Multisilva: A Web-Based Decision Support System to Assess and Simulate the Provision of Forest Ecosystem Services at the Property Level
Abstract
:1. Introduction
2. Decision Support System
2.1. Ecosystem Services as the Focal Point
2.2. Multisilva: Design and Architecture
2.3. The Mapping Tool
2.4. The Simulation Tool
2.4.1. User Interface
2.4.2. The Background Models
- (a)
- Management actions to improve specific ESs and modelled to represent the current practice in Luxembourgish forestry were added. Specifically:
- Thinning and harvesting functions;
- Stand regeneration management actions;
- Management actions to promote biodiversity;
- Management actions to promote forest recreation.
- (b)
- The forest growth model was enriched by five ES modules linking the variables from the process-based growth model and the management model with dynamic ES provision models from the literature:
- Carbon storage, computing the below- and above-ground carbon stored in the biomass as well as the soil organic carbon [48];
- The water quality module, computing the tons of nitrates sequestered from or released into the soil by the forest [51];
- The forest recreation module, computing the attractiveness of the forest measured as a WTT to visit the forest [52] combined with a distance-dependent, decreasing logistic function to account for the accessibility of the forest stands;
- The biodiversity module, computing three biodiversity indexes [53]: the Shannon Index based on tree species richness, the tree size diversity index at the stand level, and the habitat tree index.
- (c)
- A regeneration module was added to predict the regeneration success, via a generalised ordered logit model fitted to the inventory data of Luxembourgish forests.
- (d)
- An economic module to compute revenues, costs, and opportunity costs over the simulation.
- (e)
- An automatised model initialisation system.
- “Noble broadleaves”: e.g., Carpinus spp., Juglans spp., Sorbus torminalis, and Prunus avium.
- “Other broadleaves”: all broadleaved species not included in the “noble broadleaves” group (e.g., Alnus spp., Popolus spp., Salix spp., and Sorbus spp.).
- “Other conifers”: all remaining conifer species (e.g., Abies spp. and other Pinus spp.).
3. Illustrative Example
3.1. The Study Area
3.2. Management Scenarios and Uncertainty
3.3. Results
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. The Functions Nature Protection Areas, Water Protection, and Water Bodies
Appendix A.2. Functions Based on the Species Distribution Models
Forest-Specialist Butterflies | Generalist Butterflies | Habitat Directive Species |
---|---|---|
14 species | 27 species | 19 species |
Apatura ilia Apatura iris Argynnis paphia Brenthis daphne Callophrys rubi Carterocephalus palaemon Celastrina argiolus Favonius quercus Limenitis camilla Nymphalis polychloros Pararge aegeria Satyrium ilicis Satyrium pruni Thecla betulae | Aglais io Aglais urticae Anthocharis cardamines Aphantopus hyperantus Araschnia levana Coenonympha pamphilus Gonepteryx rhamni Issoria lathonia Lasiommata maera Lasiommata megera Leptidea sinapis Lycaena phlaeas Maniola jurtina Ochlodes sylvanus Papilio machaon Pieris brassicae Pieris mannii Pieris napi Pieris rapae Polygonia c album Polyommatus icarus Pyrgus malvae Pyronia tithonus Thymelicus lineola Thymelicus sylvestris Vanessa Atalanta Vanessa cardui | Alytes obstetricans Coronella austriaca Dicranum viride Euplagia quadripunctaria Felis silvestris silvestris Helix pomatia Lacerta agilis Leucobryum glaucum Lycaena dispar Lycaena helle Maculinea arion Martes martes Muscardinus avellanarius Pelophylax esculentus Pelophylax lessonae Podarcis muralis Rana temporaria Sphagnum L. spp. Triturus cristatus |
Appendix A.3. The Recreation Computation
Recreational Needs | Landscape Preference | Landscape Attribute | Spatial Proxies |
---|---|---|---|
Convenience recreationists | |||
Relieve tension from everyday life through easy short-term leisure activities close to the place of residence. | Convenience recreationists prefer a landscape with a high level of attractiveness or scenic beauty, possibly with proximity to water and accessible via paths or trails. Distance from home less than 500 m. | Vegetation variety | Land cover composition, preference for broadleaved and mixed forests, natural surfaces (natural grasslands, rocks, and wetlands). Not attracted by intensive agriculture and forestry (clear-cuts and young plantation). |
Water proximity | Distance form surface water bodies (both natural and artificial). | ||
Pollution | PM10 concentration maps. | ||
Distance from main roads. | |||
Accessibility | Presence of marked or unmarked paths and trails. | ||
Sport recreationists | |||
