Influence of Fly Ash on Soil Properties and Vegetation of Fresh Coniferous Forest during Long-Term Observation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Methods of Soil Analyses
2.3. Floristic Investigation
2.4. Statistics
3. Results
3.1. Properties of Soil
3.2. Vegetation Characteristic
4. Discussion
4.1. Fly Ash and Soil Particles
4.2. Soil pH
4.3. C and N
4.4. P, K, Mg
4.5. Cation Exchange Capacity (CEC)
4.6. Vegetation
4.7. Habitat Soil Index (SIG)
4.8. Soil Definition
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boyanov, V. BP Statistical Review of World Energy. Econ. Policy 2011, 4, 38–55. [Google Scholar]
- Yunusa, I.; Loganathan, P.; Nissanka, S.; Manohaarn, V.; Burchett, M.D.; Skilbeck, C.; Eamus, D. Application of Coal Fly Ash in Agriculture: A Strategic, Perspective. Crit. Revives Environ. Sci. Technol. 2012, 42, 559–600. [Google Scholar] [CrossRef]
- Tsadilas, C.D. Agricultural use of fly ash: Expected benefits and consequences. In Proceedings of the International Workshop on Agricultural Coal Ash Used, WACAU, Bet Dagan, Israel, 24–29 May 2014. [Google Scholar]
- Ram, I.C.; Masto, R.F. An appraisal of the potential use of fly ash for reclaiming coal main spoil. Environ. Manag. 2010, 91, 603–617. [Google Scholar]
- Kuśmierczyk, S. Determination of Physical and Chemical Changes in Soil Properties under the Influence of Melioration Doses of Hard Coal Ash; Report on the First Phase of the Project; Geoportal: Gliwice, Poland, 1980; pp. 5–25. (In Polish) [Google Scholar]
- Giedrojć, B.; Wilczyński, A. Characteristics of physical properties of forest podzolic soil fertilized with high rates of ash from power station. Soil Sci. Ann. 1985, 36, 123–131. (In Polish) [Google Scholar]
- Bogacz, A. Impact of Hard Coal Ashes on Some Properties of Sandy Soil Formed in a Pine Habitat. Ph.D. Thesis, Institute of Soil Science and Agriculture Environmental Protection, Agriculture University of Wrocław, Wrocław, Poland, 1995; pp. 1–95. (In Polish). [Google Scholar]
- Bogacz, A.; Zabawski, J.; Licznar, M. Influence of Amelioration Doses of Ash from Coal on Vegetative Cover of Soil-Fresh Coniferous Sites. Sylwan 1997, 1, 85–92. (In Polish) [Google Scholar]
- Weber, J.; Strączyńska, S.; Kocowicz, A.; Gilewska, M.; Bogacz, A.; Gwiżdż, M.; Dębicka, M. Properties of soil material de-rived from fly ash 11 years after revegetation of post mining excavation. Catena 2017, 148, 35–39. [Google Scholar] [CrossRef]
- Kaczmarek, Z.; Mocek-Płóciniak, A.; Gajewski, P.; Mendyk, Ł.; Bocianowski, J. Physical and soil water properties of technosols developed from lignite fly ash. Arch. Environ. Prot. 2021, 47, 95–102. [Google Scholar]
- Jayaringhe, G.Y.; Tokashiki, Y.; Kiryo, K. Recycling of coal fly ash-based synthetic aggregates as a soil ameliorant for a low productive acid red soil. Water Air Soil Pollut. 2009, 204, 29–41. [Google Scholar] [CrossRef]
- Tsadilas, C.D.; Shaheen, S.M.; Samoras, V.; Gizos, D. Influence of Fly Ash Application on Copper and Zinc Sorption by Acidic Soils Amended with Sewage Sludge. Commun. Soil Sci. Plant Annu. 2009, 40, 273–284. [Google Scholar] [CrossRef]
- Matsumo, S.; Hamanaka, A.; Muracami, K.; Shimada, H.; Sasaoka, T. Securing Topsoil for Rehabilitation Using Fly Ash in Open-cost coal Mines: Effects of fly Ash on Plant Growth. J. Pol. Miner. Eng. Soc. 2019, 43, 13–18. [Google Scholar]
- Klose, S.; Makeschin, F. Chemical properties of forest soil along a fly ash deposition gradient in eastern Germany. Eur. J. For. Res. 2004, 123, 3–11. [Google Scholar] [CrossRef]
- Pandey, V.C.; Bajpai, O.; Singh, N. Plant regeneration potential in fly ash ecosystem. Urban For. Urban Green. 2016, 15, 40–44. [Google Scholar] [CrossRef]
- Vincevica-Gaile, Z.; Stoncevica, K.; Irtiseva, K.; Shiskin, A.; Obuka, V.; Celma, S.; Ozolins, J.; Klavius, M. Granulation of fly ash and biochar with organic lake sediments—A way to sustainable utilization of waste from bioenergy production. Biomass Bioenergy 2019, 125, 23–33. [Google Scholar] [CrossRef]
- Oliveira, V.; Reis, M. Valorisation of pulp and paper industry residues trough composting. In Proceedings of the 12th International Multidisciplinary Scientific Geoconference 2012, SGEM, Albena, Bulgaria, 17–23 June 2012; Volume IV, pp. 813–820. [Google Scholar]
