New Data on Phytochemical and Morphophysiological Characteristics of Platycladus orientalis L. Franco and Thuja occidentalis L. Conifer Trees in Polluted Urban Areas of Kazakhstan
Abstract
:1. Introduction
- A.
- Morpho-anatomical characteristics;
- B.
- Gas exchange properties and chlorophyll fluorescence;
- C.
- Essential oil chemical composition and their cytotoxicity, evaluated through the mortality of Artemia salina larvae.
2. Materials and Methods
2.1. Study Area
2.2. Plant Material
2.3. Morpho-Anatomical Observation
2.4. Chlorophyll Fluorometers Study
2.5. Non-Targeted Metabolomic Analysis of Essential Oils by Using Gas Chromatography Coupled with Mass Spectrometry Detection
2.6. Cytotoxicity Assay
- A—number of dead larvae after 24 h;
- N—number of dead larvae before the test;
- B—the average number of dead larvae in the negative control;
- Z—the total number of larvae.
2.7. Statistical Analysis
3. Results and Discussion
3.1. Morpho-Anatomical Characterization
3.2. Photosynthetic Properties
3.3. Phytochemical Composition
3.4. Cytotoxic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, B.; Brack, C.L. Urban forest responses to climate change: A case study in Canberra. Urban For. Urban Green. 2021, 57, 126910. [Google Scholar] [CrossRef]
- Sharma, A.; Andhikaputra, G.; Wang, Y.C. Heatwaves in South Asia: Characterization, consequences on human health, and adaptation strategies. Atmosphere 2022, 13, 734. [Google Scholar] [CrossRef]
- Ulpiani, G. On the linkage between urban heat island and urban pollution island: Three-decade literature review towards a conceptual framework. Sci. Total Environ. 2021, 751, 141727. [Google Scholar] [CrossRef]
- Percival, G.C. Heat tolerance of urban tree species-a review. Urban For. Urban Green. 2023, 86, 128021. [Google Scholar] [CrossRef]
- Bialecki, M.B.; Fahey, R.T.; Scharenbroch, B. Variation in urban forest productivity and response to extreme drought across a large metropolitan region. Urban Ecosyst. 2018, 21, 157–169. [Google Scholar] [CrossRef]
- Abdollahi, P.; Soltani, A.; Beigi Harchegani, H.A. Evaluation of salinity tolerance in four suitable tree species in urban forestry. Iran. J. For. Poplar Res. 2011, 19, 265–282. [Google Scholar] [CrossRef]
- Shabanian, N.; Cheraghi, C. Comparison of phytoremediation of heavy metals by woody species used in urban forestry of Sanandaj city. Iran. J. For. Poplar Res. 2013, 21, 154–165. [Google Scholar] [CrossRef]
- Škrbić, B.; Đurišić-Mladenović, N.; Živančev, J.; Tadić, Đ. Seasonal occurrence and cancer risk assessment of polycyclic aromatic hydrocarbons in street dust from the Novi Sad city, Serbia. Sci. Total Environ. 2019, 647, 191–203. [Google Scholar] [CrossRef]
- Yousofpour, Y.; Abolhassani, L.; Hirabayashi, S.; Burgess, D.; Sabouni, M.S.; Daneshvarkakhki, M. Ecosystem services and economic values provided by urban park trees in the air polluted city of Mashhad. Sustain. Cities Soc. 2024, 101, 105110. [Google Scholar] [CrossRef]
- Kerimray, A.; Azbanbayev, E.; Kenessov, B.; Plotitsyn, P.; Alimbayeva, D.; Karaca, F. Spatiotemporal variations and contributing factors of air pollutants in Almaty, Kazakhstan. Aerosol Air Qual. Res. 2020, 20, 1340–1352. [Google Scholar] [CrossRef]
