Which Provinces Will Be the Beneficiaries of Forestry Carbon Sink Trade? A Study on the Carbon Intensity–Carbon Sink Assessment Model in China
Abstract
:1. Introduction
2. Literature Review of Forest Carbon Sink Trading
3. Materials and Methods
3.1. Data Sources
3.2. Selection of Models and Scenario
3.3. Methods for Carbon Stock Measurement
3.4. Methods for Carbon Sink Prediction
3.5. Methodology for Carbon Intensity–Carbon Sink Assessment Analysis
4. Results
4.1. Provincial Carbon Stock Model
4.2. Provincial Carbon Sink Model
4.3. Provincial Carbon Intensity–Carbon Sink Assessment Model
5. Discussion
5.1. Superiority and Innovations of the Models
5.2. Robustness of the Models
5.3. Limitations and Future Research
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Forest Type | Age Group | a | b |
---|---|---|---|
Coniferous mixed trees, Cinnamomum camphora (L.) J. Presl, Abrus precatorius L., other broad-leaved softwood trees, Phoebe zhennan, Casuarina equisetifolia, Schima superba Gardner & Champ. | Young forest | 17.5941 | 0.9501 |
Middle-aged forest | 39.3752 | 0.8593 | |
Near-mature forest | 43.4173 | 0.8389 | |
Mature forest | 43.4173 | 0.8389 | |
Over-ripe forest | 43.4173 | 0.8389 | |
Pinus koraiensis Siebold & Zucc. | Young forest | 33.2049 | 0.4834 |
Middle-aged forest | 54.7293 | 0.4108 | |
Near-mature forest | 54.7293 | 0.4108 | |
Mature Forest | 54.7293 | 0.4108 | |
Over-ripe forest | 54.7293 | 0.4108 | |
Pinus wallichiana, other pine classes, Pinus taiwanensis Hayata, Pinus armandii Franch., Pinus densata Mast. | Young forest | 15.6557 | 0.6333 |
Middle-aged forest | 45.5374 | 0.4139 | |
Near-mature forest | 47.6751 | 0.4292 | |
Mature forest | 47.6751 | 0.4292 | |
Over-ripe forest | 47.6751 | 0.4292 | |
PopulusL., Populus davidiana, Betula L. | Young forest | 21.5600 | 0.5750 |
Middle-aged forest | 39.9348 | 0.5917 | |
Near-mature forest | 29.6156 | 0.6257 | |
Mature forest | 29.6156 | 0.6257 | |
Over-ripe forest | 29.6156 | 0.6257 | |
Taxus cuspidata Siebold & Zucc., Picea asperata Mast., Keteleeria fortunei, Tsuga chinensis, Abies fabri (Mast.) Craib | Young forest | 49.0802 | 0.3422 |
Middle-aged forests | 29.3993 | 0.4952 | |
Near-mature forest | 53.612 | 0.3917 | |
Mature forest | 53.612 | 0.3917 | |
Over-ripe forest | 53.612 | 0.3917 | |
Cryptomeria fortunei Hooibr. ex Otto & Dietrich, Cupressus funebris Endl. | Young forest | 35.2538 | 0.4741 |
Middle-aged forests | 47.6005 | 0.4741 | |
Near-mature forest | 69.3512 | 0.393 | |
Mature forest | 69.3512 | 0.393 | |
Over-ripe forest | 69.3512 | 0.393 | |
Wide-needled mixed trees, Ulmus pumila L., Phellodendron amurense Rupr., Quercus variabilis Bl., Other broad-leaved hardwood trees, other economic trees, Toxicodendron delavayi, Paulownia Sieb. et Zucc., Salix L., Melia azedarach L., Quercus, pinus massoniana, Juglans regia L., Liquidambar formosana Hance, Tilia, Robinia pseudoacacia L., Sassafras tzumu (Hemsl.) Hemsl., Castanea mollissima Bl., Fraxinus chinensis Roxb. | Young forest | 21.8281 | 0.7084 |
Middle-aged forests | 22.2598 | 0.8398 | |
Near-mature forest | 55.4361 | 0.4265 | |
Mature forest | 55.4361 | 0.4265 | |
Over-ripe forest | 55.4361 | 0.4265 | |
Larix gmelinii | Young forest | 30.4438 | 0.6194 |
Middle-aged forest | 14.3096 | 0.6425 | |
Near-mature Forest | 33.7734 | 0.5558 | |
Mature forest | 33.7734 | 0.5558 | |
Over-ripe forest | 33.7734 | 0.5558 | |
Pinus massoniana | Young forest | 12.1063 | 0.5093 |
Middle-aged forest | 38.6436 | 0.4934 | |
Near-mature forest | 21.2812 | 0.5497 | |
Mature forest | 21.2812 | 0.5497 | |
Over-ripe forest | 21.2812 | 0.5497 | |
Cunninghamia lanceolata | Young forest | 14.6212 | 0.6765 |
Middle-aged forest | 32.8777 | 0.3858 | |
Near-mature forest | 0.5264 | 0.5115 | |
Mature forest | 0.5264 | 0.5115 | |
Over-ripe forest | 0.5264 | 0.5115 | |
Pinus tabuliformis, Pinus densiflora | Young forest | 14.4807 | 0.7106 |
Middle-aged forest | 4.9498 | 0.8115 | |
Near-mature forest | 8.4727 | 0.6983 | |
Mature forest | 8.4727 | 0.6983 | |
Over-ripe forest | 8.4727 | 0.6983 | |
Pinus yunnanensis, Pinus kesiya | Young forest | 31.7207 | 0.507 |
Middle-aged forest | 4.2304 | 0.7185 | |
Near-mature forest | −10.0118 | 0.7892 | |
Mature forest | −10.0118 | 0.7892 | |
Over-ripe forest | −10.0118 | 0.7892 | |
Pinus sylvestris var. mongholica Litv. | Young forest | 1.1302 | 1.1034 |
Middle-aged forest | 55.795 | 0.2545 | |
Near-mature forest | 55.795 | 0.2545 | |
Mature Forest | 55.795 | 0.2545 | |
Over-ripe forest | 55.795 | 0.2545 |
Tree Species | Region | Origins | Young Forest | Middle-Aged Forests | Near-Mature Forest | Mature Forest | Over-Ripe Forest |
---|---|---|---|---|---|---|---|
A | North | Natural | 0–60 | 61–100 | 101–120 | 121–160 | ≥161 |
North | Artificial | 0–40 | 41–60 | 61–80 | 81–120 | ≥121 | |
South | Natural | 0–40 | 41–60 | 61–80 | 81–120 | ≥121 | |
South | Artificial | 0–30 | 31–50 | 51–60 | 61–80 | ≥81 | |
B | North | Natural | 0–60 | 61–100 | 101–120 | 121–160 | ≥161 |
North | Artificial | 0–30 | 31–50 | 51–60 | 61–80 | ≥81 | |
South | Natural | 0–40 | 41–60 | 61–80 | 81–120 | ≥121 | |
South | Artificial | 0–30 | 31–50 | 51–60 | 61–80 | ≥81 | |
C | North | Natural | 0–40 | 41–80 | 81–100 | 101–140 | ≥141 |
North | Artificial | 0–20 | 21–30 | 31–40 | 41–60 | ≥61 | |
South | Natural | 0–40 | 41–60 | 61–80 | 81–120 | ≥121 | |
South | Artificial | 0–20 | 21–30 | 31–40 | 41–60 | ≥61 | |
D | North | Natural | 0–30 | 31–50 | 51–60 | 61–80 | ≥81 |
