Exploring the Potential of Roadside Plantation for Carbon Sequestration Using Simulation in Southern Quebec, Canada
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Reference Roadsides
2.3. Afforestation Scenarios
2.4. Modeling Framework
2.5. Data Analysis
Afforestation Species | Site Index (SI) (m) | Reference for the Growth Curve |
---|---|---|
Hybrid poplar | SI—Hardwood [44] | [44] |
Picea glauca | SI 11 at 25 years [45] | [45] |
Picea abies | SI 10 at 25 years [46] | [47] |
Thuja occidentalis | SI 9 at 50 years [48] | [44] |
Betula papyrifera | SI 20 at 50 years [41] | [44] |
Acer saccharinum | SI 10 at 50 years (lowest SI) | [49] |
Acer pensylvanicum | SI 10 at 50 years (lowest SI) | [49] |
Carpinus caroliniana | SI 10 at 50 years (lowest SI) | [49] |
Quercus macrocarpa | SI 10 at 50 years (lowest SI) | [49] |
Acer rubrum | SI 17 at 50 years (lowest SI) | [50] |
Tilia americana | SI 10 at 50 years (lowest SI) | [49] |
Hybrid elm | SI 10 at 50 years (lowest SI) | [49] |
Celtis occidentalis | SI 10 at 50 years (lowest SI) | [49] |
Quercus bicolor | SI 10 at 50 years (lowest SI) | [49] |
Quercus palustris | SI 10 at 50 years (lowest SI) | [49] |
Larix laricina | SI 13 at 25 years [46] | [47] |
Populus balsamifera L. | SI 22.5 at 50 years [41] | [44] |
Gleditsia triacanthos | SI 10 at 50 years (lowest SI) | [49] |
Prunus serotina | SI 10 at 50 years (lowest SI) | [49] |
Ostrya virginiana | SI 10 at 50 years (lowest SI) | [49] |
Pinus strobus | SI 9 at 25 years [45,46] | [45] |
Pinus rigida | SI 9 at 25 years [45,46] | [45] |
Tsuga canadensis | SI 9 at 25 years [45,46] | [45] |
Quercus rubra | SI 10 at 50 years (lowest SI) | [49] |
Pseudotsuga menziesii | SI 20 at 50 years [51] | [51] |
Quercus velutina | SI 10 at 50 years (lowest SI) | [49] |
Quercus coccinea | SI 10 at 50 years (lowest SI) | [49] |
Populus deltoides | SI 22.5 at 50 years [41] | [44] |
Acer nigrum | SI 15 at 50 years | [52] |
3. Results
3.1. Roadside Afforestation Scenarios
3.2. Comparison of Simulated Scenarios with Reference Roadsides
4. Discussion
4.1. Vegetation Diversity and Structure
4.2. Soil Carbon Stocks
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability. In Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M.M.B., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar] [CrossRef]
- Mo, L.; Zohner, C.M.; Reich, P.B.; Liang, J.; de Miguel, S.; Nabuurs, G.-J.; Renner, S.S.; van den Hoogen, J.; Araza, A.; Herold, M.; et al. Integrated Global Assessment of the Natural Forest Carbon Potential. Nature 2023, 624, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Boucher, J.-F.; Tremblay, P.; Gaboury, S.; Villeneuve, C. Can Boreal Afforestation Help Offset Incompressible GHG Emissions from Canadian Industries? Process Saf. Environ. Prot. 2012, 90, 459–466. [Google Scholar] [CrossRef]
- Drever, C.R.; Cook-Patton, S.C.; Akhter, F.; Badiou, P.H.; Chmura, G.L.; Davidson, S.J.; Desjardins, R.L.; Dyk, A.; Fargione, J.E.; Fellows, M.; et al. Natural Climate Solutions for Canada. Sci. Adv. 2021, 7, eabd6034. [Google Scholar] [CrossRef] [PubMed]
- Ménard, I.; Thiffault, E.; Kurz, W.A.; Boucher, J.-F. Carbon Sequestration and Emission Mitigation Potential of Afforestation and Reforestation of Unproductive Territories. New For. 2022. [Google Scholar] [CrossRef]
- Fu, D.; Bu, B.; Wu, J.; Singh, R.P. Investigation on the Carbon Sequestration Capacity of Vegetation along a Heavy Traffic Load Expressway. J. Environ. Manag. 2019, 241, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, A.M.; Braga Alves, C.; Alves, S.H. Roadside Vegetation: Estimation and Potential for Carbon Sequestration. IForest-Biogeosciences For. 2010, 3, 124. [Google Scholar] [CrossRef]