- Kumar, V.; Jha, G.K. Use of fly ash in agriculture: Indian scenario. In Proceedings of the International Workshop and Agricultural Coal Ash Use, Bet Dagan, Israel, 24–29 May 2014. [Google Scholar]
- Mahmood, H.; Saha, C.; Hossain, M.S.; Gahman, M.T. Does coal fly ash influence the growth of mangroves? Environ. Chall. 2022, 8, 100201. [Google Scholar] [CrossRef]
- Pavlović, P.; Mitrović, M.; Djurdjević, L. An ecophysiological study of plants growing on the fly ash deposits from the “Nikola Tesla-A” thermal power station in Serbia. Environ. Manag. 2004, 33, 654–663. [Google Scholar] [CrossRef] [PubMed]
- Necrasova, O.; Radchenko, T.; Filimonova, E.; Lucina, N.; Glazurina, M.; Dergacheva, M.; Uchaev, A.; Betekhtina, A. Natural forestry colonisation and soil formation on ash dump in southern taiga. Folia Forest. Pol. Ser. A—For. 2020, 62, 306–316. [Google Scholar] [CrossRef]
- Yadav, S.; Pandey, V.C.; Kumar, M.; Singh, L. Plant diversity and ecological potential of naturally colonizing vegetation for ecorestoration of fly ash disposal area. Ecol. Eng. 2022, 176, 106533. [Google Scholar] [CrossRef]
- Sokołowski, A.W.; Kliczkowska, A.; Grzyb, M. Determination of phytosociological units falling within the range of forest site types. Pr. Inst. Badaw. Leśnictwa Ser. B 1997, 32, 1–55. (In Polish) [Google Scholar]
- Kondracki, J. Physical Geography of Poland. Physical-Geographical Mesoregions; Wydawnictwo Naukowe PWN: Warszawa, Poland, 1994; p. 339. (In Polish) [Google Scholar]
- ASTM C618; Standard Specification for Coal Fly Ash and Row or Calcined Natural Pozzolan for Use as a Mineral Admixture in Portland Cement Concentrate. Annual Book of ASTM Standards: Philadelphia, PA, USA, 1994; Volume 04.02.
- Geoportal Infrastruktury Informacji Przestrzennej. 2023. Available online: https://www.geoportal.gov.pl (accessed on 1 January 2024). (In Polish)
- Vucans, R.; Lipenite, I.; Livmanis, J. Comparison of methods determination of phosphorus in carbonation soil. Litvian J. Agron. 2008, 11, 229–304. [Google Scholar]
- Stangaitis, G.; Rutkansciene, R. Comparison of magnesium determination methods as influenced by soil properties. Zemdirbyste 2010, 97, 105–116. [Google Scholar]
- Brożek, S. Soil quality numerical valorisation—A tool in forest site diagnoses. Sylwan 2007, CLI, 35–42. (In Polish) [Google Scholar]
- Braun-Blanquet, J. Planzensoziologie; Springer: Vienna, Austria, 1951. [Google Scholar]
- Mirek, Z.; Piękoś-Mirkowa, H.; Zając, M. Flowering Plants and Pteridophytes of Poland. A Checklist, Biodiversity of Poland; Polish Academy of Sciences: Kraków, Poland, 2002. [Google Scholar]
- STATISTICA (Data Analysis Software System), version 13.1; Stat Soft Inc.: Tulsa, OK, USA, 2023.
- Kabała, C.; Charzyński, P.; Chodoroski, J.; Drewnik, M.; Glina, B.; Greinert, A.; Hulisz, P.; Jankowski, M.; Jonczak, J.; Łabaz, B.; et al. Polish Soil Classfication—Principles, classification scheme and correlations. Soil Sci. Ann. 2019, 70, 71–97. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources. In International Soil Classification System for Naming Soil and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Science (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Kim, H.; Purev, O.; Choi, N.; Lee, J.; Yoon, S. Removal of Inorganic Salts in Municipal Solid Waste Incineration Fly Ash Using a Washing Ejector, and Its Application for CO2 Capture. Int. J. Environ. Res. Public Health 2022, 19, 2306. [Google Scholar] [CrossRef] [PubMed]
- FAO. Geographic Information Systems in Sustainable Development; FAO: Rome, Italy, 1998. [Google Scholar]
- Jagadeeson, D.; Manssor, U.; Mandel, P.; Sudaresan, A.; Eswar Moorthy, M. Hollow Spheres to Nanocaps: Tuning the Morphology and Magnetic Properties of Single Crystalline Fe2O3 Nanostructures. Angewante Chem. Int. Ed. 2008, 47, 7564–7771. [Google Scholar]
- Mualem, Y.; Dogan, G. A dependent model of capillary hysteresis. Water Res. Res. 1975, 11, 452–460. [Google Scholar] [CrossRef]
- Bieniek, J.; Ściubidło, A.; Majchrzak-Kocięba, J. Properties of fly ash derived from coal combustion in air and in oxygen enriched atmosphere in a pilot plant installation Oxy-Fuel CFB0.1 MW2. Energetica 2013, 11, 821–826. [Google Scholar]
- Fernandez-Himenez, A.; Palonio, A. Characterization of fly ashes. Potential reactivity as alkaline cement. Fuel 2003, 18, 2259–2265. [Google Scholar] [CrossRef]