- Bočkova, S.; Bohovic, R.; Hrnčiar, M.; Muroň, M.; Chytrý, J.; Skalský, M.; Černochová, M.; Kalmykov, D. Air Pollution in Kazakhstan as Seen from Space: Fundamental Analysis, Focus on the Karaganda Region, and Notes on Kazakhstan’s Broader Impact on Climate Change; Labohy, J., Ed.; World from Space: Brno, Czech Republic, 2023; ISBN 978-80-88508-16-8. [Google Scholar]
- Rahmonov, O.; Pukowiec-Kurda, K.; Banaszek, J.; Brom, K. Floristic diversity in selected city parks in southern Poland. Ochr. Sr. I Zasobow Nat. 2020, 30, 8–17. [Google Scholar] [CrossRef]
- Ahn, J.W.; Dinh, T.V.; Park, S.Y.; Choi, I.Y.; Park, C.R.; Son, Y.S. Characteristics of biogenic volatile organic compounds emitted from major species of street trees and urban forests. Atmos. Pollut. Res. 2022, 13, 101470. [Google Scholar] [CrossRef]
- Zorić, M.; Kostić, S.; Kladar, N.; Božin, B.; Vasić, V.; Kebert, M.; Orlović, S. Phytochemical screening of volatile organic compounds in three common coniferous tree species in terms of forest ecosystem services. Forests 2021, 12, 928. [Google Scholar] [CrossRef]
- Antonelli, M.; Donelli, D.; Barbieri, G.; Valussi, M.; Maggini, V.; Firenzuoli, F. Forest volatile organic compounds and their effects on human health: A state-of-the-art review. Int. J. Environ. Res. Public Health 2020, 17, 6506. [Google Scholar] [CrossRef]
- Kebert, M.; Kostić, S.; Rašeta, M.; Stojanović, D.V.; Stojnić, S.; Orlović, S. Species-specific level variation in polyamines in coniferous and deciduous woody plant species in urban areas. Horticulturae 2023, 9, 1157. [Google Scholar] [CrossRef]
- McPherson, E.G.; Berry, A.M.; van Doorn, N.S. Performance testing to identify climate-ready trees. Urban For. Urban Green. 2018, 29, 28–39. [Google Scholar] [CrossRef]
- Skok, A.V. Assessment of ecological condition of coniferous plants in the urbanized territory. Perm Agrar. J. 2018, 21, 155–159. [Google Scholar]
- Pudełek, M.; Catapano, J.; Kochanowski, P.; Mrowiec, K.; Janik-Olchawa, N.; Czyż, J.; Ryszawy, D. Therapeutic potential of monoterpene α-thujone, the main compound of Thuja occidentalis L. essential oil, against malignant glioblastoma multiforme cells in vitro. Fitoterapia 2019, 134, 172–181. [Google Scholar] [CrossRef]
- Akkol, E.K.; İlhan, M.; Demirel, M.A.; Keleş, H.; Tümen, I.; Süntar, İ. Thuja occidentalis L. and its active compound, α-thujone: Promising effects in the treatment of polycystic without inducing osteoporosis. J. Ethnopharmacol. 2015, 168, 25–30. [Google Scholar] [CrossRef]
- Rehman, R.; Zubair, M.; Bano, A.; Hewitson, P.; Ignatova, S. Isolation of industrially valuable α-cedrol from essential oil of Platycladus orientalis (Thuja orientalis) leaves using linear gradient counter current chromatography. Ind. Crops Prod. 2022, 176, 114297. [Google Scholar] [CrossRef]
- Alves, L.D.S.; Figueirêdo, C.B.M.; Silva, C.C.A.R.; Marques, G.S.; Ferreira, P.A.; Soares, M.F.R.; Silva, R.M.; Rolim-Neto, P.J. Thuja occidentalis L. (Cupressaceae): Review of botanical, phytochemical, pharmacological and toxicological aspects. Int. J. Ppharm. Sci. Res. 2014, 5, 1163. [Google Scholar] [CrossRef]
