Evaluating Dendrolimus superans (Lepidoptera: Lasiocampidae) Occurrence and Density Modeling with Habitat Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Plot Design
2.3. Investigation Method
2.4. Data Analysis
Item | Code | Category Hierarchy | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
Slope aspect | x1 | Flat | Shady slope | Semi-shady slope | Semi-sunny slope | Sunny slope |
Slope gradient | x2 | <6° | 6~15° | 15~25° | >25° | — |
Slope position | x3 | Valley | Lower slope | Upper slope | Ridge | — |
Stand types | x4 | I | II | III | IV | — |
3. Results
3.1. Model and Evaluation of D. superans Occurrence
3.2. Model and Evaluation of the Dendrolimus superans Population
3.3. The Relative Importance of the Key Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Flø, D.; Rafoss, T.; Wendell, M.; Sundheim, L. The Siberian moth (Dendrolimus sibiricus), a pest risk assessment for Norway. For. Ecosyst. 2020, 7, 48. [Google Scholar] [CrossRef]
- Michael, J.; Claude, B.; David, C.; Thierry, C.; Elisavet, C.; Katharina, D.; Gianni, G.; Anton, J.M.J.; Alan, M.L.; Maria, N.N. Pest categorisation of Dendrolimus sibiricus. EFSA J. 2018, 16, e05301. [Google Scholar]
- Liu, K.; Meng, Q.; Wang, L.; Zhang, G.; Pang, Z.; Wang, F.; Liu, J.; Ma, D.M. Study on the bionomics of Dendrolimus superans in Daxing’an Mountain. J. Northeast. For. Univ. 1994, 22, 1–5. (In Chinese) [Google Scholar]
- Liu, Z.; Yan, M.; Zhang, X. Methodical study on monitoring wide-range forest insect pest by meteorsat. J. Nat. Disasters 2002, 11, 109–114. (In Chinese) [Google Scholar]
- Fang, L.; Yu, Y.; Fang, G.; Zhang, X.; Yu, Z.; Zhang, X.; Crocker, E.; Yang, J. Effects of meteorological factors on the defoliation dynamics of the larch caterpillar (Dendrolimus superans Butler) in the Great Xing’an boreal forests. J. For. Res. 2021, 32, 2683–2697. [Google Scholar] [CrossRef]
- Sánchez-Martínez, G.; Wagner, M.R. Bark beetle community structure under four ponderosa pine forest stand conditions in northern Arizona. For. Ecol. Manag. 2002, 170, 145–160. [Google Scholar] [CrossRef]
- Gray, D.R. The relationship between climate and outbreak characteristics of the spruce budworm in eastern Canada. Clim. Change 2008, 87, 447–449. [Google Scholar] [CrossRef]
- Thuiller, W. BIOMOD-optimizing predictions of species distributions and projecting potential future shifts under global change. Glob. Change Biol. 2003, 9, 1353–1362. [Google Scholar] [CrossRef]
- Bentz, B.J.; Régnière, J.; Fettig, C.J.; Hansen, E.M.; Hayes, J.L.; Hicke, J.A.; Kelsey, R.G.; Negrón, J.F.; Seybold, S.J. Climate change and bark beetles of the western United States and Canada: Direct and indirect effects. BioScience 2010, 60, 602–613. [Google Scholar] [CrossRef]
- Hu, R.; Liang, J.; Xie, X.; Zhang, Y.; Zhang, X. Stand characteristics and soil properties affecting the occurrence of web-spinning sawfly (Cephalcia kunyushanica) in Japanese red pine (Pinus densiflora) pure forests in the Kunyushan mountains, China. Forests 2018, 9, 760. [Google Scholar] [CrossRef]
- Kharuk, V.I.; Demidko, D.A.; Fedotova, E.V.; Dvinskaya, M.L.; Budnik, U.A. Spatial and temporal dynamics of Siberian silk moth large-scale outbreak in dark-needle coniferous tree stands in Altai. Contemp. Probl. Ecol. 2016, 9, 711–720. [Google Scholar] [CrossRef]
- Cescatti, A.; Battisti, A. Distribution and ecology of Lymantria monacha L. and Cephalcia spp. in non-outbreak areas of Trentino (N-Italy). J. Pest Sci. 1992, 65, 92–99. [Google Scholar]
- Yu, Y.; Fang, L.; Wang, F.; Ma, W.; Tong, Y.; Yang, J. Spatial distribution of larch caterpillar and its driving factors. Chin. J. Ecol. 2016, 35, 1285–1293. (In Chinese) [Google Scholar]
- Root, R.B. Organization of a plant-arthropod association in simple and diverse habitats: The fauna of collards (Brassica oleracea). Ecol. Monogr. 1973, 43, 95–124. [Google Scholar] [CrossRef]
- Price, P.W. The plant vigor hypothesis and herbivoreattack. Oikos 1991, 62, 244–251. [Google Scholar] [CrossRef]
- Alaa, S.; Sherrion, N.; Godfrey, R.B. Higher Survivorship for Caterpillars in Closed Canopy Forest Along a Deforestation Gradient in Guyana. 2017. Available online: https://www.researchgate.net/publication/320286664 (accessed on 15 March 2023).