- Mishra, L.C.; Shukla, K.N. Effects of fly ash deposition on growth, metabolism and dry matter production of maize and soybean. Environ. Pol. Ser. A Ecol. Biol. 1986, 42, 1–13. [Google Scholar] [CrossRef]
- Ram, A.K.; Mohanry, S. State of the art review on physicochemical and engineering characteristics of fly ash and its applications. Int. J. Coal Sci. A Technol. 2022, 9, 9. [Google Scholar] [CrossRef]
- Kolbe, J.; Lee, L.S.; Jafvert, C.T.; Maruka, I.P. Use of Alkaline Coal Ash for Reclamation of a Former Strip Mine. In Proceedings of the World of Coal Ash (WOCA) Conference, Denver, CO, USA, 9–12 May 2011. [Google Scholar]
- Jafri, M.M.; Kumar, P. A feasibility study in low volume road embankment constructions using fly ash. Int. J. Electr. Electron. Commun. Eng. 2013, 3, 12. [Google Scholar]
- Singh, R.; Singh, D.P.; Kumar, N.; Bhargava, S.K.; Barman, S.C. Accumulation, and translocation of heavy metals in soil and plants from fly ash contaminated area. J. Environ. Biol. 2010, 31, 421–430. [Google Scholar]
- Moliner, A.M.; Street, J.J. Effect of fly ash and lime on growth and composition of corn (Zea mays L.) on acid sandy soil. Proc. Soil Crop Sci. Soc. Fla. 1982, 41, 217–220. [Google Scholar]
- Deighton, H.D.; Watmough, S.A. Effects of Non-Industrial Wood Ash (NIWA) Application on Soil Chemistry and Sugar Maple (Acer saccharum, Marsh.) Seeding Growth in an Acidic Sugar Bush in Central Ontario. Forestry 2020, 11, 693. [Google Scholar]
- Saarsalmi, A.; Malconen, E.; Pirainem, S. Effect of Wood Ash Fertilization on Forest Soil Chemical Properties. Silva Fenn. 2001, 35, 355–368. [Google Scholar] [CrossRef]
- Brożek, S.; Lasota, J.; Zwydak, M.; Wanic, T.; Gruba, P.; Błońska, E. Methodological approach to research on the relations between plants. Soil Sci. Ann. 2011, 62, 13–38. [Google Scholar]
- Kumar, U.; Mathur, M.; Preeti, K.S. Fly ash management: Vision for the new millennium. In Proceedings of the 2nd International Conference on Fly Ash Disposal and Utilization, FAM&CBIP, New Delhi, India, 2–4 February 2000; Volume 1, pp. 1–9. [Google Scholar]
- Cools, N.; Vesterdal, L.; De Vos, B.; Vanguelova, E.; Hausen, K. Tree species in the major factor explaining C/N ratios in European forest soils. For. Ecol. Manag. 2014, 311, 3–16. [Google Scholar] [CrossRef]
- Gaind, S.; Gaur, A.C. Quality assessment of compost prepared from fly ash and crop residue. Biores. Technol. 2003, 87, 125–127. [Google Scholar] [CrossRef] [PubMed]
- Mupambwa, H.A.; Dube, E.; Mnkeni, P.N.S. Fly ash composting to improve fertiliser value—A review. S. Afr. Journey Sci. 2015, 111, 1–6. [Google Scholar] [CrossRef]
- Schutler, S.M.E.; Jeffry, J.; Fuhrmann, J.J. Microbial responses to coal fly ash under field conditions. J. Environ. Qual. 1999, 28, 648–652. [Google Scholar] [CrossRef]
- Yunusa, I.A.M.; Braun, M.; Lawrie, R. Amount of soil coal ash modified the burrowing habitats of two earthworm species. Appl. Soil Ecol. 2009, 42, 63–68. [Google Scholar] [CrossRef]
- Odlare, M.; Peel, M. Effect of Wood fly ash and compost on nitrification and denitrification in agricultural soil. Appl. Energy 2009, 86, 74–80. [Google Scholar] [CrossRef]
- Ultra, V.U.J.; Manyiwa, T. Influence of mycorrhiza and fly ash on the survival, growth and heavy metal accumulation in tree Acacia species grown in Cu-Ni mine soil. Environ. Geochem. Health 2021, 43, 1337–1353. [Google Scholar] [CrossRef] [PubMed]
- Hrynkiewicz, K.; Baum, C.; Niedojadło, J.; Dahm, M. Promotion of mycorrhiza formation and growth of willows by the bacterial stain Sphingomonas sp. 23L on fly ash. Biol. Fert Soil 2009, 45, 385–394. [Google Scholar] [CrossRef]
- Rubinio, M.; Dungai, J.A.J.; Evershed, R.P.; Bertolini, T.; De Angelis, P.; D’Onofio, A.; Lagomarsino, A.; Lubritto, C.; Merola, A.; Terrasi, F.; et al. Carbon input belowground in the major C flux contributing to leaf litter mases loss: Evidence from a 13C labelled-leaf litter experiment. Soil Biol. Biochem. 2010, 42, 1009–1016. [Google Scholar] [CrossRef]
- Abelenda, A.M.; Sample, K.T.; Lag-Brotons, A.J.; Herbert, B.M.J.; Aggidis, G.; Aionache, F. Alkaline Wood Ash, Turbulence, and Traps with Excess of Sulfuric Acid do Not Strip Completely the Ammonia off an Agrowaste Digestate. Edelweiss Chem. Sci. J. 2021, 4, 19–24. [Google Scholar] [CrossRef]
