Can Spatial Agglomeration Promote Exports? The Evidence from China’s Wood-Processing Industry
Abstract
:1. Introduction
2. Literature Review
3. Spatial Distribution and Theoretical Analysis
3.1. Spatial Distribution of China’s Wood-Processing Industry
3.2. Research Hypothesis
4. Data and Model
4.1. Modelling
4.2. Variables
4.2.1. Explained Variable: Export Intensity (EXIN)
4.2.2. Explanatory Variable: Spatial Agglomeration Index
4.2.3. Control Variables
4.3. Data Selection
4.4. Measurement Results of the Spatial Agglomeration of China’s Wood-Processing Industry
5. Empirical Results
5.1. Descriptive Statistics and Correlation Test
5.2. Regression Results
5.3. Robustness Test
6. Conclusions and Policy Implications
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barbu, M.C.; Tudor, E.M. State of the art of the Chinese forestry, wood industry and its markets. Wood Mater. Sci. Eng. 2021, 16, 1030–1039. [Google Scholar] [CrossRef]
- Bottelier, P. China, the Financial Crisis, and Sino-American Relations. Asia Policy 2010, 9, 121–130. [Google Scholar] [CrossRef]
- Felzensztein, C.; Gimmon, E.; Carter, S. Geographical Co-Location, Social Networks and Inter-firm Marketing Co-operation: The Case of the Salmon Industry. Long Range Plan. 2010, 43, 675–690. [Google Scholar] [CrossRef]
- Geldes, C.; Felzensztein, C.; Turkina, E.; Durand, A. How does proximity affect interfirm marketing cooperation? A study of an agribusiness cluster. J. Bus. Res. 2015, 68, 263–272. [Google Scholar] [CrossRef]
- Henderson, J.V. Urban Development: Theory, Fact, and Illusion; Oxford University Press: Oxford, UK, 1991. [Google Scholar]
- Li, G.; Yang, Y.; Lou, X.; Wei, Y.; Huang, S. Evaluation and spatial agglomeration analysis of the green competitiveness of China’s manufacturing industry at the provincial level. PLoS ONE 2021, 16, e0246351. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Maity, I.; Patel, P.P.; Dadashpoor, H.; Pramanik, S.; Follmann, A.; Novotný, J.; Roy, U. Spatio-temporal patterns of urbanization in the Kolkata Urban Agglomera-tion: A dynamic spatial territory-based approach. Sustain. Cities Soc. 2021, 67, 102715. [Google Scholar] [CrossRef]
- Kies, U.; Mrosek, T.; Schulte, A. Spatial analysis of regional industrial clusters in the German forest sector. Int. For. Rev. 2009, 11, 38–51. [Google Scholar] [CrossRef]
- Koh, L.; Orzes, G.; Jia, F.J. The fourth industrial revolution (Industry 4.0): Technologies disruption on operations and supply chain management. Int. J. Oper. Prod. Manag. 2019, 39, 817–828. [Google Scholar] [CrossRef]
- Bai, C.E.; Du, Y.; Tao, Z.; Tong, S.Y. Local protectionism and regional specialization: Evidence from China’s industries. J. Int. Econ. 2004, 63, 397–417. [Google Scholar] [CrossRef]
- Lu, J.; Tao, Z. Trends and determinants of China’s industrial agglomeration. J. Urban Econ. 2009, 65, 167–180. [Google Scholar] [CrossRef]
- Wen, D.; Xian, G. Spatial agglomeration and export of China’s manufacturing industry: A study based on enterprise level. J. Manag. World 2014, 10, 57–74. [Google Scholar]
- Chen, X.; Qiu, B.; Liu, X. Spatial Agglomeration and Firm Exports: An Empirical Study Based on China Industrial Firms. J. World Econ. 2016, 8, 94–117. [Google Scholar]
- Young, A. The Razor’s Edge: Distortions and Incremental Reform in the People’s Republic of China. Q. J. Econ. 2000, 115, 1091–1135. [Google Scholar] [CrossRef]
- Fan, J.; Feng, M.; Li, F. Industrial agglomeration and total factor productivity of enterprises. J. World Econ. 2014, 5, 51–73. [Google Scholar]
