shirley, S. The Influence of Habitat Diversity and Structure on Bird Use of Riparian Buffer Strips in Coastal Forests of British Columbia, Canada. Can. J. For. Res. 2004, 34, 1499–1510. [Google Scholar] [CrossRef]
- McElhinny, C.; Gibbons, P.; Brack, C.; Bauhus, J. Forest and Woodland Stand Structural Complexity: Its Definition and Measurement. For. Ecol. Manag. 2005, 218, 1–24. [Google Scholar] [CrossRef]
- Ćosović, M.; Bugalho, M.; Thom, D.; Borges, J. Stand Structural Characteristics Are the Most Practical Biodiversity Indicators for Forest Management Planning in Europe. Forests 2020, 11, 343. [Google Scholar] [CrossRef]
- O’Hara, K.L.; Gersonde, R.F. Stocking Control Concepts in Uneven-Aged Silviculture. Forestry 2004, 77, 131–143. [Google Scholar] [CrossRef]
- Medarevic, M.; Bankovic, S.; Pantic, D.; Obradovic, S. Effects of the Control Method (Goc Variety) in Selection Forest Management in Western Serbia. Arch. Biol. Sci. 2010, 62, 407–418. [Google Scholar] [CrossRef]
- Kuliešis, A.; Kasperavičius, A.; Kulbokas, G.; Kuliešis, A.A.; Pivoriūnas, A.; Aleinikovas, M.; Šilinskas, B.; Škėma, M.; Beniušienė, L. Using Continuous Forest Inventory Data for Control of Wood Production and Use in Large Areas: A Case Study in Lithuania. Forests 2020, 11, 1039. [Google Scholar] [CrossRef]
- Lorenz, M.; Englert, H.; Dieter, M. The German Forest Strategy 2020: Target Achievement Control Using National Forest Inventory Results. Ann. For. Res. 2018, 61, 129. [Google Scholar] [CrossRef]
- Barbeito, I.; Cañellas, I.; Montes, F. Evaluating the Behaviour of Vertical Structure Indices in Scots Pine Forests. Ann. For. Sci. 2009, 66, 710. [Google Scholar] [CrossRef]
- Lexerød, N.L.; Eid, T. An Evaluation of Different Diameter Diversity Indices Based on Criteria Related to Forest Management Planning. For. Ecol. Manag. 2006, 222, 17–28. [Google Scholar] [CrossRef]
- Ruiz, L.; Hermosilla, T.; Mauro, F.; Godino, M. Analysis of the Influence of Plot Size and LiDAR Density on Forest Structure Attribute Estimates. Forests 2014, 5, 936–951. [Google Scholar] [CrossRef]
- Král, K.; Janík, D.; Vrška, T.; Adam, D.; Hort, L.; Unar, P.; Šamonil, P. Local Variability of Stand Structural Features in Beech Dominated Natural Forests of Central Europe: Implications for Sampling. For. Ecol. Manag. 2010, 260, 2196–2203. [Google Scholar] [CrossRef]
- Clark, D.B.; Clark, D.A. Landscape-Scale Variation in Forest Structure and Biomass in a Tropical Rain Forest. For. Ecol. Manag. 2000, 137, 185–198. [Google Scholar] [CrossRef]
- Gray, A. Monitoring Stand Structure in Mature Coastal Douglas-Fir Forests: Effect of Plot Size. For. Ecol. Manag. 2003, 175, 1–16. [Google Scholar] [CrossRef]
- Jazbec, A.; Vedriš, M.; Božić, M.; Goršić, E. Efficiency of Inventory in Uneven-Aged Forests on Sample Plots with Different Radii. Croat. J. For. Eng. 2011, 32, 301–312. [Google Scholar]
- Vedriš, M.; Jazbec, A.; Frntic, M.; Božić, M.; Goršić, E. Precision of Structure Elements’ Estimation in a Beech—Fir Stand Depending on Circular Sample Plot Size. Sumar. List 2009, 133, 369–379. [Google Scholar]
- Lombardi, F.; Marchetti, M.; Corona, P.; Merlini, P.; Chirici, G.; Tognetti, R.; Burrascano, S.; Alivernini, A.; Puletti, N. Quantifying the Effect of Sampling Plot Size on the Estimation of Structural Indicators in Old-Growth Forest Stands. For. Ecol. Manag. 2015, 346, 89–97. [Google Scholar] [CrossRef]
- Bottalico, F.; Chirici, G.; Giannini, R.; Mele, S.; Mura, M.; Puxeddu, M.; McRoberts, R.E.; Valbuena, R.; Travaglini, D. Modeling Mediterranean Forest Structure Using Airborne Laser Scanning Data. Int. J. Appl. Earth Obs. Geoinf. 2017, 57, 145–153. [Google Scholar] [CrossRef]
- Grafström, A.; Lisic, J.; Prentius, W. BalancedSampling: Balanced and Spatially Balanced Sampling. 2024. Available online: https://CRAN.R-project.org/package=BalancedSampling (accessed on 11 September 2024).