- O’Reilly, S.E.; Sims, J.T. Phosphorus adsorption and desorption in a sand soil amended with light rates of coal fly ash. Comm. Soil Sci. Plant Anal. 1995, 26, 2983–2993. [Google Scholar] [CrossRef]
- Masto, R.; Mahato, M.K.; Ram, L. The Effect of Fly Ash Application on Phosphorus Availability in an Acid soil. Energy Sources Part A Recovery Util. Environ. Eff. 2013, 35, 1556–7230. [Google Scholar] [CrossRef]
- Bera, R.; Seal, A.; Bhattacharyya, P.; Mukhopadhyay, K.; Giri, R. Phosphate sorption desorption characteristics of some farraginous soil in tropical region in Eastern India. Environ. Geol. 2006, 51, 399–407. [Google Scholar] [CrossRef]
- Li, X.; Rubaek, G.H.; Sorensen, P. High plant availability of phosphorus and low availability of cadmium in four biomass combustion ashes. Sci. Total Environ. 2016, 557–558, 851–860. [Google Scholar] [CrossRef] [PubMed]
- Masto, R.E.; Anasari, M.A.; George, J.; Selvi, V.A.; Ram, L.C. Co application of biochar and lignite fly ash on soil nutrients and biological parameters and different crop growth stage of Zea mays. Ecol. Eng. 2013, 58, 314–322. [Google Scholar] [CrossRef]
- Grubb, D.G.; Guimares, M.S.; Valencia, R. Phosphate immobilization using an acidic type F fly ash. J. Hazard. Mater. 2000, 76, 217–236. [Google Scholar] [CrossRef] [PubMed]
- Wedepohl, K.H. The composition of the continental crust. Geochim. Cosnochim. Acta 1995, 57, 1217–1232. [Google Scholar] [CrossRef]
- Ashfanque, M.; Hecralal, M.; Reddy, P.H.P. A Study on Strength Behaviour of Alkali—Contaminated Soil Treated with Fly Ash. Rec. Waste Mater. 2019, 32, 137–143. [Google Scholar]
- Adriano, D.C.; Page, A.L.; Elseewi, A.A.; Chang, A.C.; Straughan, I. Utilization and Disposal of Fly Ash and Other Coal Residues in Terrestrial Ecosystems: A review. J. Environ. Qual. 1980, 9, 333–344. [Google Scholar] [CrossRef]
- Sikka, R.; Kansal, B.D. Effect of fly ash application on yield and nutrient composition of rice, wheat on pH and available nutrients status of soils. Biores. Technol. 1995, 51, 199–203. [Google Scholar] [CrossRef]
- Lai, K.; Chnobra, R.; Mogia, A.D.; Meena, R.L. Release and Uptake of Potassium and Sodium with Fly Ash Application in Rise on Reclaimed Alkali Soil. J. Indian Soc. Soil Sci. 2012, 60, 1–6. [Google Scholar]
- Grewald, K.S.; Metha, S.C.; Oswald, M.C.; Yadov, P.S. Effect of Fly Ash on Release Behaviour of Potassium in Soil of Arid Region. J. Indian Soc. Soil Sci. 1998, 46, 203–206. [Google Scholar]
- Wierzbowska, J.; Sienkiewicz, S.; Żarczyński, P.; Knebietke, S. Environmental Application of Ash from Incinerated Biomass. Agronomy 2020, 10, 482. [Google Scholar] [CrossRef]
- Goto, S.; Aoki, M.; Lang, C.D.; Takada, C.; Hayashi, H.; Chino, M. Potassium silicate fertilizer using Chinese fly ash and fertilizer response test. Japanese J. Soil Sci. Plant Nutr. 2000, 71, 378–384. [Google Scholar]
- Igras, S.; Lipiński, W. Evolution of selected elements of soil fertility and quality of shallow ground water on the background of crop production intensity in the region of frame. Pamiętnik Puławski 2006, 142, 147–161. (In Polish) [Google Scholar]
- Lai, K.M.; Ye, D.Y.; Wong, J.W.C. Enzyme activities in a sandy soil amended with sewage sludge and coal fly ash. Water Air Soil Pol. 1999, 113, 261–272. [Google Scholar] [CrossRef]
- Valentim, B.; Białecka, B.; Goncalves, P.A.; Guedes, A.; Guimaraes, R.; Cruceru, M.; Całus-Moszko, J.; Popescu, L.G.; Predeanu, G.; Santos, A.C. Undifferentiated Inorganics in Coal Fly Ash, and Bottom Ash: Calcispheres, Magnesia Calcispheres and Magnesia Spheres. Minerals 2008, 8, 140. [Google Scholar] [CrossRef]
- Cho, H.K.; Lee, H.S.; Wang, X.Y.; Ismal, M.; Park, W.J. Evaluation of CO2 emission-absorption of fly-ash-blended concentrate structures using cement-hydration-based carbonation model. Mater. Struct. 2015, 48, 3949–3963. [Google Scholar] [CrossRef]
- Pietrzykowski, M.; Woś, B.; Haus, N. Scotch pine needles macronutrient (N, P, K, Ca, Mg and S) supply at different reclaimed mine soil substrates as an indicator of the stability of developed forest ecosystems. Environ. Monit. Assess. 2013, 185, 7445–7457. [Google Scholar] [CrossRef] [PubMed]
