Impact of Ecological Water Transfer Project on Vegetation Recovery in Dried-Up Kongque River, Northwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Data Processing
2.3. Consistency Analysis of Landsat NDVI
2.4. Surface Water Mapping and Accuracy Assessment
2.5. Methods for Evaluating Vegetation Response to EWTP
3. Results
3.1. Accuracy Verification of Water Extraction
3.2. Pre-EWTP Surface Water Area and NDVI Time Series
3.3. Changes in Water Area after the Implementation of the EWTP
3.3.1. Spatial Distribution of Water Frequency
3.3.2. Surface Water Time Series
3.4. Changes in Vegetation after the EWTP
3.5. Response of the NDVI Trend to Irrigation Frequency
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Zhao, W.W.; Ding, J.Y.; Wang, Y.P.; Jia, L.Z.; Cao, W.F.; Tarolli, P. Ecological water conveyance drives human-water system evolution in the Heihe watershed, China. Environ. Res 2020, 182, 109009. [Google Scholar] [CrossRef]
- Yang, J.; Zou, C.; Will, R.; Wagner, K.; Ouyang, Y.; King, C.; Winrich, A.; Tian, H. River flow decline across the entire Arkansas River Basin in the 21st century. J. Hydrol. 2023, 618, 129253. [Google Scholar] [CrossRef]
- Haghighi, T.A.; Akbari, M.; Noori, R.; Danandeh Mehr, A.; Gohari, A.; Sönmez, M.E.; Abou Zaki, N.; Yilmaz, N.; Kløve, B. The impact of Turkey’s water resources development on the flow regime of the Tigris River in Iraq. J. Hydrol. Reg. Stud. 2023, 48, 101454. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Y.; Li, W.; Yu, Y.; Sun, Z. Restoration of the lower reaches of the Tarim River in China. Reg. Environ. Chang. 2013, 13, 1021–1029. [Google Scholar] [CrossRef]
- McCoy, A.L.; Holmes, S.R.; Boisjolie, B.A. Flow Restoration in the Columbia River Basin: An Evaluation of a Flow Restoration Accounting Framework. Environ. Manag. 2018, 61, 506–519. [Google Scholar] [CrossRef]
- Hirpa, F.A.; Dyer, E.; Hope, R.; Olago, D.O.; Dadson, S.J. Finding sustainable water futures in data-sparse regions under climate change: Insights from the Turkwel River basin, Kenya. J. Hydrol. Reg. Stud. 2018, 19, 124–135. [Google Scholar] [CrossRef]
- Adame, M.F.; Reef, R.; Santini, N.S.; Najera, E.; Turschwell, M.P.; Hayes, M.A.; Masque, P.; Lovelock, C.E. Mangroves in arid regions: Ecology, threats, and opportunities. Estuar. Coast. Shelf Sci. 2021, 248, 106796. [Google Scholar] [CrossRef]
- Sahin, S. An aridity index defined by precipitation and specific humidity. J. Hydrol. 2012, 444, 199–208. [Google Scholar] [CrossRef]
- Siam, M.S.; Eltahir, E.A.B. Climate change enhances interannual variability of the Nile river flow. Nat. Clim. Chang. 2017, 7, 350–354. [Google Scholar] [CrossRef]
- Thevs, N.; Buras, A.; Zerbe, S.; Kuhnel, E.; Abdusalih, N.; Ovezberdiyeva, A. Structure and wood biomass of near-natural floodplain forests along the Central Asian rivers Tarim and Amu Darya. Forestry 2011, 85, 193–202. [Google Scholar] [CrossRef]
- Nandalal, K.D.W.; Hipel, K.W. Strategic decision support for resolving conflict over water sharing among countries along the Syr Darya River in the Aral Sea Basin. J. Water Res. Plan. Man 2007, 133, 289–299. [Google Scholar] [CrossRef]
- Chao, N.; Luo, Z.; Wang, Z.; Jin, T. Retrieving Groundwater Depletion and Drought in the Tigris-Euphrates Basin between 2003 and 2015. Ground Water 2018, 56, 770–782. [Google Scholar] [CrossRef]
- Daggupati, P.; Srinivasan, R.; Ahmadi, M.; Verma, D. Spatial and temporal patterns of precipitation and stream flow variations in Tigris-Euphrates river basin. Environ. Monit. Assess. 2017, 189, 50. [Google Scholar] [CrossRef]
- Wang, W.; Chen, Y.; Chen, Y.; Wang, W.; Zhang, T.; Qin, J. Groundwater dynamic influenced by intense anthropogenic activities in a dried-up river oasis of Central Asia. Hydrol. Res. 2022, 53, 532–546. [Google Scholar] [CrossRef]