- Rahman, M.M.; Kabir, M.E.; Jahir Uddin Akon, A.S.M.; Ando, K. High Carbon Stocks in Roadside Plantations under Participatory Management in Bangladesh. Glob. Ecol. Conserv. 2015, 3, 412–423. [Google Scholar] [CrossRef]
- Cheng, D.; Liu, B.; Chen, J. Analysis on the Method of Highway Carbon Sink Forest. In Proceedings of the 2016 5th International Conference on Civil, Architectural and Hydraulic Engineering (ICCAHE 2016), Zhuhai, China, 30–31 July 2016; Atlantis Press: Dordrecht, The Netherlands, 2016. [Google Scholar]
- Ament, R.; Hartshorn, T.; Powell, S. Evaluating Management Options to Increase Roadside Carbon Sequestration; Center for Environmentally Sustainable Transportation in Cold Climates: Fairbanks, AK, USA; U.S. Department of Transportation: Washington, DC, USA, 2019. [Google Scholar]
- Ament, R.; Begley, J. Roadside Vegetation and Soils on Federal Lands—Evaluation of the Potential for Increasing Carbon Capture and Storage and Decreasing Carbon Emissions. Contract Number: DTFH68-07-E-00045. Available online: http://www.westerntransportationinstitute.org/documents/reports/4W3748_Final_Report.pdf (accessed on 4 May 2023).
- Hsueh, S.-L. Assessing the Effectiveness of Community-Promoted Environmental Protection Policy by Using a Delphi-Fuzzy Method: A Case Study on Solar Power and Plain Afforestation in Taiwan. Renew. Sustain. Energy Rev. 2015, 49, 1286–1295. [Google Scholar] [CrossRef]
- Milcu, A.I.; Hanspach, J.; Abson, D.; Fischer, J. Cultural Ecosystem Services: A Literature Review and Prospects for Future Research. Ecol. Soc. 2013, 18, 44. [Google Scholar] [CrossRef]
- Roe, S.; Streck, C.; Beach, R.; Busch, J.; Chapman, M.; Daioglou, V.; Deppermann, A.; Doelman, J.; Emmet-Booth, J.; Engelmann, J.; et al. Land-Based Measures to Mitigate Climate Change: Potential and Feasibility by Country. Glob. Chang. Biol. 2021, 27, 6025–6058. [Google Scholar] [CrossRef]
- Srour, N.; Thiffault, E.; Boucher, J.-F. Quantifying Carbon Stocks and Functional Diversity of Roadside Ecosystems—A Case Study in Quebec, Canada. Urban For. Urban Green. 2024, 91, 128163. [Google Scholar] [CrossRef]
- IPCC. Good Practice Guidance for Land Use, Land-Use Change and Forestry; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2003; p. 632. [Google Scholar]
- Kurz, W.A.; Dymond, C.C.; White, T.M.; Stinson, G.; Shaw, C.H.; Rampley, G.J.; Smyth, C.; Simpson, B.N.; Neilson, E.T.; Trofymow, J.A.; et al. CBM-CFS3: A Model of Carbon-Dynamics in Forestry and Land-Use Change Implementing IPCC Standards. Ecol. Model. 2009, 220, 480–504. [Google Scholar] [CrossRef]
- Kurz, W.A.; Shaw, C.H.; Boisvenue, C.; Stinson, G.; Metsaranta, J.; Leckie, D.; Dyk, A.; Smyth, C.; Neilson, E.T. Carbon in Canada’s Boreal Forest—A Synthesis. Environ. Rev. 2013, 21, 260–292. [Google Scholar] [CrossRef]
- Fradette, O.; Marty, C.; Faubert, P.; Dessureault, P.-L.; Paré, M.; Bouchard, S.; Villeneuve, C. Additional Carbon Sequestration Potential of Abandoned Agricultural Land Afforestation in the Boreal Zone: A Modelling Approach. For. Ecol. Manag. 2021, 499, 119565. [Google Scholar] [CrossRef]
- Thibault, M.; Thiffault, E.; Bergeron, Y.; Ouimet, R.; Tremblay, S. Afforestation of Abandoned Agricultural Lands for Carbon Sequestration: How Does It Compare with Natural Succession? Plant Soil 2022, 475, 605–621. [Google Scholar] [CrossRef]