North | Artificial | 0–20 | 21–30 | 31–40 | 41–60 | ≥61 | |
South | Natural | 0–20 | 21–30 | 31–40 | 41–60 | ≥61 | |
South | Artificial | 0–10 | 11–20 | 21–30 | 31–50 | ≥51 | |
E | North | Natural | 0–20 | 21–30 | 31–40 | 41–60 | ≥61 |
North | Artificial | 0–10 | 11–15 | 16–20 | 21–30 | ≥31 | |
South | Artificial | 0–5 | 6–10 | 11–15 | 16–25 | ≥26 | |
F | South | Natural | 0–20 | 21–30 | 31–40 | 41–60 | ≥61 |
South | Artificial | 0–5 | 6–10 | 11–15 | 16–25 | ≥26 | |
G | North | Natural/artificial | 0–10 | 11–15 | 16–20 | 21–30 | ≥31 |
South | Natural/artificial | 0–5 | 6–10 | 11–15 | 16–25 | ≥26 | |
H | South | Artificial | 0–5 | 6–10 | 11–15 | 16–25 | ≥26 |
I | North | Natural | 0–30 | 31–50 | 51–60 | 61–80 | ≥81 |
North | Artificial | 0–20 | 21–30 | 31–40 | 41–60 | ≥61 | |
South | Natural | 0–20 | 21–40 | 41–50 | 51–70 | ≥71 | |
South | Artificial | 0–10 | 11–20 | 21–30 | 31–50 | ≥51 | |
J | North | Natural | 0–40 | 41–60 | 61–80 | 81–120 | ≥121 |
South | Artificial | 0–20 | 21–40 | 41–50 | 51–70 | ≥71 | |
K | South | Artificial | 0–10 | 11–20 | 21–25 | 26–35 | ≥36 |
Dominant Tree Species | Percentage | Existing Planted Forest Area | 2021–2025 | 2026–2030 | 2031–2035 |
---|---|---|---|---|---|
Total | 100% | 57,126,700 | 8,931,746 | 16,374,868 | 23,817,990 |
Abies fabri (Mast.) Craib | 0.08% | 48,100 | 7520 | 13,787 | 20,054 |
Picea asperata Mast. | 0.72% | 411,900 | 64,400 | 118,068 | 171,735 |
Larix gmelinii (Rupr.) Kuzen. | 5.54% | 3,162,900 | 494,519 | 906,618 | 1,318,716 |
Pinus koraiensis | 0.54% | 309,100 | 48,328 | 88,601 | 128,874 |
Pinus sylvestris | 0.84% | 478,900 | 74,876 | 137,272 | 199,669 |
Pinus densiflora | 0.10% | 58,300 | 9115 | 16,711 | 24,307 |
Pinus thunbergii Parl. | 0.22% | 123,200 | 19,262 | 35,314 | 51,366 |
Pinus tabuliformis Carrière | 2.94% | 1,677,600 | 262,292 | 480,869 | 699,446 |
Pinus armandii | 0.92% | 528,200 | 82,584 | 151,404 | 220,224 |
Pinus massoniana Lamb. | 4.41% | 2,519,200 | 393,876 | 722,107 | 1,050,337 |
Pinus yunnanensis | 0.78% | 445,400 | 69,638 | 127,670 | 185,702 |
Pinus kesiya | 0.33% | 187,200 | 29,269 | 53,659 | 78,050 |
Pinus densata Mast. | 0.02% | 9700 | 1517 | 2780 | 4044 |
Exotic pines | 2.57% | 1,465,700 | 229,162 | 420,130 | 611,098 |
Pinus taiwanensis Hayata | 0.08% | 44,600 | 6973 | 12,784 | 18,595 |
Other pine classes | 0.09% | 52,600 | 8224 | 15,077 | 21,931 |
Cunninghamia lanceolata | 17.33% | 9,902,000 | 1,548,175 | 2,838,322 | 4,128,468 |
Cryptomeria fortunei Hooibr. ex Otto & Dietrich | 1.15% | 657,500 | 102,800 | 188,467 | 274,133 |
Metasequoia glyptostroboides Hu & W. C. Cheng | 0.19% | 109,000 | 17,042 | 31,244 | 45,446 |
Taxodium ascendens Brongn. | 0.02% | 10,900 | 1704 | 3124 | 4545 |
Cupressus funebris Endl. | 2.82% | 1,611,300 | 251,926 | 461,865 | 671,804 |
Taxus cuspidata Siebold & Zucc. | 0.01% | 4800 | 750 | 1376 | 2001 |
Other fir species | 0.004% | 2400 | 375 | 688 | 1001 |
Quercus | 1.03% | 588,800 | 92,059 | 168,774 | 245,490 |
Betula L. | 0.19% | 108,600 | 16,980 | 31,129 | 45,279 |
Phellodendron amurense Rupr. | 0.04% | 23,400 | 3659 | 6707 | 9756 |
Cinnamomum camphora (L.) J. Presl | 0.52% | 299,400 | 46,811 | 85,820 | 124,830 |
Phoebe zhennan S. K. Lee & F. N. Wei | 0.003% | 1600 | 250 | 459 | 667 |
Ulmus pumila L. | 0.55% | 312,600 | 48,875 | 89,604 | 130,333 |
Robinia pseudoacacia L. | 3.11% | 1,778,400 | 278,052 | 509,763 | 741,473 |
Schima superba Gardner & Champ. | 0.24% | 137,500 | 21,498 | 39,413 | 57,328 |
Liquidambar formosana Hance | 0.19% | 110,000 | 17,198 | 31,531 | 45,863 |
Other broad-leaved hardwood trees | 1.90% | 1,085,400 | 169,702 | 311,120 | 452,539 |
Sassafras tzumu (Hemsl.) Hemsl. | 0.02% | 14,100 | 2205 | 4042 | 5879 |
PopulusL. | 13.25% | 7,570,700 | 1,183,677 | 2,170,075 | 3,156,472 |
Salix L. | 0.54% | 309,300 | 48,359 | 88,658 | 128,957 |
Paulownia Sieb. et Zucc. | 0.32% | 181,100 | 28,315 | 51,911 | 75,507 |
Eucalyptus robusta Smith | 9.57% | 5,467,400 | 854,827 | 1,567,182 | 2,279,538 |
Abrus precatorius L. | 0.34% | 193,200 | 30,207 | 55,379 | 80,551 |
Casuarina equisetifolia J.R. Forst. & G. Forst. | 0.04% | 24,000 | 3752 | 6879 | 10,006 |
Melia azedarach L. | 0.03% | 17,900 | 2799 | 5131 | 7463 |
Other broad-leaved softwood trees | 1.66% | 946,300 | 147,954 | 271,249 | 394,543 |
Coniferous mixed trees | 4.28% | 2,446,800 | 382,557 | 701,354 | 1,020,151 |
Broadleaf mixed trees | 4.65% | 2,655,900 | 415,249 | 761,290 | 1,107,332 |
Wide-needled mixed trees | 6.78% | 3,873,600 | 605,636 | 1,110,333 | 1,615,031 |
Juglans regia L. | 1.71% | 974,900 | 152,425 | 279,447 | 406,468 |
Castanea mollissima Bl. | 1.31% | 746,700 | 116,746 | 214,035 | 311,324 |
Illicium verum Hook.f. | 0.64% | 365,000 | 57,068 | 104,624 | 152,180 |
Eucommia ulmoides Oliver | 0.09% | 51,800 | 8099 | 14,848 | 21,597 |
Magnolia officinalis Rehder & E. H. Wilson | 0.23% | 133,300 | 20,841 | 38,209 | 55,577 |
Ginkgo biloba L. | 0.11% | 61,200 | 9569 | 17,542 | 25,516 |
Toxicodendron delavayi | 0.14% | 80,500 | 12,586 | 23,075 | 33,563 |
Vernicia fordii (Hemsl.) Airy-Shaw | 0.20% | 111,800 | 17,480 | 32,046 | 46,613 |
Hevea brasiliensis (Willd. ex A. Juss.) Müll. Arg. | 2.42% | 1,382,800 | 216,200 | 396,367 | 576,535 |
Fraxinus chinensis Roxb. | 0.08% | 46,500 | 7270 | 13,329 | 19,387 |
Quercus variabilis Bl. | 0.03% | 19,100 | 2986 | 5475 | 7963 |
Other Economic Trees | 2.08% | 1,186,600 | 185,525 | 340,128 | 494,732 |
Region | Carbon Intensity Reduction Target (%) |