Escape from the stressful routine of everyday life through active and sportive experiences of nature. These activities are generally longer than those of convenience recreationists. | Sport recreationists seek landscapes whose characteristics allow for outdoor sport recreation (running, Nordic walking, cycling, mountain biking, orienteering, etc.). Marked tracks, air quality, and accessibility are important elements. Sport recreationists are willing to travel longer distances by car to reach the recreational areas, within 8 km. | Outdoor sport facilities | Presence and distance from: - Short-distance marked paths. - Long-distance marked paths. - Bike paths. |
Pollution | PM10 concentration maps. | ||
Distance from main roads. | |||
Accessibility | Distance from public car parking. |
References
- MEA. A report of the millennium ecosystem assessment. In Ecosystems and Human Wellbeing: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- McDonough, K.; Hutchinson, S.; Moore, T.; Hutchinson, J.M.S. Analysis of publication trends in ecosystem services research. Ecosyst. Serv. 2017, 25, 82–88. [Google Scholar] [CrossRef]
- Geijzendorffer, I.R.; Van Teeffelen, A.J.; Allison, H.; Braun, D.; Horgan, K.; Iturrate-Garcia, M.; Santos, M.J.; Pellissier, L.; Prieur-Richard, A.-H.; Quatrini, S.; et al. How can global conventions for biodiversity and ecosystem services guide local conservation actions? Curr. Opin. Environ. Sustain. 2017, 29, 145–150. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosyst. Serv. 2017, 28A, 1–16. [Google Scholar] [CrossRef]
- Salzman, J.; Bennett, G.; Carroll, N.; Goldstein, A.; Jenkins, M. The global status and trends of Payments for Ecosystem Services. Nat. Sustain. 2018, 1, 136–144. [Google Scholar] [CrossRef]
- Brockerhoff, E.G.; Barbaro, L.; Castagneyrol, B.; Forrester, D.I.; Gardiner, B.; González-Olabarria, J.R.; Lyver, P.O.; Meurisse, N.; Oxbrough, A.; Taki, H.; et al. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodivers. Conserv. 2017, 26, 3005–3035. [Google Scholar] [CrossRef]
- Başkent, E.Z.; Borges, J.G.; Kašpar, J.; Tahri, M. A Design for Addressing Multiple Ecosystem Services in Forest Management Planning. Forests 2020, 11, 1108. [Google Scholar] [CrossRef]
- Martynova, M.; Sultanova, R.; Khanov, D.; Talipov, E.; Sazgutdinova, R. Forest Management Based on the Principles of Multifunctional Forest Use. J. Sustain. For. 2020, 40, 32–46. [Google Scholar] [CrossRef]
- Khaiter, P.A.; Erechtchoukova, M.G. Advanced Scientific Methods and Tools in Sustainable Forest Management: A Synergetic Perspective. In Forest Dynamics and Conservation; Kumar, M., Dhyani, S., Kalra, N., Eds.; Springer: Singapore, 2022. [Google Scholar]
- Başkent, E.Z. A review of the development of the multiple use forest management planning concept. Int. For. Rev. 2018, 20, 296–313. [Google Scholar] [CrossRef]
- Vásquez, F.; Cravero, A.; Castro, M.; Acevedo, P. Decision Support System Development of Wildland Fire: A Systematic Mapping. Forests 2021, 12, 943. [Google Scholar] [CrossRef]
- Xing, J.; Sun, S.; Huang, Q.; Chen, Z.; Zhou, Z. Application of Geoinformatics in Forest Planning and Management. Forests 2024, 15, 439. [Google Scholar] [CrossRef]
- Felipe-Lucia, M.R.; Soliveres, S.; Penone, C.; Manning, P.; van der Plas, F.; Boch, S.; Prati, D.; Ammer, C.; Schall, P.; Gossner, M.M.; et al. Multiple forest attributes underpin the supply of multiple ecosystem services. Nat. Commun. 2018, 9, 4839. [Google Scholar] [CrossRef] [PubMed]
- Felipe-Lucia, M.R. Modelling dynamic ecosystem services. Nat. Sustain. 2021, 4, 928–929. [Google Scholar] [CrossRef]
- Klarić, K.; Klarić, M.; Josipović, S.; Tafro, A. The Evolving Role of FSC Certification in Croatia: From Market Pressures to Sustainable Practices. Forests 2024, 15, 1717. [Google Scholar] [CrossRef]
- Zwerts, J.A.; Sterck, E.H.M.; Verweij, P.A.; Maisels, F.; van der Waarde, J.; Geelen, E.A.; Tchoumba, G.B.; Zebaze, H.F.D.; van Kuijk, M. FSC-certified forest management benefits large mammals compared to non-FSC. Nature 2024, 628, 563–568. [Google Scholar] [CrossRef]
- Wolff, S.; Schweinle, J. Effectiveness and Economic Viability of Forest Certification: A Systematic Review. Forests 2022, 13, 798. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Matsumoto, K. The effect of forest certification on conservation and sustainable forest management. J. Clean. Prod. 2022, 363, 132374. [Google Scholar] [CrossRef]
- Forest Stewardship Council (FSC). Ecosystem Services Procedure: Impact Demonstration and Market Tools. FSC-PRO-30-006 V1-2. 2021. Available online: https://connect.fsc.org/current-processes/revision-fsc-pro-30-006-ecosystem-services-procedure (accessed on 24 November 2024).
