Influence of Leaf Area Index Inversion and the Light Transmittance Mechanism in the Apple Tree Canopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Test Site
2.2. Collection Equipment
2.2.1. Point Cloud Data Acquisition Equipment
2.2.2. Canopy Light Transmittance Acquisition Equipment
2.3. Experimental Scheme
2.3.1. Point Cloud Data Acquisition Experimental Scheme
2.3.2. Light Transmittance Data Collection Experimental Scheme
2.4. Data Processing
2.4.1. Preprocessing of Point Cloud Data
2.4.2. Construction of Voxel Model
2.4.3. Leaf Area Index Inversion Model
- (1)
- To find the starting point, p0, locate the point with the smallest Y-axis value. If there are multiple points with the same smallest Y-axis value, choose the one with the smallest X-axis value as the reference point.
- (2)
- Next, sort the remaining points based on their polar angle from the origin p0. If two points form the same angle with p0, prioritize the one closer to p0. Finally, proceed with a sequential scan of the sorted points starting from p0. If these points are on the convex polygon, then the three consecutively obtained points pi − 1, pi, pi + 1 should satisfy the following property: pi + 1 is on the left side of the vector <pi − 1, pi>. If this property is not satisfied, then pi must not be a vertex on the convex hull and is deleted.
- (3)
- When pi = p0, the figure is closed, and the convex polygon is complete. Use the two-dimensional convex hull algorithm to obtain the projection of the canopy point cloud’s exterior outline. The laser beams are intercepted by the leaves at the thickness of the horizontal layer, forming a closed convex polygon by connecting the vertices of the convex hull.
2.4.4. Selection of Voxel Size
2.4.5. Leaf Area Index–Light Transmittance Fitting
- (1)
- There are three hidden layers situated between the input layer and the output layer, with 4, 12, and 8 nodes, respectively.
- (2)
- Logsig, Tansig, and Purelin are utilized as transfer functions from input to output for the three hidden layers.
3. Results
3.1. Point Cloud Preprocessing
3.2. Determination of Voxel Size
3.3. Calculation of Leaf Area Index
3.4. Calculation of Light Transmittance
3.5. Fitting Based on DNN Leaf Area Index and Light Transmittance
4. Discussion
- (1)
- Factors Affecting Light Transmission Analysis
- (2)
- Comparison of Methods for Acquiring Light Transmittance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Field, C.; Mooney, H. The photosynthesis-nitrogen relationship in wild plants. Econ. Plant Form Funct. 1986, 25–55. [Google Scholar]
- Matheny, A.M. Stressors reveal ecosystems’ hidden characteristics. J. Geophys. Res. Biogeosci. 2021, 126, e2021JG006462. [Google Scholar] [CrossRef]
- Timlin, D.J.; Fleisher, D.H.; Kemanian, A.R.; Reddy, V.R. Plant density and leaf area index effects on the distribution of light transmittance to the soil surface in maize. Agron. J. 2014, 106, 1828–1837. [Google Scholar] [CrossRef]
- Kara, F. Effects of light transmittance on growth and biomass of understory seedlings in mixed pine-beech forests. Eur. J. For. Res. 2022, 141, 1189–1200. [Google Scholar] [CrossRef]
- Parker, G.G.; Davis, M.M.; Chapotin, S.M. Canopy light transmittance in Douglas-fir–western hemlock stands. Tree Physiol. 2002, 22, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Hagemeier, M.; Leuschner, C. Leaf and crown optical properties of five early-, mid-and late-successional temperate tree species and their relation to sapling light demand. Forests 2019, 10, 925. [Google Scholar] [CrossRef]
- Hale, S.E.; Edwards, C.; Mason, W.; Price, M.; Peace, A. Relationships between canopy transmittance and stand parameters in Sitka spruce and Scots pine stands in Britain. Forestry 2009, 82, 503–513. [Google Scholar] [CrossRef]
- Hossain, K.L.; Comeau, P.G. Characterizing light across a strip shelterwood in a mixed conifer forest. For. Ecol. Manag. 2019, 445, 134–145. [Google Scholar] [CrossRef]
- Parker, G.G.; Lefsky, M.A.; Harding, D.J. Light transmittance in forest canopies determined using airborne laser altimetry and in-canopy quantum measurements. Remote Sens. Environ. 2001, 76, 298–309. [Google Scholar] [CrossRef]
- Ringold, P.L.; Van Sickle, J.; Rasar, K.; Schacher, J. Use of Hemispheric Imagery for Estimating Stream Solar Exposure 1. JAWRA J. Am. Water Resour. Assoc. 2003, 39, 1373–1384. [Google Scholar] [CrossRef]