---|---|
Beijing | 20.5 |
Tianjin | 20.5 |
Hebei | 20.5 |
Shanxi | 18 |
Inner Mongolia | 17 |
Liaoning | 18 |
Jilin | 18 |
Heilongjiang | 17 |
Shanghai | 20.5 |
Jiangsu | 20.5 |
Zhejiang | 20.5 |
Anhui | 18 |
Fujian | 19.5 |
Jiangxi | 19.5 |
Shandong | 20.5 |
Henan | 19.5 |
Hubei | 19.5 |
Hunan | 18 |
Guangdong | 20.5 |
Guangxi | 17 |
Hainan | 12 |
Chongqing | 19.5 |
Sichuan | 19.5 |
Guizhou | 18 |
Yunnan | 18 |
Shanxi | 18 |
Gansu | 17 |
Qinghai | 12 |
Ningxia | 17 |
Xinjiang | 12 |
Projects | Region | 2009–2013 | 2014–2018 | Amount of Change |
---|---|---|---|---|
Carbon stock (Tg C) | Beijing | 10.17 | 16.00 | 5.83 |
Tianjin | 1.98 | 2.68 | 0.70 | |
Hebei | 72.62 | 88.87 | 16.24 | |
Shanxi | 57.20 | 73.33 | 16.13 | |
Inner Mongolia | 663.96 | 722.09 | 58.14 | |
Liaoning | 130.33 | 151.85 | 21.52 | |
Jilin | 399.64 | 424.87 | 25.23 | |
Heilongjiang | 817.35 | 888.23 | 70.88 | |
Shanghai | 1.15 | 2.59 | 1.43 | |
Jiangsu | 38.95 | 40.28 | 1.33 | |
Zhejiang | 119.68 | 142.28 | 22.61 | |
Anhui | 94.05 | 109.73 | 15.68 | |
Fujian | 272.58 | 310.77 | 38.19 | |
Jiangxi | 235.99 | 267.90 | 31.91 | |
Shandong | 47.54 | 48.94 | 1.40 | |
Henan | 98.40 | 116.11 | 17.71 | |
Hubei | 167.13 | 196.39 | 29.26 | |
Hunan | 189.95 | 221.04 | 31.09 | |
Guangdong | 228.19 | 272.38 | 44.19 | |
Guangxi | 285.66 | 365.68 | 80.01 | |
Hainan | 43.26 | 83.74 | 40.48 | |
Chongqing | 70.47 | 99.04 | 28.56 | |
Sichuan | 633.80 | 710.43 | 76.64 | |
Guizhou | 150.25 | 188.38 | 38.12 | |
Yunnan | 725.15 | 861.03 | 135.88 | |
Tibet | 711.48 | 715.39 | 3.90 | |
Shanxi | 221.05 | 258.59 | 37.55 | |
Gansu | 100.54 | 115.10 | 14.56 | |
Qinghai | 18.46 | 20.82 | 2.36 | |
Ningxia | 3.77 | 5.00 | 1.23 | |
Xinjiang | 120.38 | 141.11 | 20.73 | |
Carbon density (Mgha−1) | Beijing | 23.71 | 25.73 | 2.03 |
Tianjin | 26.31 | 26.09 | −0.22 | |
Hebei | 23.35 | 24.32 | 0.97 | |
Shanxi | 27.18 | 30.01 | 2.83 | |
Inner Mongolia | 38.76 | 41.12 | 2.36 | |
Liaoning | 33.45 | 35.68 | 2.23 | |
Jilin | 53.04 | 54.85 | 1.80 | |
Heilongjiang | 41.92 | 44.76 | 2.84 | |
Shanghai | 26.43 | 35.77 | 9.34 | |
Jiangsu | 31.12 | 31.77 | 0.66 | |
Zhejiang | 29.18 | 33.33 | 4.15 | |
Anhui | 32.24 | 35.55 | 3.31 | |
Fujian | 44.93 | 50.02 | 5.09 | |
Jiangxi | 29.88 | 33.14 | 3.26 | |
Shandong | 29.45 | 32.06 | 2.61 | |
Henan | 32.22 | 33.34 | 1.11 | |
Hubei | 29.20 | 32.37 | 3.17 | |
Hunan | 25.97 | 27.67 | 1.70 | |
Guangdong | 31.93 | 34.88 | 2.95 | |
Guangxi | 31.60 | 34.82 | 3.23 | |
Hainan | 44.54 | 48.30 | 3.75 | |
Chongqing | 33.42 | 40.28 | 6.87 | |
Sichuan | 53.54 | 53.32 | −0.22 | |
Guizhou | 31.39 | 32.18 | 0.79 | |
Yunnan | 47.49 | 46.22 | −1.27 | |
Tibet | 83.85 | 80.96 | −2.89 | |
Shanxi | 34.58 | 36.57 | 1.99 | |
Gansu | 40.67 | 43.62 | 2.95 | |
Qinghai | 48.78 | 49.41 | 0.63 | |
Ningxia | 23.79 | 28.91 | 5.12 | |
Xinjiang | 67.18 | 65.69 | −1.49 |
Number | Dominant Tree Species | w | k | a | R2 |
---|---|---|---|---|---|
1 | Pinus massoniana | 126.20 | 3.3635 | 0.0898 | 0.999 |
2 | Quercus | 136.12 | 3.8364 | 0.0486 | 0.893 |
3 | Needles wide mixed trees | 141.05 | 2.7176 | 0.0526 | 0.891 |
4 | Betula L. | 969.46 | 26.4673 | 0.0175 | 0.931 |
5 | Larix gmelinii (Rupr.) Kuzen. | 175.92 | 4.7963 | 0.0283 | 0.913 |
6 | Pinus massoniana Lamb. | 109.22 | 4.2193 | 0.0662 | 0.903 |
7 | Picea asperata Mast. | 393.62 | 4.6298 | 0.0079 | 0.845 |
8 | Pinus yunnanensis Franch. | 2618.06 | 74.6539 | 0.0287 | 0.853 |
9 | Abies fabri (Mast.) Craib | 263.98 | 3.0862 | 0.0154 | 0.888 |
10 | Other broad-leaved softwood trees | 183.91 | 5.5553 | 0.0647 | 0.952 |
11 | Coniferous mixed trees | 463.75 | 8.2634 | 0.0214 | 0.945 |
12 | Cupressus funebris Endl. | 100.73 | 3.8362 | 0.0659 | 0.506 |
13 | Other broad-leaved hardwood trees | 159.34 | 4.1043 | 0.0275 | 0.975 |
14 | Pinus densata Mast. | 597.28 | 9.4820 | 0.0182 | 0.951 |
15 | Cunninghamia lanceolata (Lamb.) Hook. | 82.13 | 3.6189 | 0.1440 | 0.978 |
16 | Populus davidiana | 128.38 | 3.4278 | 0.0415 | 0.992 |
17 | Ulmus pumila L. | 101.66 | 2.5524 | 0.0379 | 0.883 |
18 | Pinus tabuliformis Carrière | 135.75 | 4.0321 | 0.0384 | 0.776 |
19 | PopulusL. | 209.45 | 4.5446 | 0.0310 | 0.873 |
20 | Phellodendron amurense Rupr. | 113.99 | 3.3169 | 0.0470 | 0.906 |
21 | Quercus variabilis Bl. | 372.90 | 7.2828 | 0.0114 | 0.997 |
22 | Schima superba Gardner & Champ. | 150.83 | 6.6465 | 0.0945 | 0.844 |
23 | Pinus kesiya | 114.15 | 1.0033 | 0.0559 | 0.812 |
24 | Tilia | 123.08 | 2.5930 | 0.0411 | 0.944 |
25 | Pinus sylvestris L. var. mongholica Litv. | 110.83 | 3.9274 | 0.0356 | 0.980 |
26 | Pinus armandii Franch. | 111.37 | 3.8474 | 0.0683 | 0.931 |
27 | Keteleeria fortunei | 102.13 | 1.5248 | 0.0310 | 0.867 |
28 | Liquidambar formosana Hance | 112.51 | 7.8187 | 0.1140 | 0.752 |
29 | Tsuga chinensis | 264.45 | 23.9632 | 0.0361 | 0.918 |
30 | Salix L. | 139.00 | 2.9226 | 0.0331 | 0.964 |
31 | Phoebe zhennan | 191.58 | 11.4202 | 0.0636 | 0.997 |
32 | Pinus taiwanensis Hayata | 112.90 | 6.6056 | 0.1122 | 0.913 |
33 | Pinus densiflora Siebold & Zucc. | 114.93 | 13.5835 | 0.0836 | 0.315 |
34 | Castanea mollissima Bl. | 242.13 | 4.7340 | 0.0172 | 0.410 |
35 | Cinnamomum camphora (L.) J. Presl | 197.58 | 4.6505 | 0.0392 | 0.994 |
36 | Other pine classes | 68.43 | 5.4237 | 0.0891 | 0.998 |
37 | Pinus koraiensis Siebold & Zucc. | 244.68 | 2.7223 | 0.0139 | 1.000 |
38 | Pinus wallichiana | / | / | / | / |
39 | Other economic trees | 94.14 | 11.1035 | 0.0851 | 0.914 |