- Holsapple, C.W. Decision and knowledge. In Handbook on Decision Support System; Burstein, F., Holsapple, C.W., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 21–53. [Google Scholar]
- Segura, M.; Ray, D.; Maroto, C. Decision support systems for forest management: A comparative analysis and assessment. Comput. Electron. Agric. 2014, 101, 55–67. [Google Scholar] [CrossRef]
- Morán-Ordóñez, A.; Ameztegui, A.; De Cáceres, M.; De Miguel, S.; Lefèvre, F.; Brotons, L.; Coll, L. Future trade-offs and synergies among ecosystem services in Mediterranean forests under global change scenarios. Ecosyst. Serv. 2020, 45, 101174. [Google Scholar] [CrossRef]
- Lundholm, A.; Black, K.; Corrigan, E.; Nieuwenhuis, M. Evaluating the Impact of Future Global Climate Change and Bioeconomy Scenarios on Ecosystem Services Using a Strategic Forest Management Decision Support System. Front. Ecol. Evol. 2020, 8, 200. [Google Scholar] [CrossRef]
- United Nations Economic Commission for Europe. Convention on Access to Information, Public Participation in Decision-Making and Access to Justice in Environmental Matters. 1998. Available online: https://unece.org/DAM/env/pp/documents/cep43e.pdf (accessed on 25 November 2024).
- König, A.; Pickar, K.; Stankiewicz, J.; Hondrila, K. Can citizen science complement official data sources that serve as evidence-base for policies and practice to improve water quality? SJIAOS 2021, 37, 189–204. [Google Scholar] [CrossRef]
- Rákosy, L.; Schmitt, T. Are butterflies and moths suitable ecological indicator systems for restoration measures of semi-natural calcareous grassland habitats? Ecol. Indic. 2011, 11, 1040–1045. [Google Scholar] [CrossRef]
- EU Directive 92/43/EEC, On the Conservation of Natural Habitats and of Wild Fauna and Flora. 1992. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:01992L0043-20130701 (accessed on 25 November 2024).