- Chen, Y.; Li, W.; Xu, C.; Ye, Z.; Chen, Y. Desert riparian vegetation and groundwater in the lower reaches of the Tarim River basin. Environ. Earth Sci. 2014, 73, 547–558. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, S.; Zhen, H.; Chang, X.; Shataer, R.; Li, Z. Spatiotemporal Evolution Characteristics in Ecosystem Service Values Based on Land Use/Cover Change in the Tarim River Basin, China. Sustainability 2020, 12, 7759. [Google Scholar] [CrossRef]
- Bao, A.; Huang, Y.; Ma, Y.; Guo, H.; Wang, Y. Assessing the effect of EWDP on vegetation restoration by remote sensing in the lower reaches of Tarim River. Ecol. Indic. 2017, 74, 261–275. [Google Scholar] [CrossRef]
- Yan, H.; Wang, Y.; Wang, Y. The influence of 10 years of water conveyances on groundwater and juvenile Populus euphratica of the lower Tarim River. Environ. Earth Sci. 2013, 71, 4091–4096. [Google Scholar] [CrossRef]
- Xu, H.; Ye, M.; Li, J. The ecological characteristics of the riparian vegetation affected by river overflowing disturbance in the lower Tarim River. Environ. Geol. 2009, 58, 1749–1755. [Google Scholar] [CrossRef]
- Zan, C.; Liu, T.; Huang, Y.; Bao, A.; Yan, Y.; Ling, Y.; Wang, Z.; Duan, Y. Spatial and temporal variation and driving factors of wetland in the Amu Darya River Delta, Central Asia. Ecol. Indic. 2022, 139, 108898. [Google Scholar] [CrossRef]
- Julien, P.; Richard, G.; Albert, J. Stream restoration and environmental river mechanics. Int. J. River Basin Manag. 2005, 3, 191–202. [Google Scholar] [CrossRef]
- Soukhaphon, A.; Baird, I.G.; Hogan, Z.S. The Impacts of Hydropower Dams in the Mekong River Basin: A Review. Water 2021, 13, 265. [Google Scholar] [CrossRef]
- Eder, M.; Perosa, F.; Hohensinner, S.; Tritthart, M.; Scheuer, S.; Gelhaus, M.; Cyffka, B.; Kiss, T.; Van Leeuwen, B.; Tobak, Z.; et al. How Can We Identify Active, Former, and Potential Floodplains? Methods and Lessons Learned from the Danube River. Water 2022, 14, 2295. [Google Scholar] [CrossRef]
- Kemp, G.P.; McDade, E.C.; Day, J.W.; Lane, R.R.; Dawers, N.H.; Day, J.N. Recovery and Restoration of Biloxi Marsh in the Mississippi River Delta. Water 2021, 13, 3179. [Google Scholar] [CrossRef]
- Shen, Q.; Ma, Y. Did water diversion projects lead to sustainable ecological restoration in arid endorheic basins? Lessons from long-term changes of multiple ecosystem indicators in the lower Heihe River Basin. Sci. Total Environ. 2020, 701, 134785. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xu, D.; Peng, D.; Zhang, Y. Quantifying the influences of natural and human factors on the water footprint of afforestation in desert regions of northern China. Sci. Total Environ. 2021, 780, 146577. [Google Scholar] [CrossRef]
- Caruso, B.S. Project river recovery: Restoration of braided gravel-bed river habitat in New Zealand’s high country. Environ. Manag. 2006, 37, 840–861. [Google Scholar] [CrossRef] [PubMed]
- Trabucchi, M.; O’Farrell, P.J.; Notivol, E.; Comin, F.A. Mapping ecological processes and ecosystem services for prioritizing restoration efforts in a semi-arid Mediterranean river basin. Environ. Manag. 2014, 53, 1132–1145. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Y.; Xu, D.Y.; Wang, Z.Y.; Zhang, Y. Balance of water supply and consumption during ecological restoration in arid regions of Inner Mongolia, China. J. Arid Environ. 2021, 186, 104406. [Google Scholar] [CrossRef]
- Xue, J.; Gui, D.; Lei, J.; Sun, H.; Zeng, F.; Mao, D.; Jin, Q.; Liu, Y. Oasification: An unable evasive process in fighting against desertification for the sustainable development of arid and semiarid regions of China. Catena 2019, 179, 197–209. [Google Scholar] [CrossRef]