40 | Toxicodendron delavayi | 125.90 | 2.9024 | 0.0164 | 0.811 |
41 | Robinia pseudoacacia L. | 34.78 | 1.7564 | 0.6009 | 1.000 |
42 | Paulownia Sieb. et Zucc. | 68.76 | 190.3043 | 0.5568 | 0.945 |
43 | Fraxinus chinensis Roxb. | / | / | / | / |
44 | Melia azedarach L. | / | / | / | / |
45 | Cryptomeria fortunei Hooibr. ex Otto & Dietrich | / | / | / | / |
46 | Taxus cuspidata Siebold & Zucc. | / | / | / | / |
47 | Abrus precatorius L. | / | / | / | / |
48 | Sassafras tzumu (Hemsl.) Hemsl. | / | / | / | / |
49 | Casuarina equisetifolia | / | / | / | / |
50 | Juglans regia L. | / | / | / | / |
Number | Dominant Tree Species | w | k | a | R2 |
---|---|---|---|---|---|
1 | Cunninghamia lanceolata (Lamb.) Hook. | 77.79 | 2.0005 | 0.1235 | 0.937 |
2 | PopulusL. | 101.29 | 4.7948 | 0.2874 | 0.917 |
3 | Eucalyptus robusta Smith | 131.98 | 3.4903 | 0.1582 | 0.942 |
4 | Wide-needled mixed trees | 156.42 | 4.1926 | 0.0911 | 0.932 |
5 | Larix gmelinii (Rupr.) Kuzen. | 104.66 | 2.7795 | 0.0834 | 0.801 |
6 | pinus massoniana | 99.79 | 2.5508 | 0.1862 | 0.860 |
7 | Pinus massoniana Lamb. | 70.96 | 13.8463 | 0.2998 | 0.878 |
8 | Coniferous mixed trees | 169.16 | 3.0879 | 0.0435 | 0.839 |
9 | Robinia pseudoacacia L. | 94.93 | 2.2815 | 0.1011 | 0.949 |
10 | Pinus tabuliformis Carrière | 107.32 | 4.8563 | 0.0458 | 0.970 |
11 | Cupressus funebris Endl. | 110.68 | 3.9664 | 0.0572 | 0.893 |
12 | Exotic pines | 92.35 | 6.0569 | 0.1874 | 0.987 |
13 | Hevea brasiliensis (Willd. ex A. Juss.) Müll. Arg. | 173.58 | 3.6690 | 0.1397 | 0.996 |
14 | Other economic trees | 94.81 | 4.6483 | 0.0486 | 0.971 |
15 | Other broad-leaved hardwood trees | 92.80 | 4.0680 | 0.0801 | 0.887 |
16 | Juglans regia L. | 87.59 | 3.7985 | 0.0436 | 0.914 |
17 | Other broad-leaved softwood trees | 222.63 | 6.1933 | 0.1061 | 0.935 |
18 | Castanea mollissima Bl. | 96.78 | 3.7204 | 0.0588 | 0.877 |
19 | Cryptomeria fortunei Hooibr. ex Otto & Dietrich | 162.53 | 4.0251 | 0.1277 | 0.999 |
20 | Quercus | 107.51 | 3.8135 | 0.0710 | 0.980 |
21 | Pinus armandii Franch. | 116.18 | 4.7543 | 0.0933 | 0.969 |
22 | Pinus sylvestris L. var. mongholica Litv. | 90.76 | 50.7269 | 0.2393 | 0.995 |
23 | Pinus yunnanensis Franch. | 276.57 | 6.9718 | 0.0244 | 0.991 |
24 | Picea asperata Mast. | 153.45 | 3.6541 | 0.0345 | 0.735 |
25 | Illicium verum Hook.f. | 150.08 | 5.1549 | 0.1606 | 0.992 |
26 | Ulmus pumila L. | 70.07 | 3.0878 | 0.1209 | 0.933 |
27 | Salix L. | 101.38 | 5.0435 | 0.1897 | 0.949 |
28 | Pinus koraiensis Siebold & Zucc. | 236.06 | 5.6602 | 0.0350 | 0.919 |
29 | Cinnamomum camphora (L.) J. Presl | 137.23 | 2247.4151 | 0.6887 | 0.893 |
30 | Phellodendron amurense Rupr. | 220.84 | 7.8430 | 0.0507 | 0.619 |
31 | Abrus precatorius L. | 119.08 | 12.8831 | 0.1698 | 0.968 |
32 | Pinus kesiya | 114.15 | 1.0033 | 0.0559 | 0.812 |
33 | Paulownia Sieb. et Zucc. | 88.99 | 3.6066 | 0.3367 | 0.785 |
34 | Schima superba Gardner & Champ. | 139.00 | 4.7506 | 0.1935 | 0.574 |
35 | Magnolia officinalis Rehder & E. H. Wilson | 82.28 | 2.6947 | 0.0462 | 0.982 |
36 | Pinus thunbergii Parl. | 68.62 | 5.6969 | 0.0915 | 0.844 |
37 | Vernicia fordii (Hemsl.) Airy-Shaw | 94.70 | 2.9632 | 0.0318 | 0.813 |
38 | Liquidambar formosana Hance | 112.51 | 7.8187 | 0.1140 | 0.752 |
39 | Metasequoia glyptostroboides | 403.62 | 15.5384 | 0.0518 | 0.929 |
40 | Betula L. | 63.70 | 19.5038 | 0.3215 | 0.569 |
41 | Toxicodendron delavayi | 162.18 | 9.9784 | 0.0409 | 0.909 |
42 | Ginkgo biloba L. | 117.94 | 3.1343 | 0.0485 | 0.556 |
43 | Pinus densiflora Siebold & Zucc. | 181.83 | 7.3057 | 0.0230 | 0.958 |
44 | Other pine classes | 76.39 | 6.3204 | 0.1843 | 0.761 |
45 | Eucommia ulmoides Oliver | / | / | / | / |
46 | Abies fabri (Mast.) Craib | 263.98 | 3.0862 | 0.0154 | 0.888 |
47 | Fraxinus chinensis Roxb. | 100.07 | 758.2827 | 0.6194 | 0.474 |
48 | Pinus taiwanensis Hayata | 112.53 | 18.6471 | 0.1864 | 0.451 |
49 | Casuarina equisetifolia | 155.13 | 5.4512 | 0.1799 | 0.891 |
50 | Quercus variabilis Bl. | 372.90 | 7.2828 | 0.0114 | 0.997 |
51 | Melia azedarach L. | / | / | / | / |
52 | Sassafras tzumu (Hemsl.) Hemsl. | 97.31 | 3.8786 | 0.3532 | 0.067 |
53 | Taxodium ascendens Brongn. | 75.15 | 3.2820 | 0.2485 | 0.296 |
54 | Pinus densata Mast. | / | / | / | / |
55 | Taxus cuspidata Siebold & Zucc. | / | / | / | / |
56 | Other fir species | / | / | / | / |
57 | Phoebe zhennan | / | / | / | / |
Forest Type | 2014–2018 | 2021–2025 | 2026–2030 | 2031–2035 | |
---|---|---|---|---|---|
Existing forests | Area (104 ha) | 7674 | 8635 | 9308 | 9877 |
Carbon stock (Tg C) | 42.66 | 48 | 51.75 | 54.9 | |
Carbon density (Mgha−1) | 0 | 893 | 1637 | 2382 | |
Newly created forests | Area (104 ha) | 0 | 204 | 510 | 892 |
Carbon stock (Tg C) | 0 | 22.82 | 31.16 | 37.45 | |
Carbon density (Mgha−1) | 17,989 | 18,882 | 19,626 | 20,371 | |
Total | Area (104 ha) | 7674 | 8839 | 9819 | 10,769 |
Carbon stock (Tg C) | 42.66 | 46.81 | 50.03 | 52.86 | |
Carbon density (Mgha−1) | 7674 | 8635 | 9308 | 9877 |
References
- Smith, H.B.; Vaughan, N.E.; Forster, J. Long-Term National Climate Strategies Bet on Forests and Soils to Reach Net-Zero. Commun. Earth Environ. 2022, 3, 1–12. [Google Scholar] [CrossRef]
- He, J.; Li, Z.; Zhang, X.; Wang, H.; Dong, W.; Chang, S.; Ou, X.; Guo, S.; Tian, Z.; Gu, A.; et al. Comprehensive Report on China’s Long-Term Low-Carbon Development Strategies and Pathways. Chin. J. Popul. Resour. Environ. 2020, 18, 263–295. [Google Scholar] [CrossRef]