- Cohen, E. A phenomenology of tourist experiences. Sociology 1979, 13, 179–201. [Google Scholar] [CrossRef]
- Komossa, F.; van der Zanden, E.H.; Schulp, C.J.E.; Verburg, P.H. Mapping landscape potential for outdoor recreation using different archetypical recreation user groups in the European Union. Ecol. Indic. 2018, 85, 105–116. [Google Scholar] [CrossRef]
- Albrecht, A.; Kohnle, U.; Nagel, J. Übertragbarkeit empirischer statistischer Waldwachstumsmodelle: Prüf- und Anpassungsverfahren anhand des Beispiels B Win Pro für Baden-Württemberg. Allg. Forst Und Jagdztg. 2011, 182, 11–23. (In German) [Google Scholar]
- Albrecht, A.; Hanewinkel, M.; Bauhus, J.; Kohnle, U. How does silviculture affect storm damage in forests of south-western Germany? Results from empirical modeling based on long-term observations. Eur. J. Forest Res. 2012, 131, 229–247. [Google Scholar] [CrossRef]
- Hansen, E.H.; Ene, L.T.; Mauya, E.W.; Patočka, Z.; Mikita, T.; Gobakken, T.; Næsset, E. Comparing Empirical and Semi-Empirical Approaches to Forest Biomass Modelling in Different Biomes Using Airborne Laser Scanner Data. Forests 2017, 8, 170. [Google Scholar] [CrossRef]
- Mäkelä, A.; Landsberg, J.; Ek, A.R.; Burk, T.E.; Ter-Mikaelian, M.; Ågren, G.I.; Oliver, C.D.; Puttonen, P. Process-based models for forest ecosystem management: Current state of the art and challenges for practical implementation. Tree Physiol. 2000, 20, 289–298. [Google Scholar] [CrossRef]
- Forrester, D.I.; Tang, X. Analysing the spatial and temporal dynamics of species interactions in mixed-species forests and the effects of stand density using the 3-PG model. Ecol. Model. 2016, 319, 233–254. [Google Scholar] [CrossRef]
- Hanewinkel, M.; Pretzsch, H. Modelling the conversion from even-aged to uneven-aged stands of Norway spruce (Picea abies L. Karst.) with a distance-dependent growth simulator. For. Ecol. Manag. 2000, 134, 55–70. [Google Scholar] [CrossRef]
- Pretzsch, H.; Forrester, D.I.; Rötzer, T. Representation of species mixing in forest growth models: A review and perspective. Ecol. Model. 2015, 313, 276–292. [Google Scholar] [CrossRef]
- Hasenauer, H. Sustainable Forest Management: Growth Models for Europe; Springer: Berlin/Heidelberg, Germany, 2006; p. 398. [Google Scholar] [CrossRef]
- Grote, R.; Pretzsch, H. A model for individual tree development based on physiological processes. Plant Biol. 2008, 4, 167–180. [Google Scholar] [CrossRef]
- Lasch, P.; Badeck, F.W.; Suckow, F.; Lindner, M.; Mohr, P. Model-based analysis of management alternatives at stand and regional level in Brandenburg (Germany). For. Ecol. Manag. 2004, 207, 59–74. [Google Scholar] [CrossRef]
- Deckmyn, G.; Verbeeck, H.; De Beeck, M.O.; Vansteenkiste, D.; Steppe, K.; Ceulemans, R. ANAFORE: A stand-scale process-based forest model that includes wood tissue development and labile carbon storage in trees. Ecol. Mod. 2008, 215, 345–368. [Google Scholar] [CrossRef]
- Landsberg, J.J.; Waring, R.H. A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. For. Ecol. Manag. 1997, 95, 209–228. [Google Scholar] [CrossRef]
- Forrester, D.I.; Ammer, C.; Annighöfer, P.J.; Avdagic, A.; Barbeito, I.; Bielak, K.; Brazaitis, G.; Coll, L.; del Río, M.; Drössler, L.; et al. Predicting the spatial and temporal dynamics of species interactions in Fagus sylvatica and Pinus sylvestris forests across Europe. For. Ecol. Manag. 2017, 405, 112–133. [Google Scholar] [CrossRef]
- Forrester, D.I.; Guisasola, R.; Tang, X.; Albrecht, A.T.; Dong, T.L.; le Maire, G. Using a stand-level model to predict light absorption in stands with vertically and horizontally heterogeneous canopies. For. Ecosyst. 2014, 1, 17. [Google Scholar] [CrossRef]
- Waring, R.H.; Landsberg, J.J.; Williams, M. Net primary production of forests: A constant fraction of gross primary production. Tree Physiol. 1998, 18, 129–134. [Google Scholar] [CrossRef]
- Yoda, K.; Kira, T.; Ogawa, H.; Hozami, K. Self thinning in overcrowded pure stands under cultivated and natural conditions. J. Biol. Osaka City Univ. 1963, 14, 107–129. [Google Scholar]
- Pretzsch, H. Die Regeln von Reineke, Yoda und das Gesetz der räumlichen Allometrie. Allg. Forst Und Jagdztg. 2000, 171, 205–210. (In German) [Google Scholar]