- Stein, R.A.; Sheldon, N.D.; Smith, S. Rapid response to anthropogenic climate change by Thuja occidentalis: Implications for past climate reconstructions and future climate predictions. PeerJ 2019, 7, e7378. [Google Scholar] [CrossRef]
- Cui, N.; Qu, L.; Wu, G. Heavy metal accumulation characteristics and physiological response of Sabina chinensis and Platycladus orientalis to atmospheric pollution. J. Environ. Sci. 2022, 112, 192–201. [Google Scholar] [CrossRef]
- Safaralie, A.; Fatemi, S.; Salimi, A. Experimental design on supercritical extraction of essential oil from valerian roots and study of optimal conditions. Food Bioprod. Process. 2010, 88, 312–318. [Google Scholar] [CrossRef]
- Rahmani, F.; Sodaeizadeh, H.; Yazdani-Biouki, R.; Hakimzadeh-Ardakani, M.A.; Aliabadi, K.K. Effect of bio-priming on morphological, physiological and essential oil of Chamomile (Matricaria chamomilla L.) under salinity stress. S. Afr. J. Bot. 2024, 167, 630–642. [Google Scholar] [CrossRef]
- Kumar, D.; Punetha, A.; Khan, A.; Suryavanshi, P.; Yogendra, N.D.; Padalia, R.C. Assessment of soil moisture stress induced variability in oil content and composition in mint species. Biochem. Syst. Ecol. 2024, 113, 104774. [Google Scholar] [CrossRef]
- Viladomat, F.; Bastida, J. General overview of plant secondary metabolism. In Plant Biology and Biotechnology; Volume I: Plant Diversity, Organization, Function and Improvement; Springer: Berlin/Heidelberg, Germany, 2015; pp. 539–568. [Google Scholar] [CrossRef]
- Atkinson, N.J.; Urwin, P.E. The interaction of plant biotic and abiotic stresses: From genes to the field. J. Exp. Bot. 2012, 63, 3523–3543. [Google Scholar] [CrossRef]
- Starikova, E.A.; Voskresenskaja, O.L.; Sarbaeva, E.V. Change of a pigmentary complex of a fir-tree prickly in the conditions of the urban environment. Int. Sci. Res. J. 2016, 10, 46–48. [Google Scholar]
- Sperdouli, I.; Moustaka, J.; Ouzounidou, G.; Moustakas, M. Leaf age-dependent photosystem II photochemistry and oxidative stress responses to drought stress in Arabidopsis thaliana are modulated by flavonoid accumulation. Molecules 2021, 26, 4157. [Google Scholar] [CrossRef]
- Chakraborty, S.; Afaq, N.; Singh, N.; Majumdar, S. Antimicrobial activity of Cannabis sativa, Thuja orientalis and Psidium guajava leaf extracts against methicillin-resistant Staphylococcus Aureus. J. Integr. Med. 2018, 16, 350–357. [Google Scholar] [CrossRef]
- Figueiredo, C.B.M.; Alves, L.D.S.; Silva, C.C.A.R.; Ferreira, P.A.; Marques, G.S.; Santana, A.S.C.O.; Randau, K.P.; Pimentel, R.M.M.; Silva, R.M.F.; Rolim-Neto, P.J. Physical-chemical characterization, anatomical and seasonal evaluation of Thuja occidentalis L. (Cupressaceae). Int. J. Pharm. Sci. Res. 2014, 5, 1721–1731. [Google Scholar] [CrossRef]
- Wang, R.; Nie, L.; Zhang, S.; Cui, Q.; Jia, M. Research progress on plant resistance to heavy metal stress. Acta Hortic. Sin. 2019, 46, 157–170. [Google Scholar] [CrossRef]
- Hoffmann, N.; Schall, P.; Ammer, C.; Leder, B.; Vor, T. Drought sensitivity and stem growth variation of nine alien and native tree species on a productive forest site in Germany. Agric. For. Meteorol. 2018, 256, 431–444. [Google Scholar] [CrossRef]