- Meinshausen, M.; Lewis, J.; McGlade, C.; Gütschow, J.; Nicholls, Z.; Burdon, R.; Cozzi, L.; Hackmann, B. Realization of Paris Agreement Pledges May Limit Warming Just below 2 °C. Nature 2022, 604, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Deng, Z.; He, G.; Wang, H.; Zhang, X.; Lin, J.; Qi, Y.; Liang, X. Challenges and Opportunities for Carbon Neutrality in China. Nat. Rev. Earth Environ. 2021, 3, 141–155. [Google Scholar] [CrossRef]
- Baldocchi, D.; Penuelas, J. The Physics and Ecology of Mining Carbon Dioxide from the Atmosphere by Ecosystems. Glob. Change Biol. 2019, 25, 1191–1197. [Google Scholar] [CrossRef] [PubMed]
- Parmesan, C.; Morecroft, M.D.; Trisurat, Y. Climate Change 2022:Impacts, Adaptation and Vulnerability; Cambridge University Press: Cambridge, UK.
- Piao, S.; Yue, C.; Ding, J.; Guo, Z. Perspectives on the Role of Terrestrial Ecosystems in the ‘Carbon Neutrality’ Strategy. Sci. China Earth Sci. 2022, 65, 1178–1186. [Google Scholar] [CrossRef]
- Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.W.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; Blanco, G.; et al. IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; First; Intergovernmental Panel on Climate Change (IPCC). [Google Scholar]
- Griscom, B.W.; Adams, J.; Ellis, P.W.; Houghton, R.A.; Lomax, G.; Miteva, D.A.; Schlesinger, W.H.; Shoch, D.; Siikamäki, J.V.; Smith, P.; et al. Natural Climate Solutions. Proc. Natl. Acad. Sci. USA 2017, 114, 11645–11650. [Google Scholar] [CrossRef] [PubMed]
- Bastin, J.-F.; Finegold, Y.; Garcia, C.; Mollicone, D.; Rezende, M.; Routh, D.; Zohner, C.M.; Crowther, T.W. The Global Tree Restoration Potential. Science 2019, 365, 76–79. [Google Scholar] [CrossRef] [PubMed]
- Lu, N.; Tian, H.; Fu, B.; Yu, H.; Piao, S.; Chen, S.; Li, Y.; Li, X.; Wang, M.; Li, Z.; et al. Biophysical and Economic Constraints on China’s Natural Climate Solutions. Nat. Clim. Change 2022, 12, 847–853. [Google Scholar] [CrossRef]
- Grassi, G.; House, J.; Kurz, W.A.; Cescatti, A.; Houghton, R.A.; Peters, G.P.; Sanz, M.J.; Viñas, R.A.; Alkama, R.; Arneth, A.; et al. Reconciling Global-Model Estimates and Country Reporting of Anthropogenic Forest CO2 Sinks. Nat. Clim. Change 2018, 8, 914–920. [Google Scholar] [CrossRef]
- Bastos, A.; Ciais, P.; Sitch, S.; Aragão, L.E.O.C.; Chevallier, F.; Fawcett, D.; Rosan, T.M.; Saunois, M.; Günther, D.; Perugini, L.; et al. On the Use of Earth Observation to Support Estimates of National Greenhouse Gas Emissions and Sinks for the Global Stocktake Process: Lessons Learned from ESA-CCI RECCAP2. Carbon Balance Manag. 2022, 17, 15. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Du, R.; Li, X.; Yang, X.; Zhang, B.; Yu, X. The Mid-Domain Effect of Mountainous Plants Is Determined by Community Life Form and Family Flora on the Loess Plateau of China. Sci. Rep. 2021, 11, 10974. [Google Scholar] [CrossRef]
- Fang, J.; Yu, G.; Liu, L.; Hu, S.; Chapin, F.S. Climate Change, Human Impacts, and Carbon Sequestration in China. Proc. Natl. Acad. Sci. USA 2018, 115, 4015–4020. [Google Scholar] [CrossRef] [PubMed]
- Richards, K.R.; Stokes, C. A Review of Forest Carbon Sequestration Cost Studies: A Dozen Years of Research. Clim. Change 2004, 63, 1–48. [Google Scholar] [CrossRef]
- Kindermann, G.; Obersteiner, M.; Sohngen, B.; Sathaye, J.; Andrasko, K.; Rametsteiner, E.; Schlamadinger, B.; Wunder, S.; Beach, R. Global Cost Estimates of Reducing Carbon Emissions through Avoided Deforestation. Proc. Natl. Acad. Sci. USA 2008, 105, 10302–10307. [Google Scholar] [CrossRef] [PubMed]
- Ke, S.; Zhang, Z.; Wang, Y. China’s Forest Carbon Sinks and Mitigation Potential from Carbon Sequestration Trading Perspective. Ecol. Indic. 2023, 148, 110054. [Google Scholar] [CrossRef]
- Xu, S. Forestry Offsets under China’s Certificated Emission Reduction (CCER) for Carbon Neutrality: Regulatory Gaps and the Ways Forward. Int. J. Clim. Change Strateg. Manag. 2024, 16, 140–156. [Google Scholar] [CrossRef]
- Qiao, D.; Zhang, Z.; Li, H. How Does Carbon Trading Impact China’s Forest Carbon Sequestration Potential and Carbon Leakage? Forests 2024, 15, 497. [Google Scholar] [CrossRef]
- Yu, Z.; Ciais, P.; Piao, S.; Houghton, R.A.; Lu, C.; Tian, H.; Agathokleous, E.; Kattel, G.R.; Sitch, S.; Goll, D.; et al. Forest Expansion Dominates China’s Land Carbon Sink since 1980. Nat. Commun. 2022, 13, 5374. [Google Scholar] [CrossRef]
- Tong, X.; Brandt, M.; Yue, Y.; Ciais, P.; Rudbeck Jepsen, M.; Penuelas, J.; Wigneron, J.-P.; Xiao, X.; Song, X.-P.; Horion, S.; et al. Forest Management in Southern China Generates Short Term Extensive Carbon Sequestration. Nat. Commun. 2020, 11, 129. [Google Scholar] [CrossRef]
- Zhu, J.; Hu, H.; Tao, S.; Chi, X.; Li, P.; Jiang, L.; Ji, C.; Zhu, J.; Tang, Z.; Pan, Y.; et al. Carbon Stocks and Changes of Dead Organic Matter in China’s Forests. Nat. Commun. 2017, 8, 151. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-C.; Guan, X.; Li, H.-M.; Wang, Q.-K.; Zhang, W.-D.; Yang, Q.-P.; Wang, S.-L. Spatiotemporal Patterns of Carbon Storage in Forest Ecosystems in Hunan Province, China. For. Ecol. Manag. 2019, 432, 656–666. [Google Scholar] [CrossRef]
- Zeng, W.; Tomppo, E.; Healey, S.P.; Gadow, K.V. The National Forest Inventory in China: History-Results-International Context. For. Ecosyst. 2015, 2, 23. [Google Scholar] [CrossRef]
- Zhang, J. China Forest Resources Report (2014–2018); China Forestry Press: Beijing, China, 2019. (In Chinese) [Google Scholar]