- Adari, M.P.; Prasad, A.D. Cation exchange capacity (CEC) and unconfined compressive strength (UCS) of soil under the in-fluence of lime and fly ashes. In Proceedings of the National Conference on Technological Innovations in Civil Engineering—NCTICE 2017, Vadlamudi, India, 17–20 May 2017; Volume 3, pp. 2455–2462. [Google Scholar]
- Akbulut, S.; Seracettin, A. The Variations of Cation Exchange Capacity, pH, and Zeta Potential in Expansive soil Treated by Additives. Int. J. Civ. Struct. Eng. 2010, 1, 139–154. [Google Scholar]
- Rajput, V.D.; Minkina, T.; Sushkova, S.; Mandzhieva, S.; Gorovtsov, A.; Nievidomskyaya, D.; Gromacova, N. Effect of nanoparticles on crops and soil microbe communities. J. Soil Sediments 2018, 18, 2179–2187. [Google Scholar] [CrossRef]
- Pathan, S.M.; Aylmore LA, G.; Aylmore, G.; Colmer, T. Fly Ash Amendment of Sandy Soil to Improve Water and Nutrient Use Efficiency in Turf Culture. Int. Turfgrass Soc. Res. J. 2001, 9, 33–39. [Google Scholar]
- Kovacik, P.; Macak, M.; Ducsay, L.; Helcinova, M.; Jancich, M. Effect of fly-ash mixture application on soil fertility. J. Elem. 2011, 16, 215–225. [Google Scholar]
- Ellenberg, H.; Düll, R.; Wirth, V.; Werner, W.; Paulißen, D. Zeigerwerte von Pflanzen in Mitteleuropa. In Scripta Geobotanica; 18. 2 Auflage; Erich Goltze KG: Göttingen, Germany, 1992; p. 248. [Google Scholar]
- Brzeziecki, B.; Kienast, F. Classifying the life-history strategies of trees based on the Grimian model. For. Ecol. Manag. 1992, 69, 167–187. [Google Scholar] [CrossRef]
- Grime, J.P.; Hodgson, J.G.; Hunt, R. Comparative Plant Ecology: A Functional Approach to Common British Species; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Löf, M.; Bergquist, J.; Brunet, J.; Karlsson, M.; Welander, N.T. Conversion of Norway spruce stands ds to broadleaved woodland—Regeneration systems, fencing and performance of planted seedlings. Ecol. Bull. 2010, 53, 165–173. [Google Scholar]
- Kullberg, Y.; Bergström, R. Winter browsing by large herbivores on planted deciduous seedlings in southern Sweden. Scand. J. For. Res. 2001, 16, 371–378. [Google Scholar] [CrossRef]
- Dyderski, M.K.; Jagodziński, A.M. Context-dependence of urban forest vegetation invasion level and alien species’ ecological success. Forests 2019, 10, 26. [Google Scholar] [CrossRef]
- Chmura, D. The spread and role of the invasive alien tree Quercus rubra (L.) in novel forest ecosystems in Central Europe. Forests 2020, 11, 586. [Google Scholar] [CrossRef]
- Jasionkowski, R.; Wojciechowska, A.; Kamiński, D.; Piernik, A. Meadow species in early stages of succession on the ash settler of power plant EDF Toruń SA in Toruń, Poland. Ecol. Quest. 2016, 23, 79–86. [Google Scholar] [CrossRef]
- Żołnierz, L.; Weber, J.; Gilewska, M.; Strączyńska, S.; Pruchniewicz, D. The spontaneous development of understory vegetation on reclaimed and afforested post-mine excavation filled with fly ash. Catena 2016, 136, 84–90. [Google Scholar] [CrossRef]
- Lambers, H.; Oliveira, R.S. Plant Physiological Ecology, 3rd ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Singh, S.; Tripathi, D.K.; Singh, S.; Sharma, S.; Dubey, N.K.; Chauhan, D.K.; Vaculík, M. Toxicity of aluminium on various levels of plant cells and organism: A review. Environ. Exp. Bot. 2017, 137, 177–193. [Google Scholar] [CrossRef]
- Gough, L.; Shaver, G.R.; Carroll, J.; Royer, D.L.; Laundre, J.A. Vascular plant species richness in Alaskan arctic tundra: The importance of soil pH. J. Ecol. 2000, 88, 54–66. [Google Scholar] [CrossRef]
- van der Welle, M.E.W.; Vermeulen, P.J.; Berendse, F.; Shaver, G.R. Factors determining plant species richness in Alaskan arctic tundra. J. Veg. Sci. 2003, 14, 711–720. [Google Scholar] [CrossRef]
- Jaworski, A. Silviculture Characteristic of Forest Trees; Gutenberg: Kraków, Poland, 1995. [Google Scholar]
- Pigott, C.D. Biological flora of the British Isles Tilia cordata (Miller) (T. europaea, L. pro parte, T. parvifolia Ehrh. Ex Hoffm., T. sylvestris Desf., T. foemina folio minure Bauhin). J. Ecol. 1991, 79, 1147–1207. [Google Scholar] [CrossRef]
- Radoglu, K.; Dobrowolska, D.; Spyroglu, G.; Nikolescu, V.N. A Review on the Ecology and Silviculture of Limes (Tilia cordata Mill, Tilia platyphyllos Scop. and Tilia tomentosa Moench) in Europe. 2008. Available online: http://www.valbro.uni-freiburg.de/pdf/paper_tilia.pdf (accessed on 1 January 2020).