- Viewegh, J.; Kusbach, A.; Mikeska, M. Czech Forest Ecosystem Classification. J. For. Sci. (Prague) 2003, 49, 85–93. [Google Scholar] [CrossRef]
- Gini, C. Measurement of Inequality of Incomes. Econ. J. 1921, 31, 124–126. [Google Scholar] [CrossRef]
- Pretzsch, H. Konzeption Und Konstruktion von Wuchsmodellen Für Rein-Und Mischbestände; Forstliche Forschungsberichte: Munich, Germany, 1992; Volume 115. [Google Scholar]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Mandallaz, D. A Unified Approach to Sampling Theory for Forest Inventory Based on Infinite Population and Superpopulation Models. Ph.D. Thesis, Swiss Federal Institute of Technology, Zurich, Switzerland, 1991. [Google Scholar]
- Cordy, C.B. An Extension of the Horvitz—Thompson Theorem to Point Sampling from a Continuous Universe. Stat. Probab. Lett. 1993, 18, 353–362. [Google Scholar] [CrossRef]
- Duduman, G. A Forest Management Planning Tool to Create Highly Diverse Uneven-Aged Stands. For. Int. J. For. Res. 2011, 84, 301–314. [Google Scholar] [CrossRef]
- Motz, K.; Sterba, H.; Pommerening, A. Sampling Measures of Tree Diversity. For. Ecol. Manag. 2010, 260, 1985–1996. [Google Scholar] [CrossRef]
- Sterba, H. Diversity Indices Based on Angle Count Sampling and Their Interrelationships When Used in Forest Inventories. Forestry 2008, 81, 587–597. [Google Scholar] [CrossRef]
- Myllymäki, M.; Tuominen, S.; Kuronen, M.; Packalen, P.; Kangas, A. The Relationship between Forest Structure and Naturalness in the Finnish National Forest Inventory. For. Int. J. For. Res. 2024, 97, 339–348. [Google Scholar] [CrossRef]
- Schulenberg, R. Dineq: Decomposition of (Income) Inequality. 2018. Available online: https://CRAN.R-project.org/package=dineq (accessed on 23 October 2024).
- Valbuena, R.; Eerikäinen, K.; Packalen, P.; Maltamo, M. Gini Coefficient Predictions from Airborne Lidar Remote Sensing Display the Effect of Management Intensity on Forest Structure. Ecol. Indic. 2016, 60, 574–585. [Google Scholar] [CrossRef]
- Glasser, G.J. Variance Formulas for the Mean Difference and Coefficient of Concentration. J. Am. Stat. Assoc. 1962, 57, 648–654. [Google Scholar] [CrossRef]
Plot | Forest Site Complex | Species Composition (% of the Basal Area) | Number of Trees (pcs/ha) | Basal Area (m2/ha) | Growing Stock (m3/ha) |
---|---|---|---|---|---|
1 | 3B—Querceto-Fagetum mesotrophicum | EB 68, EL 32 | 325 | 54.9 | 823 |
2 | EB 73, DF 14, EH 1, EL 12 | 1312 | 52.5 | 635 | |
3 | EB 45, EL 39, TR 16 | 2093 | 18.9 | 99 | |
4 | EB 100 | 505 | 28.1 | 373 | |
5 | EB 4, DF 78, EL 19 | 220 | 40.2 | 605 | |
6 | EB 92, SO 6, EH 2 | 1984 | 52.0 | 617 | |