- Bell, S.M.; Barriocanal, C.; Terrer, C.; Rosell-Melé, A. Management Opportunities for Soil Carbon Sequestration Following Agricultural Land Abandonment. Environ. Sci. Policy 2020, 108, 104–111. [Google Scholar] [CrossRef]
- Tremblay, S.; Ouimet, R. White Spruce Plantations on Abandoned Agricultural Land: Are They More Effective as C Sinks than Natural Succession? Forests 2013, 4, 1141–1157. [Google Scholar] [CrossRef]
- Ministère des Ressources naturelles et des Forêts. Cartographie du 5e Inventaire Écoforestier du Québec Méridional—Méthodes et Données Associées; Ministère des Ressources Naturelles et des Forêts: Québec, QC, Canada, 2022; Available online: https://www.donneesquebec.ca/recherche/dataset/carte-ecoforestiere-avec-perturbations (accessed on 1 May 2023).
- Mélanie, M.; Grodin, P.; Claude, M.; Pierre-Luc, C. Étages de Végétation du Québec Méridional; Ministère des Ressources Naturelles et des Forêts: Quebec, QC, USA, 2022; ISBN 978-2-550-89834-4. [Google Scholar]
- Carter, M.R.; Gregorish, E.G. (Eds.) Soil Sampling and Methods of Analysis, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2007; ISBN 978-0-429-12622-2. [Google Scholar]
- National Forest Inventory. Canada’s National Forest Inventory Ground Sampling Guidelines: Specifications for Ongoing Measurement; Canadian Council of Forest Ministers: Ottawa, ON, Canada, 2008; ISBN 978-1-100-11329-6. [Google Scholar]
- Federer, C.A.; Turcotte, D.E.; Smith, C.T. The Organic Fraction–Bulk Density Relationship and the Expression of Nutrient Content in Forest Soils. Can. J. For. Res. 1993, 23, 1026–1032. [Google Scholar] [CrossRef]
- Brown, J.K. Estimating Shrub Biomass from Basal Stem Diameters. Can. J. For. Res. 1976, 6, 153–158. [Google Scholar] [CrossRef]
- Lambert, M.-C.; Ung, C.-H.; Raulier, F. Canadian National Tree Aboveground Biomass Equations. Can. J. For. Res. 2005, 35, 1996–2018. [Google Scholar] [CrossRef]
- Perala, D.; Alban, D.H. Allometric Biomass Estimators for Aspen Dominated Ecosystems in the Upper Great Lakes; Aspen Bibliography; US Department of Agriculture, Forest Service, North Central Forest Experiment Station: St. Paul, MN, USA, 1994. [Google Scholar]
- Roussopoulos, P.J.; Loomis, R.M. Weights and Dimensional Properties of Shrubs and Small Trees of the Great Lakes Conifer Forest; Research Paper NC-178; US Department of Agriculture, Forest Service, North Central Forest Experiment Station: St. Paul, MN, USA, 1979; Volume 178. [Google Scholar]
- Telfer, E.S. Weight–diameter relationships for 22 woody plant species. Can. J. Bot. 1969, 47, 1851–1855. [Google Scholar] [CrossRef]
- Ung, C.; Bernier, P.; Guo, X. Canadian National Biomass Equations: New Parameter Estimates That Include British Columbia Data. Can. J. For. Res. 2008, 38, 1123–1132. [Google Scholar] [CrossRef]
- Wagner, R.G.; Ter-Mikaelian, M.T. Comparison of Biomass Component Equations for Four Species of Northern Coniferous Tree Seedlings. Ann. For. Sci. 1999, 56, 193–199. [Google Scholar] [CrossRef]
- Smyth, C.; Stinson, G.; Neilson, E.; Lemprière, T.; Hafer, M.; Rampley, G.; Kurz, W. Quantifying the Biophysical Climate Change Mitigation Potential of Canada’s Forest Sector. Biogeosciences Discuss. 2013, 11, 3515–3529. [Google Scholar] [CrossRef]
- National Forest Inventory. National Standards for Ground Plots Compilation Procedures. Available online: https://nfi.nfis.org/resources/groundplot/GP_compilation_procedures_2.4.pdf (accessed on 4 January 2024).