- Guo, B.; Li, W.; Guo, J.; Chen, C. Risk Assessment of Regional Irrigation Water Demand and Supply in an Arid Inland River Basin of Northwestern China. Sustainability 2015, 7, 12958–12973. [Google Scholar] [CrossRef]
- Mamat, A.; Wang, J.; Ma, Y. Impacts of Land-Use Change on Ecosystem Service Value of Mountain–Oasis–Desert Ecosystem: A Case Study of Kaidu–Kongque River Basin, Northwest China. Sustainability 2020, 13, 140. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.; Xu, C.; Ye, Z.; Li, Z.; Zhu, C.; Ma, X. Effects of ecological water conveyance on groundwater dynamics and riparian vegetation in the lower reaches of Tarim River, China. Hydrol. Process. 2010, 24, 170–177. [Google Scholar] [CrossRef]
- Fu, A.; Li, W.; Chen, Y.; Liu, Y. Suitable oasis scales under a government plan in the Kaidu-Konqi River Basin of northwest arid region, China. PeerJ 2018, 6, e4943. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Ding, J.; Fang, G. Land-use conversion and its attribution in the Kaidu–Kongqi River Basin, China. Quat. Int. 2015, 380, 216–223. [Google Scholar] [CrossRef]
- Ye, Z.; Chen, Y.; Li, W.; Yan, Y. Effect of the ecological water conveyance project on environment in the Lower Tarim River, Xinjiang, China. Environ. Monit. Assess. 2009, 149, 9–17. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.; Zhu, X.; Li, W.; Zhang, Y.; Xu, H.; Zhang, H.; Chen, Y. Analysis on the ecological benefits of the stream water conveyance to the dried-up river of the lower reaches of Tarim River, China. Sci. China Ser. D Earth Sci. 2004, 47, 1053–1064. [Google Scholar] [CrossRef]
- Zhao, X.; Xu, H. Study on vegetation change of Taitemar Lake during ecological water transfer. Environ. Monit. Assess. 2019, 191, 613. [Google Scholar] [CrossRef]
- Ye, Z.X.; Chen, Y.N.; Li, W.H.; Yan, Y.; Wan, J.H. Groundwater fluctuations induced by ecological water conveyance in the lower Tarim River, Xinjiang, China. J. Arid Environ. 2009, 73, 726–732. [Google Scholar] [CrossRef]
- Jiao, A.; Wang, Z.; Deng, X.; Ling, H.; Chen, F. Eco-Hydrological Response of Water Conveyance in the Mainstream of the Tarim River, China. Water 2022, 14, 2622. [Google Scholar] [CrossRef]
- Chen, Y.; Pang, Z.; Chen, Y.; Li, W.; Xu, C.; Hao, X.; Huang, X.; Huang, T.; Ye, Z. Response of riparian vegetation to water-table changes in the lower reaches of Tarim River, Xinjiang Uygur, China. Hydrogeol. J. 2008, 16, 1371–1379. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Qian, K.; Ye, M. Response of Plant Species Diversity to Flood Irrigation in the Tarim River Basin, Northwest China. Sustainability 2023, 15, 1243. [Google Scholar] [CrossRef]
- Chen, L.; Xu, C.; Li, X. Projections of temperature extremes based on preferred CMIP5 models: A case study in the Kaidu-Kongqi River basin in Northwest China. J. Arid Land 2021, 13, 568–580. [Google Scholar] [CrossRef]
- Torres, P.; Rodes-Blanco, M.; Viana-Soto, A.; Nieto, H.; García, M. The Role of Remote Sensing for the Assessment and Monitoring of Forest Health: A Systematic Evidence Synthesis. Forests 2021, 12, 1134. [Google Scholar] [CrossRef]
- Yang, Z.; Shu, Q.; Zhang, L.; Yang, X. Forest Tree Species Diversity Mapping Using ICESat-2/ATLAS with GF-1/PMS Imagery. Forests 2023, 14, 1537. [Google Scholar] [CrossRef]
- Tulbure, M.G.; Broich, M.; Perin, V.; Gaines, M.; Ju, J.; Stehman, S.V.; Pavelsky, T.; Masek, J.G.; Yin, S.; Mai, J.; et al. Can we detect more ephemeral floods with higher density harmonized Landsat Sentinel 2 data compared to Landsat 8 alone? ISPRS J. Photogramm. Remote Sens. 2022, 185, 232–246. [Google Scholar] [CrossRef]