- Otway, S.J.; Hector, A.; Lawton, J.H. Resource dilution effects on specialist insect herbivores in a grassland biodiversity experiment. J. Anim. Ecol. 2005, 74, 234–240. [Google Scholar] [CrossRef]
- Rhainds, M.; English-Loeb, G. Testing the resource concentration hypothesis with tarnished plant bug on strawberry: Density of hosts and patch size influence the interaction between abundance of nymphs and incidence of damage. Ecol. Entomol. 2003, 28, 348–358. [Google Scholar] [CrossRef]
- Yamamura, K. Biodiversity and stability of herbivore populations: Influences of the spatial sparseness of food plants. Popul. Ecol. 2002, 44, 33–40. [Google Scholar] [CrossRef]
- Zhang, L.; Li, H.; Li, H.; Han, R.; Zhao, Y. Effect of damaged pine needles on growth and development of pine caterpillar larvae. Front. For. China 2006, 1, 453–459. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Nakagawa, S.; Schielzeth, H.; O’Hara, R.B. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 2013, 4, 133–142. [Google Scholar] [CrossRef]
- Bale, J.S.; Masters, G.J.; Hodkinson, I.D.; Awmack, C.; Bezemer, T.M.; Brown, V.; Butterfield, J.; Buse, A.; Coulson, J.C.; Farrar, J.; et al. Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Glob. Change Biol. 2002, 8, 1–16. [Google Scholar] [CrossRef]
- Leathers, T.D.; Gupta, S.C. Susceptibility of the eastern tent caterpillar (Malacosoma americanum) to the entomogenous fungus Beauveria bassiana. J. Invertebr. Pathol. 1993, 61, 217–219. [Google Scholar] [CrossRef]
- Kova, M.; Linde, A.; Lackovi, N.; Bollmann, F.; Pernek, M. Natural infestation of entomopathogenic fungus Beauveria pseudobassiana on overwintering Corythucha arcuata (Say) (Hemiptera: Tingidae) and its efficacy under laboratory conditions. For. Ecol. Manag. 2021, 491, 119193. [Google Scholar] [CrossRef]
- Hentschel, R.; Möller, K.; Wenning, A.; Degenhardt, A.; Schröder, J. Importance of ecological variables in explaining population dynamics of three important pine pest insects. Front. Plant Sci. 2018, 9, 1667–1683. [Google Scholar] [CrossRef]
- Haynes, K.J.; Allstadt, A.J.; Klimetzek, D. Forest defoliator outbreaks under climate change: Effects on the frequency and severity of outbreaks of five pine insect pests. Glob. Change Biol. 2014, 20, 2004–2018. [Google Scholar] [CrossRef]
- Kumar, S.; Neven, L.G.; Zhu, H.; Zhang, R. Assessing the global risk of establishment of Cydia pomonella (Lepidoptera: Tortricidae) using CLIMEX and MaxEnt niche models. J. Econ. Entomol. 2015, 108, 1708–1719. [Google Scholar] [CrossRef]
- You, W.; You, H.; Wu, L.; Ji, Z.; He, D. Landscape-level spatiotemporal patterns of Dendrolimus punctatus Walker and its driving forces: Evidence from a Pinus massoniana forest. Trees Struct. Funct. 2020, 34, 553–562. [Google Scholar] [CrossRef]
- Bao, Y.; Na, L.; Han, A.; Guna, A.; Wang, F.; Liu, X.; Zhang, J.; Wang, C.; Tong, S.; Bao, Y. Drought drives the pine caterpillars (Dendrolimus spp.) outbreaks and their prediction under different RCPs scenarios: A case study of Shandong Province, China. For. Ecol. Manag. 2020, 475, 118446. [Google Scholar] [CrossRef]
- Kharuk, V.I.; Ranson, K.J.; Fedotova, E.V. Spatial pattern of Siberian silk moth outbreak and taiga mortality. Scand. J. For. Res. 2007, 22, 531–536. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, D. Approach to Outbreak mechanism of Dendrolimus punctatus (Lepidoptera: Lasiocampidae). Sci. Silvae Sin. 2008, 44, 140–150. (In Chinese) [Google Scholar]