- Lessard, G.; Boulfroy, E.; Joanisse, G.; Morin, F.; Vézina, A.; Lupien, P.; Boucher, J.-F.; Fortin, C.; Paquette, A.; Rivet, D.; et al. Caractérisation et Diagnostic Sylvicoles des Zones de Séquestration du Carbone en Contexte Routier. Rapport Final; CERFO: Quebec, QC, Canada, 2020; Available online: http://cerfo.qc.ca/caracterisation-et-diagnostic-sylvicoles-des-zones-de-sequestration-du-carbone-en-contexte-routier-rapport-final-cerfo-rapport-2020-13-125-pages/ (accessed on 16 February 2022).
- Olguin, M.; Wayson, C.; Fellows, M.; Birdsey, R.; Smyth, C.E.; Magnan, M.; Dugan, A.J.; Mascorro, V.S.; Alanís, A.; Serrano, E.; et al. Applying a Systems Approach to Assess Carbon Emission Reductions from Climate Change Mitigation in Mexico’s Forest Sector. Environ. Res. Lett. 2018, 13, 035003. [Google Scholar] [CrossRef]
- Pilli, R.; Alkama, R.; Cescatti, A.; Kurz, W.; Grassi, G. The European Forest Carbon Budget under Future Climate Conditions and Current Management Practices. Biogeosciences 2022, 19, 3263–3284. [Google Scholar] [CrossRef]
- Boudewyn, P.; Song, X.; Magnussen, S.; Gillis, M.D. Model-Based, Volume-to-Biomass Conversion for Forested and Vegetated Land in Canada; Pacific Forestry Centre: Victoria, BC, Canada, 2007. [Google Scholar]
- Laflèche, V.; Bernier, S.; Saucier, J.-P.; Gagné, C. Indices de Qualité de Station des Principales Essences Commerciales en Fonction des Types Écologiques du Québec Méridional; Ministère des Ressources Naturelles, Direction des Inventaires Forestiers: Québec, QC, Canada, 2013. [Google Scholar]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis, 2nd ed.; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://cir.nii.ac.jp/crid/1570854175843385600 (accessed on 25 June 2023).
- Pothier, D.; Savard, F. Actualisation des Tables de Production pour les Principales Espèces Forestières du Québec; Direction de La Recherche Forestière: Québec, QC, Canada, 1998. [Google Scholar]
- Bureau Forestier en Chef. Manuel de Détermination des Possibilités Forestières 2018–2023; Gouvernement du Québec: Roberval, QC, Canada, 2018; Available online: https://forestierenchef.gouv.qc.ca/possibilites-forestieres/periode-2018-2023/manuel-determination-possibilites-forestieres-2018-2023/ (accessed on 8 September 2023).