- Meroni, M.; Schucknecht, A.; Fasbender, D.; Rembold, F.; Fava, F.; Mauclaire, M.; Goffner, D.; Di Lucchio, L.M.; Leonardi, U. Remote sensing monitoring of land restoration interventions in semi-arid environments with a before-after control-impact statistical design. Int. J. Appl. Earth Obs. Geoinf. 2017, 59, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Wardlow, B.D.; Xiang, D.; Hu, S.; Li, D. A review of vegetation phenological metrics extraction using time-series, multispectral satellite data. Remote Sens. Environ. 2020, 237, 111511. [Google Scholar] [CrossRef]
- Tang, H.; Armston, J.; Hancock, S.; Marselis, S.; Goetz, S.; Dubayah, R. Characterizing global forest canopy cover distribution using spaceborne lidar. Remote Sens. Environ. 2019, 231, 111262. [Google Scholar] [CrossRef]
- Dong, Z.; Lv, P.; Qian, G.; Xia, X.; Zhao, Y.; Mu, G. Research progress in China’s Lop Nur. Earth-Sci. Rev. 2012, 111, 142–153. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, X.; Zhang, J.; Chen, Y.; Yami, T.L.; Hong, Y. Estimation of Crop Water Requirement Based on Planting Structure Extraction from Multi-Temporal MODIS EVI. Water Resour. Manag. 2021, 35, 2231–2247. [Google Scholar] [CrossRef]
- Chipman, J.W.; Shi, X.; Magilligan, F.J.; Chen, Y.; Li, B. Impacts of land cover change and water management practices on the Tarim and Konqi river systems, Xinjiang, China. J. Appl. Remote Sens. 2016, 10, 046020. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Campos-Taberner, M.; Moreno-Martínez, Á.; Walther, S.; Duveiller, G.; Cescatti, A.; Mahecha, M.D.; Muñoz-Marí, J.; García-Haro, F.J.; Guanter, L.; et al. A unified vegetation index for quantifying the terrestrial biosphere. Sci. Adv. 2021, 7, eabc7447. [Google Scholar] [CrossRef]
- Lee, R.J.; Chow, T.E. Post-wildfire assessment of vegetation regeneration in Bastrop, Texas, using Landsat imagery. GISci. Remote Sens. 2015, 52, 609–626. [Google Scholar] [CrossRef]
- Mishra, N.; Haque, M.; Leigh, L.; Aaron, D.; Helder, D.; Markham, B. Radiometric Cross Calibration of Landsat 8 Operational Land Imager (OLI) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+). Remote Sens. 2014, 6, 12619–12638. [Google Scholar] [CrossRef]
- Zhu, Z.; Fu, Y.; Woodcock, C.E.; Olofsson, P.; Vogelmann, J.E.; Holden, C.; Wang, M.; Dai, S.; Yu, Y. Including land cover change in analysis of greenness trends using all available Landsat 5, 7, and 8 images: A case study from Guangzhou, China (2000–2014). Remote Sens. Environ. 2016, 185, 243–257. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Y.; Ling, F.; Wang, Q.; Li, W.; Li, X. Water Bodies’ Mapping from Sentinel-2 Imagery with Modified Normalized Difference Water Index at 10-m Spatial Resolution Produced by Sharpening the SWIR Band. Remote Sens. 2016, 8, 354. [Google Scholar] [CrossRef]
- Rokni, K.; Ahmad, A.; Selamat, A.; Hazini, S. Water Feature Extraction and Change Detection Using Multitemporal Landsat Imagery. Remote Sens. 2014, 6, 4173–4189. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, J.; Zhang, Y.; Qin, S.; Shao, Y.; Gao, Y. Responses of vegetation to climatic variations in the desert region of northern China. Catena 2019, 175, 27–36. [Google Scholar] [CrossRef]
- Dai, X.; Yang, X.; Wang, M.; Gao, Y.; Liu, S.; Zhang, J. The Dynamic Change of Bosten Lake Area in Response to Climate in the Past 30 Years. Water 2019, 12, 4. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, Y.; Sial, S.; Liu, H.; Wang, Y.; Zhang, J. Photosynthetic Responses of Two Woody Halophyte Species to Saline Groundwater Irrigation in the Taklimakan Desert. Water 2022, 14, 1385. [Google Scholar] [CrossRef]