- Sands, P.J.; Landsberg, J.J. Parameterisation of 3-PG for plantation grown Eucalyptus globulus. For. Ecol. Manag. 2002, 163, 273–292. [Google Scholar] [CrossRef]
- Zhao, M.; Xiang, W.; Peng, C.; Tian, D. Simulating age-related changes in carbon storage and allocation in a Chinese fir plantation growing in southern China using the 3-PG model. For. Ecol. Manag. 2009, 257, 1520–1531. [Google Scholar] [CrossRef]
- Hirabayashi, S.; Kroll, C.N.; Nowak, D.J. Component-based development and sensitivity analyses of an air pollutant dry deposition model. Environ. Model. Softw. 2011, 26, 804–816. [Google Scholar] [CrossRef]
- Hirabayashi, S.; Nowak, D.J. Comprehensive national database of tree effects on air quality and human health in the United States. Environ. Pollut. 2015, 215, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Köchli, D.A.; Brang, P. Simulating effects of forest management on selected public forest goods and services: A case study. For. Ecol. Manag. 2005, 209, 57–68. [Google Scholar] [CrossRef]
- Filyushkina, A.; Agimass, F.; Lundhede, T.; Strange, N.; Jacobsen, J.B. Preferences for variation in forest characteristics: Does diversity between stands matter? Ecol. Econ. 2017, 140, 22–29. [Google Scholar] [CrossRef]
- Blattert, C.; Lemm, R.; Thees, O.; Lexer, M.J.; Hanewinkel, M. Management of ecosystem services in mountain forests: Review of indicators and value functions for model based multi-criteria decision analysis. Ecol. Indic. 2017, 79, 391–409. [Google Scholar] [CrossRef]
- Forrester, D.I.; Hobi, M.L.; Mathys, A.S.; Stadelmann, G.; Trotsiuk, V. Calibration of the process-based model 3-PG for major central European tree species. Eur. J. For. Res. 2021, 140, 847–868. [Google Scholar] [CrossRef]
- Luxembourg Ministry of Environment. National Forestry Accounting Plan Luxembourg. 2018. Available online: https://environnement.public.lu/dam-assets/documents/for%C3%AAt/nfap/NFAP-2018.pdf (accessed on 25 November 2024).
- Dalemans, F.; Jacxsens, P.; Van Orshoven, J.; Kint, V.; Moonen, P.; Muys, B. Assisting Sustainable Forest Management and Forest Policy Planning with the Sim4Tree Decision Support System. Forests 2015, 6, 859–878. [Google Scholar] [CrossRef]
- Subedi, S.; Fox, T.R.; Wynne, R.H. Determination of Fertility Rating (FR) in the 3-PG Model for Loblolly Pine Plantations in the Southeastern United States Based on Site Index. Forests 2015, 6, 3002–3027. [Google Scholar] [CrossRef]
- Lin, S.; He, Z.; Huang, H.; Chen, L.; Li, L. Mixed forest specific calibration of the 3-PGmix model parameters from site observations to predict post-fire forest regrowth. For. Ecol. Manag. 2022, 515, 120208. [Google Scholar] [CrossRef]
- Taylor, P.; Almeida, A.C.; Kemmerer, E.; Abreu, R.O.D.-S. Improving spatial predictions of Eucalypt plantation growth by combining interpretable machine learning with the 3-PG model. Front. For. Glob. Chang. 2023, 6, 1181049. [Google Scholar] [CrossRef]
- Liu, C.; Newell, G.; White, M. On the selection of thresholds for predicting species occurrence with presence-only data. Ecol. Evol. 2016, 6, 337–348. [Google Scholar] [CrossRef]
Services | Goal | Technologies |
---|---|---|
Server | Delivers access to Multisilva application and the API | Nginx—version 1.25 |
Web application (version 0.1.6) | Provide Multisilva functionalities to users via the web-browser | Nuxt/Typescript |
User management | Manage user authentication and authorization | Keycloak—version 24 |
API application (version 0.1.7) | Runs the Simulation tool and the Mapping tool | Python (version 3.11) REST API |
Database | Multisilva databases containing background maps, model, parameters and climatic data. | Various file types |
Management Actions | Parameters | Expected Effect on ESs |
---|---|---|
Harvest | Granularity: stand, species, and age group.
| Positive: Timber production Negative: Carbon sequestration Recreation Air quality Biodiversity Case specific: Water protection |
Thinning | Granularity: stand, species, and age group.
| Positive: Timber production Negative: Carbon sequestration Recreation Air quality Case specific: Water protection |
Young stand cleaning | Granularity: stand and species.