- Xu, B.; Guo, Z.; Piao, S.; Fang, J. Biomass Carbon Stocks in China’s Forests between 2000 and 2050: A Prediction Based on Forest Biomass-Age Relationships. Sci. China Life Sci. 2010, 53, 776–783. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Yue, C.; Zhang, Y.; Liu, D.; Piao, S. Forestation at the Right Time with the Right Species Can Generate Persistent Carbon Benefits in China. Proc. Natl. Acad. Sci. USA 2023, 120, e2304988120. [Google Scholar] [CrossRef]
- Yu, K.; Smith, W.K.; Trugman, A.T.; Condit, R.; Hubbell, S.P.; Sardans, J.; Peng, C.; Zhu, K.; Peñuelas, J.; Cailleret, M.; et al. Pervasive Decreases in Living Vegetation Carbon Turnover Time across Forest Climate Zones. Proc. Natl. Acad. Sci. USA 2019, 116, 24662–24667. [Google Scholar] [CrossRef] [PubMed]
- Dirnböck, T.; Kraus, D.; Grote, R.; Klatt, S.; Kobler, J.; Schindlbacher, A.; Seidl, R.; Thom, D.; Kiese, R. Substantial Understory Contribution to the C Sink of a European Temperate Mountain Forest Landscape. Landsc. Ecol. 2020, 35, 483–499. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Fang, J.; Ciais, P.; Peylin, P.; Huang, Y.; Sitch, S.; Wang, T. The Carbon Balance of Terrestrial Ecosystems in China. Nature 2009, 458, 1009–1013. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Chen, J.M.; Zhou, L.; Ju, W.; Zhang, H.; Machida, T.; Ciais, P.; Peters, W.; Wang, H.; Chen, B.; et al. A Comprehensive Estimate of Recent Carbon Sinks in China Using Both Top-down and Bottom-up Approaches. Sci. Rep. 2016, 6, 22130. [Google Scholar] [CrossRef]
- IPCC. Good Practice Guidance for Land Use, Land-Use Change and Forestry/The Intergovernmental Panel on Climate Change; Penman, J., Ed.; IPCC: Hayama, Kanagawa, 2003. [Google Scholar]
- Guo, Z.; Fang, J.; Pan, Y.; Birdsey, R. Inventory-Based Estimates of Forest Biomass Carbon Stocks in China: A Comparison of Three Methods. For. Ecol. Manag. 2010, 259, 1225–1231. [Google Scholar] [CrossRef]
- Xu, X.; Cao, M.; Li, K. Study on the temporal and spatial dynamic changes of vegetation carbon storage in forest ecosystem in China. Prog. Geogr. 2007, 1–10. (In Chinese) [Google Scholar]
- Lv, H.; Wang, W.; He, X.; Wei, C.; Xiao, L.; Zhang, B.; Zhou, W. Association of Urban Forest Landscape Characteristics with Biomass and Soil Carbon Stocks in Harbin City, Northeastern China. PeerJ 2018, 6, e5825. [Google Scholar] [CrossRef] [PubMed]
- Pugh, T.A.M.; Lindeskog, M.; Smith, B.; Poulter, B.; Arneth, A.; Haverd, V.; Calle, L. Role of Forest Regrowth in Global Carbon Sink Dynamics. Proc. Natl. Acad. Sci. USA 2019, 116, 4382–4387. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Wang, T.; Lu, S.; Chen, K.; He, D.; Xu, Z. Evaluation of China’s Forest Carbon Sink Service Value. Environ. Sci. Pollut. Res. 2022, 29, 44668–44677. [Google Scholar] [CrossRef]
- Coase, R.H. The Problem of Social Cost. J. Law Econ. 1960, 3, 1–44. [Google Scholar] [CrossRef]
- Pigou, A. The Economics of Welfare; Routledge: New York, NY, USA, 2017; ISBN 978-1-351-30436-8. [Google Scholar]
- McGregor, A. REDD+ in Asia Pacific. Nat. Clim. Change 2015, 5, 623–624. [Google Scholar] [CrossRef]
- Macintosh, A.; Keith, H.; Lindenmayer, D. Rethinking Forest Carbon Assessments to Account for Policy Institutions. Nat. Clim. Change 2015, 5, 946–949. [Google Scholar] [CrossRef]
- Szajkó, G.; Rácz, V.J.; Kis, A. The Role of Price Incentives in Enhancing Carbon Sequestration in the Forestry Sector of Hungary. For. Policy Econ. 2024, 158, 103097. [Google Scholar] [CrossRef]
- Kallio, A.M.I.; Solberg, B.; Käär, L.; Päivinen, R. Economic Impacts of Setting Reference Levels for the Forest Carbon Sinks in the EU on the European Forest Sector. For. Policy Econ. 2018, 92, 193–201. [Google Scholar] [CrossRef]
- Lin, B.; Ge, J. Valued Forest Carbon Sinks: How Much Emissions Abatement Costs Could Be Reduced in China. J. Clean. Prod. 2019, 224, 455–464. [Google Scholar] [CrossRef]
- Lin, B.; Ge, J. Carbon Sinks and Output of China’s Forestry Sector: An Ecological Economic Development Perspective. Sci. Total Environ. 2019, 655, 1169–1180. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Page, J.; Shi, R.; Cong, C.; Cai, Z.; Barthel, S.; Thollander, P.; Colding, J.; Kalantari, Z. Contribution of Prioritized Urban Nature-Based Solutions Allocation to Carbon Neutrality. Nat. Clim. Change 2023, 13, 862–870. [Google Scholar] [CrossRef]
- Marvin, D.C.; Sleeter, B.M.; Cameron, D.R.; Nelson, E.; Plantinga, A.J. Natural Climate Solutions Provide Robust Carbon Mitigation Capacity under Future Climate Change Scenarios. Sci. Rep. 2023, 13, 19008. [Google Scholar] [CrossRef] [PubMed]
- Miranda, A.; Hoyos-Santillan, J.; Lara, A.; Mentler, R.; Huertas-Herrera, A.; Toro-Manríquez, M.D.R.; Sepulveda-Jauregui, A. Equivalent Impacts of Logging and Beaver Activities on Aboveground Carbon Stock Loss in the Southernmost Forest on Earth. Sci. Rep. 2023, 13, 18350. [Google Scholar] [CrossRef] [PubMed]
- Mundaca, L.; Richter, J.L. Challenges for New Zealand’s Carbon Market. Nat. Clim. Change 2013, 3, 1006–1008. [Google Scholar] [CrossRef]
- Brienen, R.J.W.; Caldwell, L.; Duchesne, L.; Voelker, S.; Barichivich, J.; Baliva, M.; Ceccantini, G.; Di Filippo, A.; Helama, S.; Locosselli, G.M.; et al. Forest Carbon Sink Neutralized by Pervasive Growth-Lifespan Trade-Offs. Nat. Commun. 2020, 11, 4241. [Google Scholar] [CrossRef] [PubMed]