- Luo, Y.; Gu, R. The Pattern and Evolutional Trend of Chinese Manufacturing’s Spatial Agglomeration—An Empirical Analysis Based on Data from 1980 to 2011. Econ. Geogr. 2014, 3407, 82–89. [Google Scholar]
- Liu, M. Spatial Agglomeration and Manufacturing Growth in China—Based on Provincial Data from 2008 to 2013. Inq. Econ. Issues 2017, 5, 182–190. [Google Scholar]
- Cheng, B.; Song, W.; Cao, W. Sustainable Development of Zhejiang Timber Industry. China Population. Resour. Environ. 2008, 18, 203–206. [Google Scholar]
- Zhou, Z.; Xiao, P. The Situation Analysis and Development Outlook on China’s Furniture Manufacturing Cluster. Issues For. Econ. 2009, 29, 274–277. [Google Scholar]
- Li, X.; Nie, H. A Comparative Study of the Factors Affecting Chinese Sawn Timber and Wood Chips Industrial Agglomeration. For. Econ. 2012, 8, 41–43. [Google Scholar]
- Zhao, D. Forestry Industrial Agglomeration Level in China. Guizhou Agric. Sci. 2015, 43, 257–261. [Google Scholar]
- Huang, S.; Wang, G.; Deng, X.; Chen, J. Variation Analysis of Spatial Pattern and Regional Distribution of Forestry Production Efficiency in China. World For. Res. 2016, 29, 80–85. [Google Scholar]
- Wei, S.; Zong, G. Spatial econometric analysis of China’s forestry industry agglomeration. Stat. Decis. 2017, 8, 130–133. [Google Scholar]
- Chen, Z.; Zhu, H.; Zhao, W.; Zhao, M.; Zhang, Y. Spatial agglomeration of China’s forest products manufacturing industry: Measurement, characteristics and determinants. Forests 2021, 12, 1006. [Google Scholar] [CrossRef]
- Ellison, G.; Fudenberg, D. Knife-Edge or Plateau: When Do Market Models Tip? Q. J. Econ. 2003, 118, 1249–1278. [Google Scholar] [CrossRef]
- Glaeser, E.; Gottlied, J. The Wealth of Cities: Agglomeration Economies and Spatial Equilibrium in the United States. J. Econ. Literrature 2009, 47, 983–1028. [Google Scholar] [CrossRef]
- Marshall, A. Principles of Economics; Palgrave Macmillan: London, UK, 1920. [Google Scholar]
- Nicholson, J.; Gimmon, E.; Felzensztein, C. Economic geography and business networks: Creating a dialogue between disciplines. Ind. Mark. Manag. 2017, 61, 4–9. [Google Scholar] [CrossRef]
- Alcácer, J.; Chung, W. Location strategies and knowledge spillovers. Manag. Sci. 2007, 53, 760–776. [Google Scholar] [CrossRef]
- Carlino, G.A.; Chatterjee, S.; Hunt, R.M. Urban density and the rate of invention. J. Urban Econ. 2007, 61, 389–419. [Google Scholar] [CrossRef]
- Harrison, B. Industrial districts: Old wine in new bottles? Reg. Stud. 2007, 26, 469–483. [Google Scholar] [CrossRef]
- Felzensztein, C.; Brodt, S.E.; Gimmon, E. Do strategic marketing and social capital really matter in regional clusters? Lessons from an emerging economy of Latin America. J. Bus. Res. 2014, 67, 498–507. [Google Scholar] [CrossRef]
- Johanson, J.; Vahlne, J.E. The Uppsala internationalization process model revisited: From liability of foreignness to liability of outsidership. J. Int. Bus. Stud. 2009, 40, 1411–1431. [Google Scholar] [CrossRef]
- Fernhaber, S.; Gilbert, B.; Mcdougal, P. International entrepreneurship and geographic location: An empirical examination of new venture internationalization. J. Int. Bus. Stud. 2008, 39, 267–290. [Google Scholar] [CrossRef]
- Pino, C.; Felzensztein, C.; Zwerg-Villegas, A.M.; Arias-Bolzmann, L. Non-technological innovations: Market performance of exporting firms in South America. J. Bus. Res. 2016, 69, 4385–4393. [Google Scholar] [CrossRef]
- Folta, T.B.; Cooper, A.C.; Baik, Y. Geographic cluster size and firm performance. J. Bus. Ventur. 2006, 21, 217–242. [Google Scholar] [CrossRef]