- Pandey, V.C.; Singh, K.; Singh, K.P.; Singh, B. Naturally growing Saccharum munja L.on the fly ash lagoons: A potential ecologicalengineer for the revegetation and stabilization. Ecol. Eng. 2012, 40, 95–99. [Google Scholar] [CrossRef]
- Brożek, S.; Zwydak, M.; Lasota, J. Numerical index of trophy varieties and rusty soil. Soil Sci. Ann. 2008, 59, 7–17. [Google Scholar]
- Yao, Z.T.; Ji, X.S.; Sarker, P.K.; Tang, J.H.; Ge, L.Q.; Xie, M.S.; Xi, Y.Q. A comprehensive review on the applications of coal fly ash. Earth-Sci. Rev. 2015, 141, 105–121. [Google Scholar] [CrossRef]
Fly Ash | Depth | P | K | Mg | pH | CaCO3 | C | N | C/N | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[t ha−1] | [cm] | [mg 100g−1 Soil] | [KCl] | [%] | |||||||||||||
1990 | 2022 | 1990 | 2022 | 1990 | 2022 | 1990 | 2022 | 1990 | 2022 | 1990 | 2022 | 1990 | 2022 | 1990 | 2022 | ||
0 | 9–0 | n.d. | 1.2 | n.d. | 55.1 | n.d. | 32.2 | n.d. | 2.9 | 0 | 0 | n.d. | 45.8 | n.d. | 1.26 | n.d. | 36 |
0–10 | 1.39 | 0.74 | 5.81 | 2.41 | 1.27 | 0.54 | 3.7 | 4.0 | 0 | 0 | 1.49 | 0.56 | 0.11 | 0,03 | 14 | 19 | |
10–20 | 0.52 | 0.61 | 1.66 | 1.49 | 0.84 | 0.42 | 3.7 | 4.1 | 0 | 0 | 0.41 | 0.30 | 0.01 | 0.02 | 41 | 15 | |
20–40 | 2.44 | 0.61 | 5.29 | 2.32 | 0.96 | 0.48 | 3.8 | 4.1 | 0 | 0 | 0.89 | 0.13 | 0.07 | 0.01 | 13 | 13 | |
250 | 8–0 | n.d. | 23.3 | n.d. | 63.9 | n.d. | 60.4 | n.d. | 3.3 | 0 | 0 | n.d. | 43.7 | n.d. | 1.21 | n.d. | 33 |
0–15 | 5.93 | 0.83 | 1.24 | 0.83 | 8.62 | 0.54 | 6.0 | 4.1 | 0 | 0 | 1.97 | 1.15 | 0.12 | 0.05 | 27 | 19 | |
15–25 * | 7.19 | 3.66 | 1.24 | 1.16 | 20.0 | 3.50 | 7.2 | 4.8 | 0.17 | 0 | 2.98 | 3.26 | 0.11 | 0.09 | 52 | 22 | |
25–40 | 0.61 | 2.05 | 0,41 | 0.58 | 5.91 | 0.90 | 6.1 | 4.2 | 0 | 0 | 0.26 | 0.49 | 0.02 | 0.03 | 45 | 29 | |
500 | 9–0 | n.d. | 17.8 | n.d. | 54.7 | n.d. | 53.5 | n.d. | 3.5 | 0 | 0 | n.d. | 42.8 | n.d. | 1.28 | n.d. | 33 |
0–10 | 5.01 | 0.93 | 1.66 | 1.33 | 13.8 | 0.84 | 6.9 | 3.8 | 0 | 0 | 3.18 | 1.36 | 0.12 | 0.07 | 27 | 19 | |
10–25 * | 17.6 | 2.22 | 3.73 | 2.24 | 6.93 | 9.41 | 7.6 | 5.7 | 0.34 | 0 | 5.23 | 2.44 | 0.15 | 0.11 | 52 | 22 | |
25–40 | 0.61 | 1.05 | 1.66 | 1.83 | 2.11 | 0.72 | 4.0 | 4.0 | 0 | 0 | 4.74 | 1.17 | 0.11 | 0.04 | 45 | 29 | |
1000 | 7–0 | n.d. | 16.8 | n.d. | 44.4 | n.d. | 47.9 | n.d. | 3.5 | 0 | 0 | n.d. | 33.3 | n.d. | 1.12 | n.d. | 32 |
0–10 | 2.88 | 0.61 | 3.73 | 2.41 | 6.51 | 0.48 | 7.2 | 4.3 | 0 | 0 | 3.63 | 0.87 | 0.13 | 0.04 | 29 | 22 | |
10–30 * | 5.62 | 16.1 | 2.90 | 3.32 | 5.91 | 11.8 | 7.5 | 7.4 | 1.17 | 0.41 | 5.35 | 4.93 | 0.06 | 0.10 | 67 | 49 | |
30–40 | 24.2 | 0.61 | 4.56 | 2.32 | 9.04 | 3.38 | 7.8 | 6.7 | 1.17 | 0 | 3.44 | 0.41 | 0.08 | 0.05 | 23 | 8 | |
2000 | 7–0 | n.d. | 44.9 | n.d. | 106 | n.d. | 123 | n.d. | 5.1 | 0 | 0 | n.d. | 36.1 | n.d. | 1.04 | n.d. | 34 |