- Friend, A.D.; Lucht, W.; Rademacher, T.T.; Keribin, R.; Betts, R.; Cadule, P.; Ciais, P.; Clark, D.B.; Dankers, R.; Falloon, P.D.; et al. Carbon Residence Time Dominates Uncertainty in Terrestrial Vegetation Responses to Future Climate and Atmospheric CO2. Proc. Natl. Acad. Sci. USA 2014, 111, 3280–3285. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.A.; Koven, C.D.; Anderegg, W.R.L.; Christoffersen, B.O.; Dietze, M.C.; Farrior, C.E.; Holm, J.A.; Hurtt, G.C.; Knox, R.G.; Lawrence, P.J.; et al. Vegetation Demographics in Earth System Models: A Review of Progress and Priorities. Glob. Change Biol. 2018, 24, 35–54. [Google Scholar] [CrossRef]
- Johnston, C.M.T.; Radeloff, V.C. Global Mitigation Potential of Carbon Stored in Harvested Wood Products. Proc. Natl. Acad. Sci. USA 2019, 116, 14526–14531. [Google Scholar] [CrossRef]
- Jacoby, H.D.; Ellerman, A.D. The Safety Valve and Climate Policy. Energy Policy 2004, 32, 481–491. [Google Scholar] [CrossRef]
- Webster, M.; Sue Wing, I.; Jakobovits, L. Second-Best Instruments for near-Term Climate Policy: Intensity Targets vs. the Safety Valve. J. Environ. Econ. Manag. 2010, 59, 250–259. [Google Scholar] [CrossRef]
- Weitzman, M.L. Prices vs. Quantities. Rev. Econ. Stud. 1974, 41, 477. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, Q.; Qi, S.; Huang, J.; Karplus, V.J.; Zhang, X. Integrity of Firms’ Emissions Reporting in China’s Early Carbon Markets. Nat. Clim. Change 2019, 9, 164–169. [Google Scholar] [CrossRef]
- Guan, Y.; Shan, Y.; Huang, Q.; Chen, H.; Wang, D.; Hubacek, K. Assessment to China’s Recent Emission Pattern Shifts. Earth’s Future 2021, 9. [Google Scholar] [CrossRef]
- Shan, Y.; Guan, D.; Zheng, H.; Ou, J.; Li, Y.; Meng, J.; Mi, Z.; Liu, Z.; Zhang, Q. China CO2 Emission Accounts 1997–2015. Sci. Data 2018, 5, 170201. [Google Scholar] [CrossRef] [PubMed]
- Shan, Y.; Huang, Q.; Guan, D.; Hubacek, K. China CO2 Emission Accounts 2016–2017. Sci. Data 2020, 7, 54. [Google Scholar] [CrossRef] [PubMed]
- Shan, Y.; Liu, J.; Liu, Z.; Xu, X.; Shao, S.; Wang, P.; Guan, D. New Provincial CO2 Emission Inventories in China Based on Apparent Energy Consumption Data and Updated Emission Factors. Appl. Energy 2016, 184, 742–750. [Google Scholar] [CrossRef]
- Mugabowindekwe, M.; Brandt, M.; Chave, J.; Reiner, F.; Skole, D.L.; Kariryaa, A.; Igel, C.; Hiernaux, P.; Ciais, P.; Mertz, O.; et al. Nation-Wide Mapping of Tree-Level Aboveground Carbon Stocks in Rwanda. Nat. Clim. Change 2023, 13, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Harris, N.L.; Gibbs, D.A.; Baccini, A.; Birdsey, R.A.; de Bruin, S.; Farina, M.; Fatoyinbo, L.; Hansen, M.C.; Herold, M.; Houghton, R.A.; et al. Global Maps of Twenty-First Century Forest Carbon Fluxes. Nat. Clim. Change 2021, 11, 234–240. [Google Scholar] [CrossRef]
- Mo, L.; Zohner, C.M.; Reich, P.B.; Liang, J.; de Miguel, S.; Nabuurs, G.-J.; Renner, S.S.; van den Hoogen, J.; Araza, A.; Herold, M.; et al. Integrated Global Assessment of the Natural Forest Carbon Potential. Nature 2023, 624, 92–101. [Google Scholar] [CrossRef]
- Wang, J.; Feng, L.; Palmer, P.I.; Liu, Y.; Fang, S.; Bösch, H.; O’Dell, C.W.; Tang, X.; Yang, D.; Liu, L.; et al. Large Chinese Land Carbon Sink Estimated from Atmospheric Carbon Dioxide Data. Nature 2020, 586, 720–723. [Google Scholar] [CrossRef] [PubMed]
- Ipcc, I. Guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Inventories Programme; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IGES: Tokyo, Japan, 2006. [Google Scholar]
- Wang, Y.; Wang, X.; Wang, K.; Chevallier, F.; Zhu, D.; Lian, J.; He, Y.; Tian, H.; Li, J.; Zhu, J.; et al. The Size of the Land Carbon Sink in China. Nature 2022, 603, E7–E9. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z. Research on China ’s carbon neutral framework roadmap. China Ind. Inf. Technol. 2021, 54–61. (In Chinese) [Google Scholar] [CrossRef]
- Guan, F.-J.; Liu, L.-H.; Liu, J.-W.; Fu, Y.; Wang, L.-Y.; Wang, F.; Li, Y.; Yu, X.-D.; Che, N.; Xiao, Y. Systematically Promoting the Construction of Natural Ecological Protection and Governance Capacity: Experts Comments on Master Plan for Major Projects of National Important Ecosystem Protection and Restoration (2021–2035). J. Nat. Resour. 2021, 36, 290–299. [Google Scholar] [CrossRef]
- Ma, C.; Yang, J.; Chen, F.; Ma, Y.; Liu, J.; Li, X.; Duan, J.; Guo, R. Assessing Heavy Industrial Heat Source Distribution in China Using Real-Time VIIRS Active Fire/Hotspot Data. Sustainability 2018, 10, 4419. [Google Scholar] [CrossRef]
- Ji, Y.; Zhou, G.; Luo, T.; Dan, Y.; Zhou, L.; Lv, X. Variation of Net Primary Productivity and Its Drivers in China’s Forests during 2000–2018. For. Ecosyst. 2020, 7, 15. [Google Scholar] [CrossRef]
- State Forestry Administration (SFA). Guideline for Carbon Sink Measurement and Monitoring of Afforestation Projects; State Forestry Administration: Beijing, China, 2014. (In Chinese) [Google Scholar]
- Xiao, X. China Forest Resources Inventory; China’s Forestry Press: Beijing, China, 2005. (In Chinese) [Google Scholar]
Market Level | International Market | National Level in China | Provincial Level in China | Carbon Sink Products |
---|---|---|---|---|
Off-Exchange Carbon Trading Mechanisms | Verified Carbon Standard (VCS Projects); Gold Standard Projects | China Green Carbon Foundation forestry projects; Large-Scale Event Carbon Neutrality | Independent carbon credit trading; provincial forest carbon credit projects (e.g., Fujian) | VCU 1 |