- Tong, J.; Liu, Z. Geographical agglomeration and export choice of enterprises: A study based on the dependence of foreign capital financing. J. World Econ. 2014, 7, 67–85. [Google Scholar]
- Ellison, G.; Glaeser, E.L.; Kerr, W.R. What causes industry agglomeration? Evidence from coagglomeration patterns. Am. Econ. Rev. 2010, 100, 1195–1213. [Google Scholar] [CrossRef]
- Long, C.; Zhang, X. Cluster-based industrialization in China: Financing and performance. Ifpri Discuss. Pap. 2009, 84, 112–123. [Google Scholar] [CrossRef]
- Zhao, H.; Zou, S. The impact of industry concentration and firm location on export propensity and intensity: An empirical analysis of Chinese manufacturing firms. J. Int. Mark. 2002, 10, 52–71. [Google Scholar] [CrossRef]
- Becchetti, L.; Rossi, S.P.S. The positive effect of industrial district on the export performance of Italian firms. Rev. Ind. Organ. 2000, 16, 53–68. [Google Scholar] [CrossRef]
- Cai, F. Demographic Transition, Demographic Dividend, and Lewis Turning Point in China. Econ. Res. J. 2010, 45, 4–13. [Google Scholar] [CrossRef]
- Ye, N.; Bao, Q.; Shao, M. Spatial agglomeration, market congestion and excessive expansion of China’s export enterprises. J. Manag. World 2014, 1, 58–72. [Google Scholar]
- Estrada, I.; Faems, D.; de Faria, P. Coopetition and product innovation performance: The role of internal knowledge sharing mechanisms and formal knowledge protection mechanisms. Ind. Mark. Manag. 2016, 53, 56–65. [Google Scholar] [CrossRef]
- Brache, J.; Felzensztein, C. Geographical co-location on Chilean SME’s export performance. J. Bus. Res. 2019, 105, 310–321. [Google Scholar] [CrossRef]
- Broersma, L.; Oosterhaven, J. Regional Labor Productivity in the Netherlands: Evidence of Agglomeration and Congestion Effects. J. Reg. Sci. 2009, 49, 483–511. [Google Scholar] [CrossRef]
- Rizov, M.; Oskam, A.; Walsh, P. Is There a Limit to Agglomeration? Evidence from Productivity of Dutch Firms. Reg. Sci. Urban Econ. 2012, 42, 595–606. [Google Scholar] [CrossRef]
- Niosi, J.; Bas, T.G. The competencies of regions–Canada’s clusters in biotechnology. Small Bus. Econ. 2001, 17, 31–42. [Google Scholar] [CrossRef]
- Kukalis, S. Agglomeration economies and firm performance: The case of industry clusters. J. Manag. 2010, 36, 453–481. [Google Scholar] [CrossRef]
- Lang, L.; Li, X. Analysis of the Nonlinear Impact of Spatial Agglomeration on Manufacturing Exports and Its Heterogeneity Based on the Perspective of Scale Effect and Crowding Effect. J. Beijing Inst. Technol. (Soc. Sci. Ed.) 2021, 23, 89–98. [Google Scholar]
- Cheng, B.; Song, W. Industrial cluster and the competitiveness of Chinese timber industry. J. Beijing For. Univ. 2006, S2, 149–154. [Google Scholar]
- Lv, L.; Zhang, Z.; Lu, X. Analysis on Four Chinese Large Wood-based Panel Industrial Clusters. For. Econ. 2010, 11, 52–57. [Google Scholar]
- Li, L.; Tao, C.; Cheng, B. Empirical study on spatial agglomeration of paper industry in China. For. Econ. 2017, 39, 40–44. [Google Scholar]
- Ma, A.C. Export Spillovers to Chinese Firms: Evidence from Provincial Data. J. Chin. Econ. Bus. Stud. 2006, 4, 127–149. [Google Scholar] [CrossRef]
- Li, L.; Li, F.; Tao, C.; Cheng, B. The impact of spatial agglomeration on export of forest products manufacturing in China: Evidence from enterprises’ data. J. Sustain. For. 2019, 38, 743–754. [Google Scholar] [CrossRef]
- Boehe, D. Collaborate at home to win abroad: How does access to local network resources influence export behavior? J. Small Bus. Manag. 2013, 51, 167–182. [Google Scholar] [CrossRef]