- Agarwal, P.; Sarkar, M.; Chakraborty, B.; Banerjee, T. Phytoremediation of air pollutants: Prospects and challenges. In Phytomanagement of Polluted Sites; Elsevier: Amsterdam, The Netherlands, 2019; Volume 7, pp. 221–241. [Google Scholar] [CrossRef]
- González, M.C.; Cejudo, F.J.; Sahrawy, M.; Serrato, A.J. Current knowledge on mechanisms preventing photosynthesis redox imbalance in plants. Antioxidants 2021, 10, 1789. [Google Scholar] [CrossRef]
- Czarnocka, W.; Karpiński, S. Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radic. Biol. Med. 2018, 122, 4–20. [Google Scholar] [CrossRef]
- Agathokleous, E.; Kitao, M.; Calabrese, E.J. Hormesis: A compelling platform for sophisticated plant science. Trends Plant Sci. 2019, 24, 318–327. [Google Scholar] [CrossRef]
- Tyystjärvi, E. Photoinhibition of photosystem II. Int. Rev. Cell Mol. Biol. 2013, 300, 243–303. [Google Scholar] [CrossRef] [PubMed]
- Adamakis, I.D.S.; Sperdouli, I.; Eleftheriou, E.P.; Moustakas, M. Hydrogen peroxide production by the spot-like mode action of bisphenol A. Front. Plant Sci. 2020, 11, 1196. [Google Scholar] [CrossRef]
- Adamakis, I.D.S.; Sperdouli, I.; Hanć, A.; Dobrikova, A.; Apostolova, E.; Moustakas, M. Rapid hormetic responses of photosystem II photochemistry of clary sage to cadmium exposure. Int. J. Mol. Sci. 2020, 22, 41. [Google Scholar] [CrossRef]
- Ruban, A.V. Nonphotochemical chlorophyll fluorescence quenching: Mechanism and effectiveness in protecting plants from photodamage. Plant Physiol. 2016, 170, 1903–1916. [Google Scholar] [CrossRef]
- Orekhov, D.I.; Yakovleva, O.V.; Goryachev, S.N.; Protopopov, F.F.; Alekseev, A.A. The use of parameters of chlorophyll a fluorescence induction to evaluate the state of plants under anthropogenic load. Biophysics 2015, 60, 263–268. [Google Scholar] [CrossRef]
- Ogunkunle, C.; Oyedeji, S.; Adeniran, I.F.; Olorunmaiye, K.S.; Fatoba, P.O. Thuja occidentalis and Duranta repens as indicators of urban air pollution in industrialized areas of southwest Nigeria. Agric. Conspec. Sci. 2019, 84, 193–202. [Google Scholar]
- Boncan, D.A.T.; Tsang, S.S.; Li, C.; Lee, I.H.; Lam, H.M.; Chan, T.F.; Hui, J.H. Terpenes and terpenoids in plants: Interactions with environment and insects. Int. J. Mol. Sci. 2020, 21, 7382. [Google Scholar] [CrossRef] [PubMed]
- Novoa, M.L.; Escalante, Y.; Maldonado, L.; Galindo-Castro, I.; Álvarez, A.; Figarella, K.; Villamizar, J.E. Synthesis and bio-logical evaluation of (−)-13, 14-dihydroxy-8, 11, 13-podocarpatrien-7-one and derivatives from (+)-manool. Nat. Prod. Res. 2015, 29, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Parra, A.L.; Yhebra, R.S.; Sardiñas, I.G.; Buela, L.I. Comparative study of the assay of Artemia salina L. and the estimate of the medium lethal dose (LD50 value) in mice, to determine oral acute toxicity of plant extracts. Phytomedicine 2001, 8, 395–400. [Google Scholar] [CrossRef]
- Radulović, N.S.; Gencic, M.; Stojanović, N.M.; Randjelović, P.J.; Stojanović-Radić, Z.Z.; Stojiljković, N. Toxic essential oils. Part V: Behaviour modulating and toxic properties of thujones and thujone-containing essential oils of Salvia officinalis L., Artemisia absinthium L., Thuja occidentalis L. and Tanacetum vulgare L. Food Chem. Toxicol. 2017, 105, 355–369. [Google Scholar] [CrossRef]