- Kobayashi, H.; Ryu, Y.; Baldocchi, D.D.; Welles, J.M.; Norman, J.M. On the correct estimation of gap fraction: How to remove scattered radiation in gap fraction measurements? Agric. For. Meteorol. 2013, 174, 170–183. [Google Scholar] [CrossRef]
- Ross, J.; Sulev, M. Sources of errors in measurements of PAR. Agric. For. Meteorol. 2000, 100, 103–125. [Google Scholar] [CrossRef]
- Bittner, S.; Gayler, S.; Biernath, C.; Winkler, J.B.; Seifert, S.; Pretzsch, H.; Priesack, E. Evaluation of a ray-tracing canopy light model based on terrestrial laser scans. Can. J. Remote Sens. 2012, 38, 619–628. [Google Scholar] [CrossRef]
- Bailey, B.; Overby, M.; Willemsen, P.; Pardyjak, E.; Mahaffee, W.; Stoll, R. A scalable plant-resolving radiative transfer model based on optimized GPU ray tracing. Agric. For. Meteorol. 2014, 198, 192–208. [Google Scholar] [CrossRef]
- Bailey, B.N. A reverse ray-tracing method for modelling the net radiative flux in leaf-resolving plant canopy simulations. Ecol. Model. 2018, 368, 233–245. [Google Scholar] [CrossRef]
- Musselman, K.N.; Margulis, S.A.; Molotch, N.P. Estimation of solar direct beam transmittance of conifer canopies from airborne LiDAR. Remote Sens. Environ. 2013, 136, 402–415. [Google Scholar] [CrossRef]
- Xue, X.; Jin, S.; An, F.; Zhang, H.; Fan, J.; Eichhorn, M.P.; Jin, C.; Chen, B.; Jiang, L.; Yun, T. Shortwave radiation calculation for forest plots using airborne LiDAR data and computer graphics. Plant Phenomics 2022, 2022, 9856739. [Google Scholar] [CrossRef]
- Shin, N.; Kotani, A.; Sato, T.; Sugimoto, A.; Maximov, T.C.; Nogovitcyn, A.; Miyamoto, Y.; Kobayashi, H.; Tei, S. Direct measurement of leaf area index in a deciduous needle-leaf forest, eastern Siberia. Polar Sci. 2020, 25, 100550. [Google Scholar] [CrossRef]
- Roberts, S.D.; Dean, T.J.; Evans, D.L.; McCombs, J.W.; Harrington, R.L.; Glass, P.A. Estimating individual tree leaf area in loblolly pine plantations using LiDAR-derived measurements of height and crown dimensions. For. Ecol. Manag. 2005, 213, 54–70. [Google Scholar] [CrossRef]
- Lovell, J.; Jupp, D.L.; Culvenor, D.; Coops, N. Using airborne and ground-based ranging lidar to measure canopy structure in Australian forests. Can. J. Remote Sens. 2003, 29, 607–622. [Google Scholar] [CrossRef]
- Takeda, T.; Oguma, H.; Sano, T.; Yone, Y.; Fujinuma, Y. Estimating the plant area density of a Japanese larch (Larix kaempferi Sarg.) plantation using a ground-based laser scanner. Agric. For. Meteorol. 2008, 148, 428–438. [Google Scholar] [CrossRef]
- Hosoi, F.; Omasa, K. Voxel-based 3-D modeling of individual trees for estimating leaf area density using high-resolution portable scanning lidar. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3610–3618. [Google Scholar] [CrossRef]
- Hosoi, F.; Omasa, K. Estimating vertical plant area density profile and growth parameters of a wheat canopy at different growth stages using three-dimensional portable lidar imaging. ISPRS J. Photogramm. Remote Sens. 2009, 64, 151–158. [Google Scholar] [CrossRef]
- Hosoi, F.; Nakai, Y.; Omasa, K. Estimation and error analysis of woody canopy leaf area density profiles using 3-D airborne and ground-based scanning lidar remote-sensing techniques. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2215–2223. [Google Scholar] [CrossRef]
- Hosoi, F.; Nakai, Y.; Omasa, K. Voxel tree modeling for estimating leaf area density and woody material volume using 3-D LIDAR data. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, 2, 115–120. [Google Scholar] [CrossRef]
- Van der Zande, D.; Stuckens, J.; Verstraeten, W.W.; Mereu, S.; Muys, B.; Coppin, P. 3D modeling of light interception in heterogeneous forest canopies using ground-based LiDAR data. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 792–800. [Google Scholar] [CrossRef]
- Li, S.; Dai, L.; Wang, H.; Wang, Y.; He, Z.; Lin, S. Estimating leaf area density of individual trees using the point cloud segmentation of terrestrial LiDAR data and a voxel-based model. Remote Sens. 2017, 9, 1202. [Google Scholar] [CrossRef]
- Noda, H.M.; Muraoka, H.; Nasahara, K.N. Plant ecophysiological processes in spectral profiles: Perspective from a deciduous broadleaf forest. J. Plant Res. 2021, 134, 737–751. [Google Scholar] [CrossRef]