- Ling, H.; Zhang, P.; Guo, B.; Xu, H.; Ye, M.; Deng, X. Negative feedback adjustment challenges reconstruction study from tree rings: A study case of response of Populus euphratica to river discontinuous flow and ecological water conveyance. Sci. Total Environ. 2017, 574, 109–119. [Google Scholar] [CrossRef]
- Manning, A.; Julian, J.P.; Doyle, M.W. Riparian vegetation as an indicator of stream channel presence and connectivity in arid environments. J. Arid Environ. 2020, 178, 104167. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Zhang, J.; Wu, H.; Guo, X. Influences of ecological water conveyance on Populus euphratica forest restoration in the middle reaches of Tarim River. Arid Land Geogr. 2023, 46, 94–102. [Google Scholar] [CrossRef]
- Masek, J.G.; Wulder, M.A.; Markham, B.; McCorkel, J.; Crawford, C.J.; Storey, J.; Jenstrom, D.T. Landsat 9: Empowering open science and applications through continuity. Remote Sens. Environ. 2020, 248, 111968. [Google Scholar] [CrossRef]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.-C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Jiao, A.; Wang, W.; Ling, H.; Deng, X.; Yan, J.; Chen, F. Effect evaluation of ecological water conveyance in Tarim River Basin, China. Front. Environ. Sci. 2022, 10, 1019695. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, Y.; Ren, L.; Lü, H.; Zhao, W.; Yuan, F.; Xu, M. Ecosystem restoration and conservation in the arid inland river basins of Northwest China: Problems and strategies. Ecol. Eng. 2016, 94, 629–637. [Google Scholar] [CrossRef]
- Zhai, L.; Cheng, S.; Sang, H.; Xie, W.; Gan, L.; Wang, T. Remote sensing evaluation of ecological restoration engineering effect: A case study of the Yongding River Watershed, China. Ecol. Eng. 2022, 182, 106724. [Google Scholar] [CrossRef]
- Luo, Y.; Qi, S.; Liao, K.; Zhang, S.; Hu, B.; Tian, Y. Mapping the Forest Height by Fusion of ICESat-2 and Multi-Source Remote Sensing Imagery and Topographic Information: A Case Study in Jiangxi Province, China. Forests 2023, 14, 454. [Google Scholar] [CrossRef]
- Verhelst, K.; Gou, Y.; Herold, M.; Reiche, J. Improving Forest Baseline Maps in Tropical Wetlands Using GEDI-Based Forest Height Information and Sentinel-1. Forests 2021, 12, 1374. [Google Scholar] [CrossRef]
Samples (N = 2000) | Landsat Image Classification | Sentinel-2 Image Classification | |||||||
---|---|---|---|---|---|---|---|---|---|
Non-Water | Water | Total | Producer’s Accuracy | Non-Water | Water | Total | Producer’s Accuracy | ||
PlanetScope reference image classification | Non-water | 909 | 91 | 1000 | 90.9% | 958 | 42 | 1000 | 95.8% |
Water | 186 | 814 | 1000 | 81.4% | 110 | 890 | 1000 | 89.0% | |
Total | 1095 | 905 | 2000 | Overall accuracy: 86.2% | 1068 | 932 | 2000 | Overall accuracy: 92.4% | |
User’s accuracy | 83.0% | 90.0% | 89.7% | 95.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Fan, L.; Su, J.; Wang, Z. Impact of Ecological Water Transfer Project on Vegetation Recovery in Dried-Up Kongque River, Northwest China. Forests 2024, 15, 487. https://doi.org/10.3390/f15030487
Wang Z, Fan L, Su J, Wang Z. Impact of Ecological Water Transfer Project on Vegetation Recovery in Dried-Up Kongque River, Northwest China. Forests. 2024; 15(3):487. https://doi.org/10.3390/f15030487
Chicago/Turabian StyleWang, Zhen, Liangxin Fan, Jingxuan Su, and Zhijun Wang. 2024. "Impact of Ecological Water Transfer Project on Vegetation Recovery in Dried-Up Kongque River, Northwest China" Forests 15, no. 3: 487. https://doi.org/10.3390/f15030487
APA StyleWang, Z., Fan, L., Su, J., & Wang, Z. (2024). Impact of Ecological Water Transfer Project on Vegetation Recovery in Dried-Up Kongque River, Northwest China. Forests, 15(3), 487. https://doi.org/10.3390/f15030487