0–10 * | 23.5 | 15.0 | 7.47 | 3.73 | 20.5 | 16.3 | 8.1 | 6.9 | 1.84 | 0 | 6.39 | 7.70 | 0.09 | 0.20 | 69 | 38 | |
10–40 * | 22.4 | 16.7 | 9.13 | 2.32 | 20.8 | 9.53 | 8.0 | 7.6 | 2.56 | 2.70 | 7.81 | 7.82 | 0.09 | 0.18 | 84 | 43 | |
40–60 * | 22.4 | 16.4 | 9.96 | 2.24 | 42.2 | 10.1 | 8.1 | 7.8 | 2.18 | 1.45 | 10.3 | 6.89 | 0.18 | 0.15 | 57 | 46 | |
60–80 | 2.79 | 0.57 | 2.49 | 2.07 | 16.0 | 4.04 | 4.0 | 7.4 | 0 | 0 | 0.61 | 0.42 | n.d. | n.d. | n.d. | n.d. | |
Fly ash ** | 35.6 | 34.1 | 51.1 | 10.0 | 4.20 | 4.00 | 0.03 | 133 |
Fly Ash | Depth | TA | Ca+2 | Mg+2 | Na+ | K+ | SC | CEC | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[t ha−1] | [cm] | cmol (+) (kg)−1 | |||||||||||||
1990 | 2022 | 1990 | 2022 | 1990 | 2022 | 1990 | 2022 | 1990 | 2022 | 1990 | 2022 | 1990 | 2022 | ||
0 | 9–0 | n.d. | 55.89 | n.d. | 2.56 | n.d. | 1.96 | n.d. | 0.09 | n.d. | 1.53 | n.d. | 6.14 | n.d. | 62.0 |
0–10 | 9.05 | 6.16 | 0.90 | 0.48 | 0.33 | 0.06 | 0.10 | 0.03 | 0.14 | 0.05 | 1.47 | 1.58 | 10.52 | 6.78 | |
10–20 | 2.84 | 3.00 | 0.80 | 0.36 | 0.21 | 0.04 | 0.06 | 0.03 | 0.08 | 0.02 | 1.15 | 0.45 | 3.99 | 3.43 | |
20–40 | 9.02 | 1.10 | 0.90 | 0.30 | 0.15 | 0.05 | 0.07 | 0.01 | 0.11 | 0.02 | 1.23 | 0.38 | 10,25 | 1.48 | |
250 | 8–0 | n.d. | 37.48 | n.d. | 2.10 | n.d. | 3.49 | n.d. | 0.09 | n.d. | 1.41 | n.d. | 7.09 | n.d. | 44.5 |
0–15 | 1.40 | 8.30 | 1.60 | 0.92 | 1.68 | 0.08 | 0.10 | 0.21 | 0.10 | 0.06 | 3.48 | 1.27 | 4.88 | 9.57 | |
15–25 * | 0.44 | 6.95 | 3.50 | 0.60 | 3.59 | 0.51 | 0.17 | 0.03 | 0.12 | 0.05 | 7.38 | 1.19 | 7.77 | 8.14 | |
25–40 | 0.54 | 4.90 | 1.20 | 0.22 | 0.80 | 0.14 | 0.10 | 0.01 | 0.06 | 0.03 | 2.16 | 0.40 | 2.7 | 5.30 | |
500 | 9–0 | n.d. | 33.74 | n.d. | 1.80 | n.d. | 3.45 | n.d. | 0.05 | n.d. | 1.09 | n.d. | 6.39 | n.d. | 40.9 |
0–10 | 0.48 | 9.02 | 1.60 | 0.14 | 2.49 | 0.13 | 0.14 | 0.01 | 0.10 | 0.06 | 4.33 | 0.34 | 4.81 | 10.5 | |
10–25 * | 0.23 | 3.48 | 4.10 | 1.62 | 0.62 | 1.46 | 0.21 | 0.01 | 0.21 | 0.04 | 5.14 | 3.13 | 5.37 | 10.7 | |
25–40 | 5.28 | 7.32 | 0.20 | 0.18 | 0.38 | 0.09 | 0.09 | 0.01 | 0.08 | 0.03 | 0.75 | 0.31 | 6.03 | 7.87 | |
1000 | 7–0 | n.d. | 37.28 | n.d. | 1.42 | n.d. | 2.67 | n.d. | 0.09 | n.d. | 0.89 | n.d. | 5.07 | n.d. | 42.3 |
0–10 | 0.18 | 6.79 | 2.20 | 0.28 | 0.73 | 0.08 | 0.21 | 0.03 | 0.30 | 0.06 | 3.44 | 0.45 | 3.62 | 7.24 | |
10–30 * | 0.12 | 0.06 | 1.90 | 3.86 | 1.60 | 2.31 | 0.17 | 0.05 | 0.20 | 0.07 | 3.87 | 6.29 | 3.99 | 6.35 | |
30–40 | 0.09 | 1.17 | 7.20 | 0.16 | 2.22 | 0.18 | 0.40 | 0.03 | 0.48 | 0.02 | 10.30 | 0.39 | 10.39 | 1.56 | |
2000 | 7–0 | n.d. | 24.59 | n.d. | 7.56 | n.d. | 7.75 | n.d. | 0.04 | n.d. | 1.89 | n.d. | 17.24 | n.d. | 41.8 |