- Elango, B.; Pattnaik, C. Building capabilities for international operations through networks: A study of Indian firms. J. Int. Bus. Stud. 2007, 38, 541–555. [Google Scholar] [CrossRef]
- Stejskal, J. Analysis of the applicability of selected methods for industrial clusters identifying. Int. J. Syst. Appl. Eng. Dev. 2011, 5, 255–262. [Google Scholar]
- Liu, C. The evaluation methods of the geographic concentration of industries. Econ. Geogr. 2006, 26, 742–747. [Google Scholar]
- Luo, Y.; Zhao, W.; Cheng, B.; Tao, C. The Influence of GVC Participation and Division of Labor Status on the Comparative Advantage of China’s Wood-Based Panel Industry. Forests 2023, 14, 2419. [Google Scholar] [CrossRef]
- Ellison, G.; Glaeser, E.L. Geographic Concentration in U.S. Manufacturing Industries: A Dartboard Approach. Soc. Sci. Electron. Publ. 1997, 105, 889–927. [Google Scholar] [CrossRef]
- Florence, P.S.; Baldamus, W. Investment, location, and size of plant. Rev. Econ. Stat. 1948, 1, 110. [Google Scholar]
- Bernard, A.B.; Jensen, J.B.; Redding, S.J.; Schott, P.K. Firms in International Trade. J. Econ. Perspect. 2007, 21, 105–130. [Google Scholar] [CrossRef]
- Melitz, M.J. The Impact of Trade on Intra-Industry Re-Allocation and Aggregate Industrial Productivity. Econometrica 2003, 71, 1695–1725. [Google Scholar] [CrossRef]
- Roelfsema, H.; Findlay, C.; Ye, X. Decomposing International Trade in Commercial Services. Foreign Trade Rev. 2021, 56, 238–256. [Google Scholar] [CrossRef]
- Li, C. Is there a productivity paradox in China’s export enterprises? A test based on the data of China’s manufacturing enterprises. J. World Econ. 2010, 7, 64–81. [Google Scholar]
- Askenazy, P.; Caldera, A.; Gaulier, G.; Irac, D. Financial constraints and foreign market entries or exits: Firm-level evidence from France. Rev. World Econ. 2015, 151, 231–253. [Google Scholar] [CrossRef]
- Kumarasamy, D.; Singh, P. Access to finance, financial development and firm ability to export: Experience from Asia–Pacific countries. Asian Econ. J. 2018, 32, 15–38. [Google Scholar] [CrossRef]
- Ilmakunnas, P.; Nurmi, S. Dynamics of export market entry and exit. Scand. J. Econ. 2010, 112, 101–126. [Google Scholar] [CrossRef]
- Lin, M. The Conflict between Technology and Scale: Evidence from China’s Wooden Furniture Industry. Sustainability 2022, 15, 230. [Google Scholar] [CrossRef]
- Krugman, P. Increasing Returns and Economic Geography. J. Political Econ. 1991, 99, 483–499. [Google Scholar] [CrossRef]
- Greenaway, D.; Kneller, R. Exporting and Productivity in the United Kingdom. Oxf. Rev. Econ. Policy 2004, 20, 358–371. [Google Scholar] [CrossRef]
- Delgado, M.A.; Farinas, J.C.; Ruano, S. Firm Productivity and Export Markets: A Non-parametic Approach. J. Int. Econ. 2002, 57, 397–422. [Google Scholar] [CrossRef]
- Ha VT, C.; Holmes, M.J.; Le, T.M. Firms and export performance: Does size matter? J. Econ. Stud. 2020, 47, 985–999. [Google Scholar]
- Zou, S.; Stan, S. The determinants of export performance: A review of the empirical literature between 1987 and 1997. Int. Mark. Rev. 1998, 15, 333–356. [Google Scholar] [CrossRef]
- GB/T4754-1994; PRC State Administration of Quality Supervision and Quarantine, Standardization Administration of the People’s Republic of China. Classification and Codes of National Economic Sectors. China Standards Press: Beijing, China, 1994.
- GB/T2260-2002; PRC State Administration of Quality Supervision and Quarantine. Codes for the Administrative Divisions of the People’s Republic of China. China Standards Press: Beijing, China, 2002.