- Beaulieu, J.; Raulier, F.; Prégent, G.; Bousquet, J. Predicting Site Index from Climatic, Edaphic, and Stand Structural Properties for Seven Plantation-Grown Conifer Species in Quebec. Can. J. For. Res. 2011, 41, 682–693. [Google Scholar] [CrossRef]
- Bolghari, B.; Bertrand, V. Tables Préliminaires de Production Des Principales Essences Résineuses Plantées dans La Partie Centrale du sud du Québec; Mémoire de Recherche Forestière, 79; Ministère de L’énergie et des Ressources: Libreville, Gabon, 1984. [Google Scholar]
- Boulfroy, E.; Forget, É.; Hofmeyer, P.V.; Kenefic, L.S.; Larouche, C.; Lessard, G.; Lussier, J.-M.; Pinto, F.; Ruel, J.-C.; Weiskittel, A. Guide Pour la Sylviculture du Thuya Occidental; Ressources Naturelles Canada, Centre Canadien sur la Fibre de Bois: Ottawa, ON, Canada, 2012; p. 84. [Google Scholar]
- Plonski, W.L. Normal Yield Tables (Metric) for Major Forest Species of Ontario; Ontario Ministry of Natural Resources: Wawa, ON, Canada, 1974. [Google Scholar]
- Bégin, J.; Bélanger, L.; Pfalzgraf, J.; Pineau, M. Qualité de Station et Production Dans Les Érablières Rouges de La Plaine de Drummondville, Québec. For. Chron. 1990, 66, 377–387. [Google Scholar] [CrossRef]
- Trofymow, J.A.; Stinson, G.; Kurz, W.A. Derivation of a Spatially Explicit 86-Year Retrospective Carbon Budget for a Landscape Undergoing Conversion from Old-Growth to Managed Forests on Vancouver Island, BC. For. Ecol. Manag. 2008, 256, 1677–1691. [Google Scholar] [CrossRef]
- Pagé, F.; Drouin, L. L’erable à Sucre: Caractéristiques, Écologie et Aménagement; Centre D’enseignement et de Recherche en Foresterie: Québec, QC, Canada, 1995. [Google Scholar]
- O’Sullivan, O.S.; Holt, A.R.; Warren, P.H.; Evans, K.L. Optimising UK Urban Road Verge Contributions to Biodiversity and Ecosystem Services with Cost-Effective Management. J. Environ. Manag. 2017, 191, 162–171. [Google Scholar] [CrossRef]
- Wang, Y.-C. Carbon Sequestration and Foliar Dust Retention by Woody Plants in the Greenbelts along Two Major Taiwan Highways. Ann. Appl. Biol. 2011, 159, 244–251. [Google Scholar] [CrossRef]
- Nave, L.E.; Swanston, C.W.; Mishra, U.; Nadelhoffer, K.J. Afforestation Effects on Soil Carbon Storage in the United States: A Synthesis. Soil Sci. Soc. Am. J. 2013, 77, 1035–1047. [Google Scholar] [CrossRef]
- Alard, D.; Chabrerie, O.; Dutoit, T.; Roche, P.; Langlois, E. Patterns of Secondary Succession in Calcareous Grasslands: Can We Distinguish the Influence of Former Land Uses from Present Vegetation Data? Basic Appl. Ecol. 2005, 6, 161–173. [Google Scholar] [CrossRef]
- Tölgyesi, C.; Buisson, E.; Helm, A.; Temperton, V.M.; Török, P. Urgent Need for Updating the Slogan of Global Climate Actions from “Tree Planting” to “Restore Native Vegetation”. Restor. Ecol. 2022, 30, e13594. [Google Scholar] [CrossRef]
- Hutchison, C.; Gravel, D.; Guichard, F.; Potvin, C. Effect of Diversity on Growth, Mortality, and Loss of Resilience to Extreme Climate Events in a Tropical Planted Forest Experiment. Sci. Rep. 2018, 8, 15443. [Google Scholar] [CrossRef]