- Biswas, R.; Mandal, S.K.; Dutta, S.; Bhattacharyya, S.S.; Boujedaini, N.; Khuda-Bukhsh, A.R. Thujone-rich fraction of Thuja occidentalis demonstrates major anti-cancer potentials: Evidences from in vitro studies on A375 cells. J. Evid. Based Complement. Altern. Med. 2011, 2011, 568148. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.; Vargas, Y.; Uribe, D.; Carrasco, C.; Torres, C.; Rocha, R.; Oyarzun, C.; Martin, R.S.; Quezada, C. Pro-apoptotic and anti-angiogenic properties of the α/β-thujone fraction from Thuja occidentalis on glioblastoma cells. J. Neurooncol. 2016, 128, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Malhocká, A.; Švábová, M. Diversity of the terpene synthesis in the Thuja species—A comparative chemotaxonomic study. Biochem. Syst. Ecol. 2023, 110, 104703. [Google Scholar] [CrossRef]
- Hashemi, S.M.; Safavi, S.A. Chemical constituents and toxicity of essential oils of oriental Arborvitae, Platycladus orientalis (L.) Franco, against three stored-product beetles. Chilean J. Agric. Res. 2012, 72, 188–194. [Google Scholar] [CrossRef]
- Khammassi, M.; Ayed, R.B.; Khedhiri, S.; Souihi, M.; Hanana, M.; Amri, I.; Hamrouni, L. Crude extracts and essential oil of Platycladus orientalis (L.) Franco: A source of phenolics with antioxidant and antibacterial potential as assessed through a chemometric approach. Turk. J. Agric. For. 2022, 46, 477–487. [Google Scholar] [CrossRef]
- Zhao, J.; Hartmann, H.; Trumbore, S.E.; Ziegler, W.; Zhang, Y. High temperature causes negative whole-plant carbon balance under mild drought. New Phytol. 2013, 200, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Kycheryavyi, V.; Popovych, V.; Dyda, O.; Shuplat, T.I.; Bosak, P. The Influence of climatic and edaphic conditions on the development of Thuja occidentalis ‘Smaragd’ under the urban conditions of a large city. J. Ecol. Eng. 2021, 22, 325–332. [Google Scholar] [CrossRef]
- Housset, J.M.; Girardin, M.P.; Baconnet, M.; Carcaillet, C.; Bergeron, Y. Unexpected warming-induced growth decline in Thuja occidentalis at its northern limits in North America. J. Biogeogr. 2015, 42, 1233–1245. [Google Scholar] [CrossRef]
Retention Time, min | Compound | Relative Abundance (%) |
---|---|---|
8.7 | Terpineol, cis-β | 0.35 |
9.8 | Eucalyptol | 0.25 |
10.0 | L-Fenchone | 2.35 |
10.3 | Thujone | 16.42 |
12.0 | endo-Borneol | 0.85 |
13.7 | 1,2,2,3-Tetramethylcyclopent-3-enol | 0.78 |
13.8 | γ-Terpineol | 0.70 |
14.9 | Bornyl acetate | 2.14 |
16.7 | α-Terpineol acetate | 0.81 |
16.8 | Oxalic acid, 1-menthyl pentyl ester | 0.76 |
17.2 | 9-Ethylbicyclo(3.3.1)nonan-9-ol | 0.40 |
17.7 | Caryophyllene | 0.24 |
23.1 | L-Pinocarveol | 4.22 |
27.8 | 1-Cyclohexanone, 2-methyl-2-(3-methyl-2-oxobutyl) | 6.73 |
30.1 | 3-O-Methyl-D-glucose | 17.33 |
33.4 | Cembrene | 0.81 |
34.3 | Ambrein | 1.91 |
37.0 | Androst-5,16-diene-3β-ol | 0.92 |
37.2 | Androst-5-en-17-ol | 0.57 |
37.5 | 19-Hydroxy-3(α),5-cyclo-5(α)-androstan-17-one | 14.53 |
38.4 | Kaurane-16,18-diol, 18-acetate, (4α)- | 0.75 |
38.8 | Totarol | 7.69 |
39.1 | 9-Octadecenamide, (Z)- | 0.83 |
39.2 | Ferruginol | 1.38 |