- Du, S.; Liu, L.; Liu, X.; Hu, J. Response of canopy solar-induced chlorophyll fluorescence to the absorbed photosynthetically active radiation absorbed by chlorophyll. Remote Sens. 2017, 9, 911. [Google Scholar] [CrossRef]
- Zhou, S.; Kang, F.; Li, W.; Kan, J.; Zheng, Y.; He, G. Extracting diameter at breast height with a handheld mobile LiDAR system in an outdoor environment. Sensors 2019, 19, 3212. [Google Scholar] [CrossRef]
- Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An easy-to-use airborne LiDAR data filtering method based on cloth simulation. Remote Sens. 2016, 8, 501. [Google Scholar] [CrossRef]
- Béland, M.; Widlowski, J.-L.; Fournier, R.A. A model for deriving voxel-level tree leaf area density estimates from ground-based LiDAR. Environ. Model. Softw. 2014, 51, 184–189. [Google Scholar] [CrossRef]
- Lin, Y.; West, G. Retrieval of effective leaf area index (LAIe) and leaf area density (LAD) profile at individual tree level using high density multi-return airborne LiDAR. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 150–158. [Google Scholar] [CrossRef]
- Abbas, M.A.; Setan, H.; Majid, Z.; Chong, A.K.; Idris, K.M.; Aspuri, A. Calibration and accuracy assessment of leica scanstation c10 terrestrial laser scanner. In Developments in Multidimensional Spatial Data Models; Springer: Berlin/Heidelberg, Germany, 2013; pp. 33–47. [Google Scholar]
- Weiss, M.; Baret, F.; Smith, G.; Jonckheere, I.; Coppin, P. Review of methods for in situ leaf area index (LAI) determination: Part II. Estimation of LAI, errors and sampling. Agric. For. Meteorol. 2004, 121, 37–53. [Google Scholar] [CrossRef]
- Nilsson, M. Estimation of tree heights and stand volume using an airborne lidar system. Remote Sens. Environ. 1996, 56, 1–7. [Google Scholar] [CrossRef]
- Graham, R.L. An efficient algorithm for determining the convex hull of a finite planar set. Info. Proc. Lett. 1972, 1, 132–133. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Tang, H.; Xu, Z.; Chen, S.; Yang, S.; Liu, W.; Zhou, L.; Wang, Y.; Kang, F.; Ismail, O.; Zheng, Y. Light efficacy estimation for fruit trees based on LIDAR point clouds: A case study on pear trees. Sci. Hortic. 2024, 324, 112590. [Google Scholar] [CrossRef]
- Yan, Z.; Zhou, Q.; Teng, M.; Ji, H.; Zhang, J.; He, W.; Ye, Y.; Wang, B.; Wang, P. High planting density and leaf area index of masson pine forest reduce crown transmittance of photosynthetically active radiation. Glob. Ecol. Conserv. 2019, 20, e00759. [Google Scholar] [CrossRef]
- Gao, D.; Han, M.; Li, B.; Zhang, L.; Bai, R. Characteristics of canopy and light transmittance in three types of apple orchards in Weibei areas of Shaanxi Province, China. Front. Agric. China 2008, 2, 93–96. [Google Scholar] [CrossRef]
Feature | Parameter | Feature | Parameter |
---|---|---|---|
Scanning range | 0.1~100 m | measurement accuracy | ±3 cm |
Horizontal field of view angle | 360° | Vertical field of view angle | 30° |
Horizontal angle resolution | 0.1°~0.4° | Vertical angle resolution | 2° |
Laser level | 1905 nm | Scanning frequency | 5~20 Hz |
Number of laser lines | 0.1~100 m | Working voltage | 9~32 V |
Feature | Parameter | Feature | Parameter |
---|---|---|---|
Lens angle | 150° | Resolving power | 768 × 494 pix |
PAR sensing range | 400 nm~700 nm | Measuring range | 0~2000 μmol/m2·S |
Working voltage | 8.4 V | Working temperature | 0~55 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L.; Wang, Y.; Chen, C.; Tong, S.; Kang, F. Influence of Leaf Area Index Inversion and the Light Transmittance Mechanism in the Apple Tree Canopy. Forests 2024, 15, 823. https://doi.org/10.3390/f15050823
Zhou L, Wang Y, Chen C, Tong S, Kang F. Influence of Leaf Area Index Inversion and the Light Transmittance Mechanism in the Apple Tree Canopy. Forests. 2024; 15(5):823. https://doi.org/10.3390/f15050823
Chicago/Turabian StyleZhou, Linghui, Yaxiong Wang, Chongchong Chen, Siyuan Tong, and Feng Kang. 2024. "Influence of Leaf Area Index Inversion and the Light Transmittance Mechanism in the Apple Tree Canopy" Forests 15, no. 5: 823. https://doi.org/10.3390/f15050823
APA StyleZhou, L., Wang, Y., Chen, C., Tong, S., & Kang, F. (2024). Influence of Leaf Area Index Inversion and the Light Transmittance Mechanism in the Apple Tree Canopy. Forests, 15(5), 823. https://doi.org/10.3390/f15050823