- Pardos, M.; del Río, M.; Pretzsch, H.; Jactel, H.; Bielak, K.; Bravo, F.; Brazaitis, G.; Defossez, E.; Engel, M.; Godvod, K.; et al. The Greater Resilience of Mixed Forests to Drought Mainly Depends on Their Composition: Analysis along a Climate Gradient across Europe. For. Ecol. Manag. 2021, 481, 118687. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.Y.H.; Reich, P.B. Forest Productivity Increases with Evenness, Species Richness and Trait Variation: A Global Meta-Analysis. J. Ecol. 2012, 100, 742–749. [Google Scholar] [CrossRef]
- Warner, E.; Cook-Patton, S.C.; Lewis, O.T.; Brown, N.; Koricheva, J.; Eisenhauer, N.; Ferlian, O.; Gravel, D.; Hall, J.S.; Jactel, H.; et al. Young Mixed Planted Forests Store More Carbon than Monocultures—A Meta-Analysis. Front. For. Glob. Chang. 2023, 6, 1226514. [Google Scholar] [CrossRef]
- Cagnoni, L.B.; Weidlich, E.W.A.; Guillemot, J.; Morsello, C.; Weih, M.; Adler, A.; Brancalion, P.H.S. Stakeholders’ perspectives of species diversity in tree plantations: A global review. Curr. For. Rep. 2023, 9, 251. [Google Scholar] [CrossRef]
- Glatthorn, J.; Feldmann, E.; Pichler, V.; Hauck, M.; Leuschner, C. Biomass Stock and Productivity of Primeval and Production Beech Forests: Greater Canopy Structural Diversity Promotes Productivity. Ecosystems 2018, 21, 704–722. [Google Scholar] [CrossRef]
- Bohn, F.J.; Huth, A. The Importance of Forest Structure to Biodiversity–Productivity Relationships. R. Soc. Open Sci. 2017, 4, 160521. [Google Scholar] [CrossRef]
- Zhao, X.; Li, Y.; Song, H.; Jia, Y.; Liu, J. Agents Affecting the Productivity of Pine Plantations on the Loess Plateau in China: A Study Based on Structural Equation Modeling. Forests 2020, 11, 1328. [Google Scholar] [CrossRef]
- Watt, M.S.; Kimberley, M.O.; Dash, J.P.; Harrison, D. Spatial Prediction of Optimal Final Stand Density for Even-Aged Plantation Forests Using Productivity Indices. Can. J. For. Res. 2017, 47, 527–535. [Google Scholar] [CrossRef]
- Ishii, H.T.; Tanabe, S.; Hiura, T. Exploring the Relationships Among Canopy Structure, Stand Productivity, and Biodiversity of Temperate Forest Ecosystems. For. Sci. 2004, 50, 342–355. [Google Scholar]
- Paul, K.I.; Polglase, P.J.; Nyakuengama, J.G.; Khanna, P.K. Change in Soil Carbon Following Afforestation. For. Ecol. Manag. 2002, 168, 241–257. [Google Scholar] [CrossRef]
- Mayer, M.; Prescott, C.E.; Abaker, W.E.A.; Augusto, L.; Cécillon, L.; Ferreira, G.W.D.; James, J.; Jandl, R.; Katzensteiner, K.; Laclau, J.-P.; et al. Tamm Review: Influence of Forest Management Activities on Soil Organic Carbon Stocks: A Knowledge Synthesis. For. Ecol. Manag. 2020, 466, 118127. [Google Scholar] [CrossRef]
- Don, A.; Rebmann, C.; Kolle, O.; Scherer-Lorenzen, M.; Schulze, E.-D. Impact of Afforestation-Associated Management Changes on the Carbon Balance of Grassland. Glob. Chang. Biol. 2009, 15, 1990–2002. [Google Scholar] [CrossRef]
- Tremblay, S.; Perie, C.; Ouimet, R. Changes in Organic Carbon Storage in a 50 Year White Spruce Plantation Chronosequence Established on Fallow Land in Quebec. Can. J. For. Res. 2006, 36, 2713–2723. [Google Scholar] [CrossRef]