39.3 | Kauran-18-oic acid, 16-hydroxy-, (4α)- | 0.54 |
39.4 | Podocarp-7-en-3β-ol, 13β-methyl-13-vinyl- | 0.69 |
40.3 | Pimaric acid | 8.48 |
40.5 | Prasterone | 3.16 |
45.6 | Pregnan-20-ol, 3,11-diacetoxy- | 1.12 |
49.6 | Vitamin E | 2.32 |
Retention Time, min | Compound | Relative Abundance (%) |
---|---|---|
10.0 | Fenchone | 0.77 |
10.3 | α-Thujone | 5.18 |
15.0 | Bornyl acetate | 0.44 |
17.7 | Caryophyllene | 1.45 |
18.8 | Humulene | 1.12 |
19.7 | β-Cubebene | 0.85 |
21.9 | Hedycaryol | 0.43 |
22.6 | Cubedol | 1.19 |
23.4 | Cedrol | 0.49 |
23.8 | Epicedrol | 5.50 |
29.5 | 3-O-Methyl-D-glucose | 6.98 |
34.7 | Androstenediol | 1.97 |
36.4 | Cryptopinon | 0.50 |
37.0 | Podocarp-7-en-3β-ol, 13β-methyl-13-vinyl- | 5.98 |
37.7 | Prasterone | 4.19 |
38.8 | Totarol | 4.52 |
39.2 | Ferruginol | 1.26 |
39.4 | Pimaric acid | 2.82 |
39.5 | β-Pimaric acid | 4.58 |
40.3 | Palustric acid | 10.19 |
40.7 | 5α-Androstane-3β,17β-diol, 17-methyl- | 3.84 |
41.2 | Daniellic acid | 14.68 |
41.5 | 5α-Furost-20(22)-en-26-ol, (25R)- | 1.93 |
44.1 | Methandriol | 1.47 |
47.2 | Vitamin A1 | 13.56 |
47.5 | Cyclohexane, 1,3,5-trimethyl-2-octadecylcyclohexane | 0.96 |
48.9 | Anthricin | 2.65 |
49.7 | Vitamin E | 0.48 |
Number of Larvae in Control | Number of Larvae in Sample | The Number of Surviving Larvae in the Control | The Number of Surviving Larvae in Sample | Mortality, P | The Percentage of Neurotoxicity | ||||
---|---|---|---|---|---|---|---|---|---|
Parallel | Survived | Died | Survived | Died | Paralyzed | % | % | % | % |
T. occidentalis | |||||||||
10 mg/mL | |||||||||
Medium | 24 | 1 | 0 | 26 | 0 | 96 | 0 | 96 | 0 |
5 mg/mL | |||||||||
Medium | 24 | 1 | 0 | 24 | 0 | 96 | 0 | 96 | 0 |
1 mg/mL | |||||||||
Medium | 24 | 1 | 4 | 23 | 0 | 96 | 15 | 81 | 0 |
P. orientalis | |||||||||
10 mg/mL | |||||||||
Medium | 24 | 1 | 0 | 27 | 0 | 96 | 0 | 96 | 0 |
5 mg/mL | |||||||||
Medium | 24 | 1 | 0 | 25 | 0 | 96 | 0 | 96 | 0 |
1 mg/mL | |||||||||
Medium | 24 | 1 | 0 | 27 | 0 | 96 | 0 | 96 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yerezhepova, N.; Kurmanbayeva, M.; Terletskaya, N.; Zhumagul, M.; Kebert, M.; Rašeta, M.; Gafforov, Y.; Jalmakhanbetova, R.; Razhanov, M. New Data on Phytochemical and Morphophysiological Characteristics of Platycladus orientalis L. Franco and Thuja occidentalis L. Conifer Trees in Polluted Urban Areas of Kazakhstan. Forests 2024, 15, 790. https://doi.org/10.3390/f15050790
Yerezhepova N, Kurmanbayeva M, Terletskaya N, Zhumagul M, Kebert M, Rašeta M, Gafforov Y, Jalmakhanbetova R, Razhanov M. New Data on Phytochemical and Morphophysiological Characteristics of Platycladus orientalis L. Franco and Thuja occidentalis L. Conifer Trees in Polluted Urban Areas of Kazakhstan. Forests. 2024; 15(5):790. https://doi.org/10.3390/f15050790
Chicago/Turabian StyleYerezhepova, Nurgul, Meruyert Kurmanbayeva, Nina Terletskaya, Moldir Zhumagul, Marko Kebert, Milena Rašeta, Yusufjon Gafforov, Roza Jalmakhanbetova, and Medeu Razhanov. 2024. "New Data on Phytochemical and Morphophysiological Characteristics of Platycladus orientalis L. Franco and Thuja occidentalis L. Conifer Trees in Polluted Urban Areas of Kazakhstan" Forests 15, no. 5: 790. https://doi.org/10.3390/f15050790