- Robinet, C.; Kehlenbeck, H.; Kriticos, D.J.; Baker, R.H.A.; Battlstl, A.; Brunel, S.; Dupin, M.; Eyre, D.; Faccoli, M.; Llieva, Z.; et al. A suite of models to support the quantitative assessment of spread in pest risk analysis. PLoS ONE 2012, 7, e43366. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Hu, Y.; Chang, Y.; Bu, R.; Liu, M.; Liu, N. Advances in the Researches of Dendrolimus superans of Daxing’ an Mountain of China. J. Northwest For. Univ. 2011, 26, 119–127. (In Chinese) [Google Scholar]
- Muetzel, S.; Becker, K. Extractability and biological activity of tannins from various tree leaves determined by chemical and biological assays as affected by drying procedure. Anim. Feed. Sci. Technol. 2006, 125, 139–149. [Google Scholar] [CrossRef]
- Zhang, Z. Outbreak Mechanism and Spatial-Temporal Dynamics of Dendrolimus punctatus Walker. Ph.D. Thesis, Institute of Zoology, Chinese Academy of Sciences, Beijing, China, 2003; pp. 84–93. (In Chinese). [Google Scholar]
- Waters, W.E. A comprehensive approach to monitoring in management systems for forest pests. For. Ecol. Manag. 1986, 15, 3–21. [Google Scholar] [CrossRef]
Item | Category | B | S.E. | p | Exp (B) |
---|---|---|---|---|---|
Constant | – | −4.344 | 2.184 | 0.047 | 0.013 |
Slope aspect (x1) | Flat | −1.521 | 1.561 | 0.330 | 0.218 |
Shady slope | −3.165 | 1.208 | 0.009 | 0.042 | |
Semi-shady slope | −2.733 | 1.303 | 0.036 | 0.065 | |
Semi-sunny slope | −2.630 | 1.223 | 0.032 | 0.072 | |
Sunny slope | 0 | – | – | – | |
Herb coverage (x9) | – | 0.110 | 0.029 | <0.001 | 1.116 |
GLMs | Evaluation Index | ||||
---|---|---|---|---|---|
R2 | RMSE | MAE | AIC | p | |
Model with all variables | 0.651 | 1.043 | 0.828 | 391.26 | <0.001 |
Model with the six key variables | 0.634 | 1.058 | 0.839 | 387.99 | <0.001 |
Item | Beta | Partial Correlation | Importance | Tolerance | p |
---|---|---|---|---|---|
Slope aspect (x1) | 0.429 | 0.495 | 0.452 | 0.931 | <0.001 |
Slope gradient (x2) | −0.218 | −0.249 | 0.163 | 0.735 | <0.001 |
Slope position (x3) | 0.296 | 0.367 | 0.213 | 0.941 | <0.001 |
DBH (x7) | −0.223 | −0.225 | 0.049 | 0.567 | 0.11 |
Canopy cover (x8) | 0.194 | 0.202 | −0.026 | 0.598 | 0.35 |
Stand density (x10) | −0.317 | −0.274 | 0.148 | 0.425 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, D.; Wang, S.; Zhang, J.; Cui, R.; Wang, Q. Evaluating Dendrolimus superans (Lepidoptera: Lasiocampidae) Occurrence and Density Modeling with Habitat Conditions. Forests 2024, 15, 388. https://doi.org/10.3390/f15020388
Han D, Wang S, Zhang J, Cui R, Wang Q. Evaluating Dendrolimus superans (Lepidoptera: Lasiocampidae) Occurrence and Density Modeling with Habitat Conditions. Forests. 2024; 15(2):388. https://doi.org/10.3390/f15020388
Chicago/Turabian StyleHan, Daxiao, Shuo Wang, Jili Zhang, Rong Cui, and Qianxue Wang. 2024. "Evaluating Dendrolimus superans (Lepidoptera: Lasiocampidae) Occurrence and Density Modeling with Habitat Conditions" Forests 15, no. 2: 388. https://doi.org/10.3390/f15020388
APA StyleHan, D., Wang, S., Zhang, J., Cui, R., & Wang, Q. (2024). Evaluating Dendrolimus superans (Lepidoptera: Lasiocampidae) Occurrence and Density Modeling with Habitat Conditions. Forests, 15(2), 388. https://doi.org/10.3390/f15020388