Afforestation Scenarios | Mauricie | Montréal | Montérégie | |||
---|---|---|---|---|---|---|
Percentage of Planted Stems per Hectare (%) | Planted Species | Percentage of Planted Stems per Hectare (%) | Planted Species | Percentage of Planted Stems per Hectare (%) | Planted Species | |
Standard | 14.3 | Hybrid poplar | 14.3 | Hybrid poplar | 14.3 | Hybrid poplar |
7.1 | Picea glauca | 7.1 | Picea glauca | 7.1 | Picea glauca | |
7.1 | Picea abies | 7.1 | Picea abies | 7.1 | Picea abies | |
14.3 | Thuja occidentalis | 14.3 | Thuja occidentalis | 14.3 | Thuja occidentalis | |
14.3 | Betula papyrifera | 14.3 | Betula papyrifera | 14.3 | Betula papyrifera | |
14.3 | Acer saccharinum | 14.3 | Acer saccharinum | 14.3 | Prunus serotina | |
14.3 | Quercus macrocarpa | 14.3 | Quercus macrocarpa | 14.3 | Quercus rubra | |
14.3 | Acer rubrum | 14.3 | Acer rubrum | 14.3 | Acer rubrum | |
Limited Maintenance | 8.3 | Picea glauca | 8.3 | Picea glauca | 8.3 | Picea glauca |
8.3 | Picea abies | 8.3 | Picea abies | 8.3 | Pinus resinosa | |
8.3 | Larix laricina | 8.3 | Larix laricina | 8.3 | Carpinus caroliniana | |
12 | Betula papyrifera | 12 | Betula papyrifera | 12 | Betula papyrifera | |
13 | Populus balsamifera L. | 13 | Populus balsamifera L. | 13 | Populus deltoides | |
25 | Quercus macrocarpa | 25 | Quercus macrocarpa | 25 | Quercus rubra | |
25 | Acer rubrum | 25 | Acer rubrum | 25 | Acer rubrum | |
Diversified | 25 | Hybrid poplar | 25 | Hybrid poplar | 25 | Hybrid poplar |
3.75 | Picea glauca | 3.75 | Picea glauca | 3.75 | Picea glauca | |
3.75 | Picea abies | 3.75 | Picea abies | 3.75 | Picea abies | |
2.5 | Thuja occidentalis | 2.5 | Thuja occidentalis | 2.5 | Thuja occidentalis | |
2.5 | Betula papyrifera | 2.5 | Betula papyrifera | 2.5 | Betula papyrifera | |
2.5 | Acer saccharinum | 2.5 | Acer saccharinum | 2.5 | Prunus serotina | |
2.5 | Acer pensylvanicum | 5 | Carpinus caroliniana | 2.5 | Acer pensylvanicum | |
2.5 | Carpinus caroliniana | 2.5 | Ostrya virginiana | |||
20 | Quercus macrocarpa | 20 | Quercus macrocarpa | 20 | Quercus macrocarpa | |
20 | Acer rubrum | 20 | Acer rubrum | 20 | Acer rubrum | |
7.5 | Tilia americana | 3 | Tilia americana | 5 | Pinus strobus | |
7.5 | Hybrid elm | 3 | Hybrid elm | 5 | Pinus rigida | |
3 | Acer nigrum | 5 | Tsuga canadensis | |||
3 | Celtis occidentalis | |||||
3 | Quercus bicolor | |||||
Assisted Migration | 25 | Hybrid poplar | 25 | Hybrid poplar | 25 | Hybrid poplar |
3.75 | Picea glauca | 3.75 | Picea glauca | 3.75 | Picea glauca | |
3.75 | Picea abies | 3.75 | Picea abies | 3.75 | Picea abies | |
2.5 | Thuja occidentalis | 2.5 | Thuja occidentalis | 2.5 | Thuja occidentalis | |
2.5 | Betula papyrifera | 2.5 | Betula papyrifera | 2.5 | Betula papyrifera | |
2.5 | Acer saccharinum | 2.5 | Acer saccharinum | 2.5 | Prunus serotina | |
2.5 | Acer pensylvanicum | 5 | Carpinus caroliniana | 2.5 | Acer pensylvanicum | |
2.5 | Carpinus caroliniana | 2.5 | Ostrya virginiana | |||