7 | EB 18, EA 38, FM 8, SM 36 | 460 | 31.8 | 416 | |
8 | EB 53, SP 6, SF 10, NS 31 | 565 | 39.6 | 516 | |
9 | EB 45, SO 27, SL 17, EL 11 | 1477 | 40.9 | 447 | |
10 | EB 46, SO 25, NS 29 | 145 | 19.3 | 291 | |
11 | EB 69, DF 17, NS 14 | 455 | 57.8 | 940 | |
12 | EB 82, SP 7, NS 11 | 605 | 46.8 | 646 | |
13 | EB 88, EL 7, NS 5 | 345 | 33.4 | 517 | |
14 | EB 94, EH 1, NS 5 | 350 | 33.8 | 416 | |
15 | EB 7, EH 53, SL 3, EL 37 | 928 | 29.4 | 250 | |
16 | 3H—Querceto-Fagetum illimerosum mesotrophicum | EB 98, NS 2 | 1013 | 30.5 | 310 |
17 | EB 17, EH 1, EL 82 | 395 | 38.0 | 503 | |
18 | EB 95, EL 5 | 620 | 22.5 | 239 | |
19 | 3S—Querceto-Fagetum oligo-mesotrophicum | EB 35, SP 29, EL 15, NS 21 | 185 | 19.7 | 222 |
20 | EB 53, EH 1, EL 36, NS 10 | 1008 | 35.8 | 376 | |
21 | EB 35, EL 65 | 893 | 16.6 | 121 | |
22 | EB 100 | 1263 | 30.3 | 291 | |
23 | EB 100 | 1331 | 23.8 | 269 | |
24 | EB 32, EL 33, NS 35 | 245 | 26.2 | 354 | |
25 | EB 10, DF 20, EL 7, NS 63 | 898 | 54.7 | 669 | |
26 | EB 60, EL 24, NS 16 | 495 | 43.3 | 560 | |
27 | 4B—Fagetum mesotrophicum | EB 100 | 275 | 22.3 | 306 |
28 | EB 53, EL 19, NS 28 | 350 | 44.4 | 672 | |
29 | EB 61, EL 39 | 315 | 27.4 | 376 | |
30 | EB 50, SP 20, SO 30 | 330 | 28.8 | 389 | |
31 | 4H—Fagetum illimerosum mesotrophicum | EB 1, NS 99 | 620 | 53.2 | 670 |
32 | 4S—Fagetum oligo-mesotrophicum | EB 12, EL 88 | 740 | 47.7 | 519 |
33 | EB 81, EL 8, NS 11 | 1322 | 30.6 | 310 | |
34 | EB 73, EL 1, NS 26 | 530 | 26.4 | 290 | |
35 | EB 2, EL 62, NS 36 | 485 | 27.3 | 289 | |
36 | EB 7, EH 1, EL 42, NS 50 | 540 | 52.2 | 664 | |
37 | EB 53, EL 47 | 415 | 32.4 | 405 | |
38 | EB 20, EL 59, NS 21 | 1003 | 50.7 | 578 | |
39 | EB 65, SP 16, EL 15, NS 4 | 590 | 33.5 | 552 | |
40 | EB 3, EL 51, NS 46 | 715 | 42.0 | 454 |
Plot Design | Design Name | Radius [m] | Area [ha] | Tree Inclusion Limit [mm] |
---|---|---|---|---|
Concentric circles | CC | 3 | 0.0028 | 70 ≤ dbh < 120 |
7 | 0.0150 | 120 ≤ dbh < 300 | ||
12,616 | 0.0500 | dbh ≥ 300 | ||
Fixed radius | FR50 | 3989 | 0.005 | dbh ≥ 70 |
FR100 | 5642 | 0.01 | ||
FR150 | 6910 | 0.015 | ||
FR200 | 7979 | 0.02 | ||
FR300 | 9772 | 0.03 | ||
FR400 | 11,284 | 0.04 | ||
FR500 | 12,616 | 0.05 | ||
FR750 | 15,451 | 0.075 | ||
FR1000 | 17,841 | 0.1 | ||
FR1250 | 19,947 | 0.125 |
Inventory Parameter | Design | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CC | FR50 | FR100 | FR150 | FR200 | FR300 | FR400 | FR500 | FR750 | FR1000 | FR1250 | ||
N [pcs/ha] | Mean ±SE | 709 ±10% | 735 ±11% | 698 ±9% | 683 ±8% | 671 ±8% | 660 ±8% | 655 ±9% | 652 ±8% | 633 ±8% | 629 ±8% | 622 ±8% |
ANOVA | p = 0.962 | |||||||||||
Tukey HSD | ||||||||||||