Year | Number of Industrial Emterprises | Number of Manufacturing Enterprises | Number of Forest Product-Manufacturing Enterprises | Number of Enterprises in the Wood-Processing Industry | Number of Enterprises after Elimination | Number of Eliminated Wood-Processing Enterprises | |
---|---|---|---|---|---|---|---|
Number of Enterprises | Proportion | ||||||
1999 | 162,033 | 147,116 | 7666 | 1992 | 1944 | 48 | 0.0241 |
2000 | 162,885 | 148,279 | 7839 | 2135 | 2093 | 42 | 0.0197 |
2001 | 171,233 | 156,799 | 8584 | 2368 | 2340 | 28 | 0.0118 |
2002 | 181,557 | 166,868 | 9006 | 2552 | 2521 | 31 | 0.0121 |
2003 | 196,222 | 181,186 | 9858 | 2904 | 2886 | 18 | 0.0062 |
2004 | 279,092 | 259,412 | 13,835 | 4280 | 4258 | 22 | 0.0051 |
2005 | 271,835 | 251,499 | 14,167 | 4539 | 4535 | 4 | 0.0009 |
2006 | 301,961 | 279,282 | 15,774 | 5341 | 5334 | 7 | 0.0013 |
2007 | 336,768 | 313,046 | 17,894 | 6625 | 6617 | 8 | 0.0012 |
2008 | 412,212 | 385,594 | 23,116 | 9010 | 9007 | 3 | 0.0003 |
2009 | 320,778 | 300,148 | 23,558 | 9286 | 9279 | 7 | 0.0008 |
Year | Distribution (%) | Number of Four-Digit Industry | Number of Cities | |||||
---|---|---|---|---|---|---|---|---|
High | Mod | Low | High | Mod | Low | Total | ||
1999 | 0.00 | 0.00 | 100 | 0 | 0 | 8 | 8 | 246 |
2000 | 0.00 | 12.50 | 87.50 | 0 | 1 | 7 | 8 | 252 |
2001 | 0.00 | 12.50 | 87.50 | 0 | 1 | 7 | 8 | 249 |
2002 | 0.00 | 12.50 | 87.50 | 0 | 1 | 7 | 8 | 251 |
2003 | 0.00 | 62.50 | 37.50 | 0 | 5 | 3 | 8 | 249 |
2004 | 12.50 | 75.00 | 12.50 | 1 | 6 | 1 | 8 | 257 |
2005 | 12.50 | 62.50 | 25.00 | 1 | 5 | 2 | 8 | 257 |
2006 | 12.50 | 25.00 | 37.50 | 1 | 2 | 3 | 8 | 258 |
2007 | 12.50 | 62.50 | 25.00 | 1 | 5 | 2 | 8 | 265 |
2008 | 25.00 | 37.50 | 37.50 | 2 | 3 | 3 | 8 | 264 |
2009 | 12.50 | 50.00 | 37.50 | 1 | 4 | 3 | 8 | 271 |
Sptaial agglomeration distribution of China’s manufacturing | ||||||||
2009 | 10.51 | 20.56 | 68.93 | 45 | 88 | 295 | 428 | 2775 |
Variables | Mean | Max | Min | Median | Std. Dev | N |
---|---|---|---|---|---|---|
EXIN | 0.102 | 1.000 | 0.000 | 0.000 | 0.277 | 41,264 |
0.034 | 0.070 | −0.013 | 0.027 | 0.021 | 41,264 | |
TFP | 6.661 | 14.274 | −3.366 | 6.657 | 1.201 | 41,264 |
Finance | 0.012 | 22.601 | −0.367 | 0.002 | 0.131 | 41,264 |
KAIN | 81.44 | 40496 | 0.011 | 36.51 | 293.2 | 41,264 |
Size | 9.169 | 16.120 | 0.693 | 9.013 | 1.237 | 41,264 |
Age | 5.737 | 96.000 | 0.000 | 4.000 | 6.820 | 41,264 |
Variables | EXIN | TFP | Finance | KAIN | Size | Age | |
---|---|---|---|---|---|---|---|
EXIN | 1 | ||||||
0.086 *** | 1 | ||||||
(0.000) | |||||||
TFP | −0.058 *** | 0.140 *** | 1 | ||||
(0.000) | (0.000) | ||||||
Finance | −0.003 | −0.057 *** | −0.071 *** | 1 | |||
(0.498) | (0.000) | (0.000) | |||||
KAIN | −0.002 | −0.041 *** | 0.249 *** | 0.022 *** | 1 | ||
(0.768) | (0.000) | (0.000) | (0.000) | ||||
Size | 0.145 *** | −0.109 *** | 0.355 *** | 0.062 *** | 0.257 *** | 1 | |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |||