20 | Quercus macrocarpa | 20 | Quercus macrocarpa | 20 | Quercus macrocarpa | |
20 | Acer rubrum | 20 | Acer rubrum | 20 | Acer rubrum | |
3.75 | Acer nigrum | 5 | Platanus occidentalis | 3.75 | Pseudotsuga menziesii | |
3.75 | Celtis occidentalis | 5 | Quercus palustris | 3.75 | Quercus velutina | |
3.75 | Quercus bicolor | 5 | Gleditsia triacanthos | 3.75 | Quercus coccinea | |
3.75 | Quercus palustris | 3.75 | Gleditsia triacanthos |
Study Region | Number of Reference Roadsides (n) | Historical Land Use | Carbon Stocks (Mg ha−1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
1975 | 1985 | 1995 | 2005 | Current Land Use (Since 2015) | Live Biomass (Aboveground and BelowGround) | Dead Organic Matter (Snags Woody Debris, Litter, and Forest Floor) | Soil (Mineral Horizons from 0 to 55 cm) | Total Ecosystem | ||
Mauricie | 12 | Forest | Forest | Forest | Forest | Forest | 124.21 ± 20.34 | 33.19 ± 7.00 | 111.08 ± 19.54 | 268.50 ± 30.77 |
2 | AL | Forest | Forest | Forest | Forest | 143.35 ± 11.74 | 9.82 ± 0.62 | 113 ± 44.95 | 266.16 ± 33.83 | |
5 | AL | AL | AL/ AAL | Forest | Forest | 62.10 ± 20.19 | 2.05± 0.86 | 116.39 ± 25.77 | 180.54 ± 33.27 | |
2 | AL | AL | AL | AL | AL | 1.70 ± 0.66 | 2.16 ± 0.55 | 64.81 ± 7.62 | 68.66 ± 7.73 | |
7 | AL | AL | AAL | AAL | AAL | 34.11 ± 8.57 | 3.22 ± 1.11 | 64.08 + 4.54 | 101.41 ± 10.58 | |
Montréal | 9 | Forest | Forest | Forest | Forest | Forest | 135.54 ± 11.68 | 33.30 ± 4.38 | 115.63 ± 17.87 | 284.48 ± 31.22 |
1 | AL | AAL | Forest | Forest | Forest | 103.92 | 31.84 | 92.15 | 227.91 | |
8 | AL | ROW/ Urban | AAL/ ROW | ROW | ROW | 0.64 ± 0.14 | 0.36 ± 0.36 | 82.16 ± 4.41 | 83.16± 4.51 | |
Montérégie | 1 | Forest | Forest | Forest | Forest | Forest | 143.24 | 44.11 | 103.07 | 290.4 |
2 | AL/ AAL | Forest | Forest | Forest | Forest | 129.77 ± 14.25 | 35.05 ± 22.84 | 95.57 ± 5.90 | 260.4 ± 2.7 | |
1 | AL/AAL | ROW | Forest | Forest | Forest | 151.08 | 13.59 | 132.02 | 296.70 | |
1 | AL | AAL | Urban | Forest | Forest | 124.28 | 22.87 | 95.01 | 242.4 | |
1 | AL | AL | AAL | AAL | AAL | 0.67 | 0.00 | 48.34 | 49.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srour, N.; Thiffault, E.; Boucher, J.-F. Exploring the Potential of Roadside Plantation for Carbon Sequestration Using Simulation in Southern Quebec, Canada. Forests 2024, 15, 264. https://doi.org/10.3390/f15020264
Srour N, Thiffault E, Boucher J-F. Exploring the Potential of Roadside Plantation for Carbon Sequestration Using Simulation in Southern Quebec, Canada. Forests. 2024; 15(2):264. https://doi.org/10.3390/f15020264
Chicago/Turabian StyleSrour, Nour, Evelyne Thiffault, and Jean-François Boucher. 2024. "Exploring the Potential of Roadside Plantation for Carbon Sequestration Using Simulation in Southern Quebec, Canada" Forests 15, no. 2: 264. https://doi.org/10.3390/f15020264
APA StyleSrour, N., Thiffault, E., & Boucher, J.-F. (2024). Exploring the Potential of Roadside Plantation for Carbon Sequestration Using Simulation in Southern Quebec, Canada. Forests, 15(2), 264. https://doi.org/10.3390/f15020264