On-Exchange Carbon Trading Mechanisms | Clean Development Mechanism (CDM); Joint Implementation (JI); Emission Trading Mechanism | Chinese Certified Emission Reductions (CCER) | Local CCER trading; carbon-inclusive forestry projects; | CCER, CER, EUR, AAU, RMU 2 |
Method | Main Content | Premise | Limitations |
---|---|---|---|
Carbon Accounting Based on Plot Surveys | Harvesting method; biomass method; accumulation method; biomass inventory method; eddy covariance method. | Accurate forest resource inventory data | Excessive cost; long time cycle; data lag |
Carbon Accounting Based on Spatial Technologies | Satellite remote sensing method. | Relevant technology and measurement methods are required | High technical difficulty; excessive cost |
Periods | Arbor Forest Area (104 ha) | Forest Stock Volume (106 m3) | Biomass (Tg) | Carbon Stock (Tg C) | Carbon Density (Mgha)−1 |
---|---|---|---|---|---|
2009–2013 | 16,460.35 | 14,779.09 | 13,462.27 | 6731.14 | 40.89 |
2014–2018 | 17,988.85 | 17,058.20 | 15,347.64 | 7673.82 | 42.66 |
Province | Carbon Intensity | Carbon Emissions | 5% CCER Offsetting Volume | Carbon Sink | Carbon Surplus/Deficit |
---|---|---|---|---|---|
Beijing | 0.16 | 73.95 | 3.70 | 0.96 | (2.74) |
Tianjin | 0.78 | 144.22 | 7.21 | 0.37 | (6.85) |
Hebei | 1.35 | 621.47 | 31.07 | 5.80 | (25.27) |
Shanxi | 8.22 | 1836.34 | 91.82 | 3.29 | (88.53) |
Inner Mongolia | 4.75 | 1076.41 | 53.18 | 12.97 | (40.21) |
Liaoning | 2.07 | 678.38 | 33.92 | 6.57 | (27.34) |
Jilin | 1.38 | 213.62 | 10.68 | 6.14 | (4.54) |
Heilongjiang | 2.12 | 377.48 | 18.65 | 8.49 | (10.15) |
Shanghai | 0.33 | 167.03 | 8.35 | 0.15 | (8.20) |
Jiangsu | 0.51 | 666.66 | 33.33 | 4.65 | (28.68) |
Zhejiang | 0.53 | 438.95 | 21.95 | 3.69 | (18.26) |
Anhui | 0.89 | 430.95 | 21.55 | 5.56 | (15.99) |
Fujian | 0.52 | 292.65 | 14.63 | 10.08 | (4.55) |
Jiangxi | 0.61 | 197.43 | 9.87 | 9.56 | (0.31) |
Shandong | 1.40 | 1303.51 | 65.18 | 5.55 | (59.62) |
Henan | 0.70 | 492.03 | 24.60 | 7.35 | (17.25) |
Hubei | 0.50 | 301.28 | 14.97 | 4.76 | (10.21) |
Hunan | 0.50 | 261.47 | 13.07 | 12.10 | (0.98) |
Guangdong | 0.42 | 595.86 | 29.79 | 19.55 | (10.25) |
Guangxi | 0.90 | 250.73 | 12.39 | 22.86 | 10.47 |
Hainan | 1.09 | 76.62 | 3.83 | 5.36 | 1.53 |
Chongqing | 0.43 | 133.26 | 6.66 | 2.31 | (4.36) |
Sichuan | 0.48 | 293.27 | 14.66 | 11.85 | (2.81) |
Guizhou | 1.41 | 312.42 | 15.62 | 8.58 | (7.04) |
Yunnan | 0.61 | 185.91 | 9.30 | 14.82 | 5.53 |
Shaanxi | 1.94 | 660.63 | 33.03 | 4.69 | (28.34) |
Gansu | 1.79 | 205.19 | 10.14 | 2.88 | (7.26) |
Qinghai | 1.35 | 52.49 | 2.62 | 0.29 | (2.33) |
Ningxia | 5.64 | 278.73 | 13.77 | 0.37 | (13.40) |
Xinjiang | 3.36 | 601.98 | 30.10 | 1.97 | (28.13) |
Province | Proportion of Carbon Emissions | Proportion of Carbon Sinks |
---|---|---|
National | 100% | 100% |
Shanxi | 13.89% | 1.62% |
Shandong | 9.86% | 2.73% |
Inner Mongolia | 8.14% | 6.37% |
Liaoning | 5.13% | 3.23% |
Jiangsu | 5.04% | 2.28% |
Shaanxi | 5.00% | 2.30% |
Hebei | 4.70% | 2.85% |
Xinjiang | 4.55% | 0.97% |
Guangdong | 4.51% | 9.60% |
Henan | 3.72% | 3.61% |
Zhejiang | 3.32% | 1.81% |
Anhui | 3.26% | 2.73% |
Heilongjiang | 2.86% | 4.17% |
Guizhou | 2.36% | 4.22% |
Hubei | 2.28% | 2.34% |
Sichuan | 2.22% | 5.82% |
Fujian | 2.21% | 4.95% |
Ningxia | 2.11% | 0.18% |
Hunan | 1.98% | 5.94% |
Guangxi | 1.90% | 11.23% |
Jilin | 1.62% | 3.02% |
Gansu | 1.55% | 1.42% |
Jiangxi | 1.49% | 4.70% |
Yunnan | 1.41% | 7.28% |
Shanghai | 1.26% | 0.07% |
Tianjin | 1.09% | 0.18% |
Chongqing | 1.01% | 1.13% |
Hainan | 0.58% | 2.63% |
Beijing | 0.56% | 0.47% |
Qinghai | 0.40% | 0.14% |
Classification | Province |
---|---|
Carbon-negative province | Guangxi, Yunnan, Hainan |
Carbon-balancing province | Jiangxi, Hunan, Sichuan, Chongqing, Fujian, Jilin, Guizhou, Heilongjiang, Hubei, Guangdong |
Carbon-positive province | Shanxi, Shandong, Inner Mongolia, Jiangsu, Shaanxi, Xinjiang, Liaoning, Hebei, Zhejiang, Henan, Anhui, Ningxia, Shanghai, Gansu, Tianjin, Qinghai, Beijing |
Classification | Rule | Roles |
---|---|---|
Carbon-negative province | Provincial carbon sinks > 5% of provincial carbon emissions | Carbon asset holders |
Carbon-balancing province | Provincial carbon sinks < 5% of provincial carbon emissions Percentage of carbon sinks in China > percentage of carbon emissions in China | Carbon-balancing traders |
Carbon-positive province | Provincial carbon sinks < 5% of provincial carbon emissions Percentage of carbon sinks in China < percentage of carbon emissions in China | Carbon sink buyers |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Xia, E.; Huang, J. Which Provinces Will Be the Beneficiaries of Forestry Carbon Sink Trade? A Study on the Carbon Intensity–Carbon Sink Assessment Model in China. Forests 2024, 15, 816. https://doi.org/10.3390/f15050816
Liu C, Xia E, Huang J. Which Provinces Will Be the Beneficiaries of Forestry Carbon Sink Trade? A Study on the Carbon Intensity–Carbon Sink Assessment Model in China. Forests. 2024; 15(5):816. https://doi.org/10.3390/f15050816
Chicago/Turabian StyleLiu, Changxi, Enjun Xia, and Jieping Huang. 2024. "Which Provinces Will Be the Beneficiaries of Forestry Carbon Sink Trade? A Study on the Carbon Intensity–Carbon Sink Assessment Model in China" Forests 15, no. 5: 816. https://doi.org/10.3390/f15050816
APA StyleLiu, C., Xia, E., & Huang, J. (2024). Which Provinces Will Be the Beneficiaries of Forestry Carbon Sink Trade? A Study on the Carbon Intensity–Carbon Sink Assessment Model in China. Forests, 15(5), 816. https://doi.org/10.3390/f15050816