0–10 * | 0.08 | 2.24 | 8.20 | 3.92 | 5.04 | 3.53 | 0.33 | 0.09 | 0.56 | 0.11 | 14.13 | 7.65 | 14.21 | 9.89 | |
10–40 * | 0.05 | 0.04 | 14.35 | 6.04 | 5.12 | 2.56 | 0.52 | 0.06 | 0.58 | 0.04 | 20.57 | 8.70 | 20.62 | 8.74 | |
40–60 * | 0.10 | 0.23 | 18.00 | 1.76 | 10.37 | 1.31 | 0.45 | 0.01 | 0.66 | 0.02 | 29.48 | 3.10 | 29.58 | 3.33 | |
60–80 | 5.18 | 0.20 | 0.30 | 1.00 | 1.35 | 0.70 | 0.19 | 0.01 | 0.28 | 0.02 | 2.12 | 1.73 | 7.30 | 1.93 |
Number of plots | 1 | 2 | 3 | 4 | 5 |
Dose of ash (t ha−1) | 0 | 250 | 500 | 1000 | 2000 |
Tree canopy cover (%) | 50 | 80 | 45 | 35 | 97 |
Dbh (cm) | 17 | 22 | 25 | 18 | 15 |
Hight of trees (m) | 18 | 20 | 25 | 18 | 15 |
Total number of species | 9 | 12 | 7 | 9 | 8 |
Tree layer | |||||
Larix decidua | 3 | 3 | 2 | ||
Pinus nigra | 2 | 1 | 3 | 1 | |
Pinus sylvestris | 1 | 2 | 2 | ||
Fagus sylvatica | 2 | ||||
Quercus rubra | 1 | ||||
Tilia cordata | 5 | ||||
Shrub Layer | |||||
Sorbus aucuparia | + | + | |||
Tilia cordata | + | ||||
Herb layer | |||||
Pteridium aquilinum | 4 | 4 | + | ||
Stelaria media | + | ||||
Vaccinium myrtillus | 2 | + | + | + | |
Lysimachia europaea | 1 | + | 2 | 3 | + |
Stachys sylvatica | 1 | ||||
Poa nemoralis | + | + | |||
Brachypodium sylvaticum | 2 | 1 | + | ||
Calamagrostis epigejos | 1 | 1 | 1 | ||
Moss layer | |||||
Pleurozium schreberi | 3 | 2 | 3 | 3 | 2 |
Dicranum undulatum | + | ||||
Leucobryum glaucum | + | ||||
Polytrichum commune | + |
Variable | Depth | pH | P | K | Mg | C | N |
---|---|---|---|---|---|---|---|
pH | 0.62 | ||||||
P | −0.34 | 0.06 | |||||
K | −0.49 | −0.36 | −0.34 | ||||
Mg | −0.43 | −0.19 | 0.91 | 0.97 | |||
C | −0.45 | −0.40 | 0.77 | 0.90 | 0.81 | ||
N | −0.53 | −0.44 | 0.73 | 0.90 | 0.81 | 0.99 | |
CEC | −0.52 | −0.51 | 0.68 | 0.86 | 0.74 | 0.98 | 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogacz, A.; Kasowska, D.; Telega, P.; Dradrach, A. Influence of Fly Ash on Soil Properties and Vegetation of Fresh Coniferous Forest during Long-Term Observation. Forests 2024, 15, 593. https://doi.org/10.3390/f15040593
Bogacz A, Kasowska D, Telega P, Dradrach A. Influence of Fly Ash on Soil Properties and Vegetation of Fresh Coniferous Forest during Long-Term Observation. Forests. 2024; 15(4):593. https://doi.org/10.3390/f15040593
Chicago/Turabian StyleBogacz, Adam, Dorota Kasowska, Paweł Telega, and Agnieszka Dradrach. 2024. "Influence of Fly Ash on Soil Properties and Vegetation of Fresh Coniferous Forest during Long-Term Observation" Forests 15, no. 4: 593. https://doi.org/10.3390/f15040593
APA StyleBogacz, A., Kasowska, D., Telega, P., & Dradrach, A. (2024). Influence of Fly Ash on Soil Properties and Vegetation of Fresh Coniferous Forest during Long-Term Observation. Forests, 15(4), 593. https://doi.org/10.3390/f15040593