Age | 0.013 *** | −0.057 *** | −0.044 *** | 0.029 *** | 0.005 | 0.045 *** | 1 |
(0.007) | (0.000) | (0.000) | (0.000) | (0.279) | (0.000) |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
0.344 *** | 0.406 *** | 0.298 ** | 0.470 *** | |
(0.000) | (0.000) | (−0.116) | (0.000) | |
γ×west | 0.893 *** | |||
(0.002) | ||||
γ×cen | 0.077 | |||
(0.629) | ||||
TFP | −0.003 ** | −0.004 ** | −0.034 ** | −0.032 *** |
(0.048) | (0.012) | (−0.002) | (0.000) | |
Finance | −0.024 | −0.117 ** | −0.046 * | |
(0.283) | (−0.031) | (0.054) | ||
KAIN | −0.000006 * | 0.000007 ** | −0.00002 | −0.00002 |
(0.058) | (0.029) | (0.000) | (0.376) | |
Size | 0.013 *** | 0.012 *** | 0.047 ** | 0.047 *** |
(0.000) | (0.000) | (−0.002) | (0.000) | |
Age | 0.0000004 | 0.0001* | 0.00002 | |
(0.993) | (0.000) | (0.440) | ||
West | −0.080 *** | |||
(0.000) | ||||
Cen | −0.077 *** | |||
(0.000) | ||||
C | −0.007 | 0.013 | −0.114 ** | −0.097 *** |
(0.708) | (0.478) | (−0.019) | (0.000) | |
Year | Controlled | Controlled | Controlled | Controlled |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
Gi | 0.599 * | |||
(0.075) | ||||
0.504 *** | ||||
(0.000) | ||||
γ(t−1) | 0.235 *** | 0.247 *** | ||
(0.010) | (0.006) | |||
TFP | −0.003 ** | −0.006 ** | −0.034 *** | −0.035 *** |
(0.037) | (0.016) | (0.000) | (0.000) | |
Finance | −0.021 | −0.004 | −0.117 *** | −0.121 *** |
(0.340) | (0.503) | (0.000) | (0.000) | |
KAIN | 0.000007 ** | 0.000004 | −0.00002 | |
(0.041) | (0.459) | (0.389) | ||
Size | 0.012 *** | 0.016 *** | 0.047 *** | 0.046 *** |
(0.000) | (0.000) | (0.000) | (0.000) | |
Age | 0.0004 | 0.000007 | 0.0001 * | 0.0001 * |
(0.317) | (0.897) | (0.099) | (0.099) | |
C | 0.016 | 0.044 | −0.110 *** | −0.098 *** |
(0.402) | (0.110) | (0.000) | (0.000) | |
Year | Controlled | Controlled | Controlled | Controlled |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, C.; Cheng, B.; Li, L.; Wei, Z.; Zhang, Q.; Chen, F.; Wang, S.; Yang, C. Can Spatial Agglomeration Promote Exports? The Evidence from China’s Wood-Processing Industry. Forests 2024, 15, 237. https://doi.org/10.3390/f15020237
Tao C, Cheng B, Li L, Wei Z, Zhang Q, Chen F, Wang S, Yang C. Can Spatial Agglomeration Promote Exports? The Evidence from China’s Wood-Processing Industry. Forests. 2024; 15(2):237. https://doi.org/10.3390/f15020237
Chicago/Turabian StyleTao, Chenlu, Baodong Cheng, Lingchao Li, Zhuoran Wei, Qian Zhang, Fawei Chen, Siyi Wang, and Chao Yang. 2024. "Can Spatial Agglomeration Promote Exports? The Evidence from China’s Wood-Processing Industry" Forests 15, no. 2: 237. https://doi.org/10.3390/f15020237
APA StyleTao, C., Cheng, B., Li, L., Wei, Z., Zhang, Q., Chen, F., Wang, S., & Yang, C. (2024). Can Spatial Agglomeration Promote Exports? The Evidence from China’s Wood-Processing Industry. Forests, 15(2), 237. https://doi.org/10.3390/f15020237