BA [m2/ha] | Mean ±SE | 36.0 ±5% | 36.5 ±11% | 34.3 ±8% | 34.7 ±7% | 35.5 ±6% | 35.1 ±6% | 35.4 ±5% | 34.6 ±5% | 34.5 ±4% | 34.7 ±4% | 35.10 ±5% |
ANOVA | p = 0.999 | |||||||||||
Tukey HSD | ||||||||||||
V [m3/ha] | Mean ±SE | 450 ±6% | 423 ±11% | 453 ±9% | 420 ±8% | 432 ±7% | 451 ±7% | 442 ±7% | 446 ±6% | 432 ±6% | 426 ±6% | 437 ±6% |
ANOVA | p = 0.999 | |||||||||||
Tukey HSD | ||||||||||||
Gini index | Mean ±SE | 0.32 ±3% | 0.30 ±11% | 0.37 ±7% | 0.42 ±4% | 0.44 ±3% | 0.46 ±3% | 0.46 ±3% | 0.46 ±2% | 0.47 ±2% | 0.47 ±2% | 0.48 ±2% |
ANOVA | p < 0.001 | |||||||||||
Tukey HSD | ||||||||||||
Artenprofile index | Mean ±SE | 0.31 ±8% | 0.29 ±13% | 0.40 ±8% | 0.46 ±6% | 0.27 ±9% | 0.30 ±8% | 0.31 ±8% | 0.33 ±7% | 0.35 ±6% | 0.35 ±6% | 0.36 ±6% |
ANOVA | p < 0.001 | |||||||||||
Tukey HSD | ||||||||||||
Shannon index | Mean ±SE | 0.30 ±9% | 0.12 ±18% | 0.19 ±13% | 0.23 ±11% | 0.26 ±10% | 0.29 ±9% | 0.31 ±8% | 0.33 ±7% | 0.36 ±6% | 0.38 ±6% | 0.40 ±6% |
ANOVA | p < 0.001 | |||||||||||
Tukey HSD | ||||||||||||
Target Parameter | |||||||
---|---|---|---|---|---|---|---|
Design | N | BA | V | Gini | Artenprofile | Shannon | All |
CC | 7255 | 1743 | 2829 | 735 | 4213 | 4988 | 7255 |
FR50 | 1955 | 1939 | 2241 | 2012 | 2757 | 5364 | 5364 |
FR100 | 2601 | 2077 | 2813 | 1378 | 1872 | 5133 | 5133 |
FR150 | 3118 | 2175 | 3047 | 866 | 1691 | 5684 | 5684 |
FR200 | 3994 | 2386 | 3434 | 654 | 5350 | 6689 | 6689 |
FR300 | 5838 | 2900 | 4587 | 711 | 5838 | 7461 | 7461 |
FR400 | 9187 | 3350 | 5283 | 972 | 6883 | 8309 | 9187 |
FR500 | 10,362 | 3478 | 5892 | 955 | 6562 | 7802 | 10,362 |
FR750 | 13,379 | 4172 | 6672 | 1147 | 7293 | 9209 | 13,379 |
FR1000 | 16,901 | 5308 | 9051 | 1496 | 9755 | 11,723 | 16,901 |
FR1250 | 20,967 | 8076 | 12,614 | 1662 | 11,240 | 12,448 | 20,967 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kománek, M.; Knott, R.; Kadavý, J.; Kneifl, M. Is the Concentric Plot Design Reliable for Estimating Structural Parameters of Forest Stands? Forests 2024, 15, 2246. https://doi.org/10.3390/f15122246
Kománek M, Knott R, Kadavý J, Kneifl M. Is the Concentric Plot Design Reliable for Estimating Structural Parameters of Forest Stands? Forests. 2024; 15(12):2246. https://doi.org/10.3390/f15122246
Chicago/Turabian StyleKománek, Martin, Robert Knott, Jan Kadavý, and Michal Kneifl. 2024. "Is the Concentric Plot Design Reliable for Estimating Structural Parameters of Forest Stands?" Forests 15, no. 12: 2246. https://doi.org/10.3390/f15122246
APA StyleKománek, M., Knott, R., Kadavý, J., & Kneifl, M. (2024). Is the Concentric Plot Design Reliable for Estimating Structural Parameters of Forest Stands? Forests, 15(12), 2246. https://doi.org/10.3390/f15122246