| n.a. |
Set aside | Granularity: stand.
| Positive: Biodiversity Recreation Air quality Negative: Timber production Case specific: Water protection |
Habitat trees | Granularity: stand, species, and age group.
| Positive: Biodiversity Recreation Air quality Negative: Timber production Case specific: Water protection |
Trail maintenance | Granularity: stand.
| Positive: Recreation |
Management of stands in regeneration phase at period 0 | Granularity: stand, species, and regeneration age.
| n.a. |
Ecosystem Service Indicators | Unit | Economic Values | Unit |
---|---|---|---|
Total extracted timber | m3 | Timber revenues | EUR |
Variation in standing volume | m3/ha | Harvesting costs | EUR |
Air pollution deposition | t of PM10 | Planting costs | EUR |
Water purification | t of N | Young stand cleaning costs | EUR |
Total carbon sequestered | t of CO2-eq | Recreational-service-related costs | EUR |
Recreation (average WTT over the simulation) | km | Set aside opportunity costs | EUR |
Recreation (final WTT) | km | Habitat tree opportunity costs | EUR |
Average relative true diversity | Eq. number of species | ||
Relative true diversity (min and max, final period) | Eq. number of species | ||
Area set aside | ha | ||
Average number of habitat trees per hectare | Habitat trees/ha |
Species | Latin Name | # Trees |
---|---|---|
European beech | Fagus sylvatica | 1776 |
Sessile oak | Quercus petraea | 2070 |
Douglas fir | Pseudotsuga menziesii | 262 |
European spruce | Picea abies | 1160 |
European ash | Fraxinus excelsior | 89 |
European larch | Larix decidua | 43 |
Noble broadleaves | 24 | |
Other broadleaves | 455 | |
Other conifers | 47 |
ES Indicator | Unit | No Harvest No Maint. FR = 0.5 | Harvest No Maint. FR = 0.5 | Harvest No Maint. FR = 0.8 | No Harvest Maint. FR = 0.5 | Harvest Maint. FR = 0.5 |
---|---|---|---|---|---|---|
Total extracted timber | m3 | 0 | 2600 | 2600 | 0 | 2600 |
Timber revenues | EUR | 0 | 9440 | 9440 | 0 | 9440 |
Recreation costs | EUR | 0 | 0 | 0 | 16,640 | 16,640 |
Air pollution deposition | Ton PM10 | 2.1 | 1.9 | 1.9 | 2.1 | 1.9 |
Water purification | Ton N | 5.4–5.6 | 5.1–5.4 | 5.2–5.5 | 5.4–5.6 | 5.1–5.4 |
Carbon sequestrated | Ton CO2-eq | 1300–1360 | 1190–1250 | 1220–1280 | 1300–1360 | 1190–1250 |
Recreation (average WTT) | km | 5.8–6.1 | 5.9–6.2 | 5.9–6.2 | 9.3 | 9.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petucco, C.; Chion, L.; Ludwig, J.; Navarrete Gutiérrez, T.; Rugani, B.; Stankiewicz, J. Multisilva: A Web-Based Decision Support System to Assess and Simulate the Provision of Forest Ecosystem Services at the Property Level. Forests 2024, 15, 2248. https://doi.org/10.3390/f15122248
Petucco C, Chion L, Ludwig J, Navarrete Gutiérrez T, Rugani B, Stankiewicz J. Multisilva: A Web-Based Decision Support System to Assess and Simulate the Provision of Forest Ecosystem Services at the Property Level. Forests. 2024; 15(12):2248. https://doi.org/10.3390/f15122248
Chicago/Turabian StylePetucco, Claudio, Laurent Chion, Jérémy Ludwig, Tomás Navarrete Gutiérrez, Benedetto Rugani, and Jacek Stankiewicz. 2024. "Multisilva: A Web-Based Decision Support System to Assess and Simulate the Provision of Forest Ecosystem Services at the Property Level" Forests 15, no. 12: 2248. https://doi.org/10.3390/f15122248
APA StylePetucco, C., Chion, L., Ludwig, J., Navarrete Gutiérrez, T., Rugani, B., & Stankiewicz, J. (2024). Multisilva: A Web-Based Decision Support System to Assess and Simulate the Provision of Forest Ecosystem Services at the Property Level. Forests, 15(12), 2248. https://doi.org/10.3390/f15122248