Analysis of Spatial Differentiation of NDVI and Climate Factors on the Upper Limit of Montane Deciduous Broad-Leaved Forests in the East Monsoon Region of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Preprocessing of Climatic Factors and NDVI
2.3.2. Spatial Distribution of Climatic Factors and NDVI
2.3.3. Temporal Variations in Climatic Factors and NDVI
2.3.4. Time-Lag and -Accumulation Effects of Climatic Factors
- (1)
- Considering time-lag effects, the analysis examines the differential impacts of climatic factors on NDVI with a cumulative period of 1 and lag periods ranging from 0 to 6.
- (2)
- Considering time-accumulation effects, the analysis examines the differential impacts of climatic factors on NDVI with lag period of 0 and cumulative periods ranging from 1 to 6.
- (3)
- Considering time-lag and -accumulation effects, the analysis examines the comprehensive impacts of climatic factors on NDVI through 42 combined forms of lag (from 0 to 6 periods) and cumulative (from 1 to 6 periods) periods [54], as outlined in Table 2. The lag and cumulative periods that correspond to the maximum correlation coefficient between climatic factors and NDVI indicate the optimal lag time and cumulative duration for these climatic factors. Research has indicated that sequences of climatic factors with optimal time-lag and -accumulation effects exert a greater influence on NDVI than scenarios considering only one of these effect [50].
2.3.5. Relative Contributions of Climate Factors to the NDVI Variations
3. Results
3.1. Spatial and Temporal Variations in Climatic Factors at the Upper Limit of MDBF
3.1.1. Spatial Distribution
3.1.2. Temporal Variations
3.2. Spatial and Temporal Variations in NDVI at the Upper Limit of MDBF
3.2.1. Spatial Distribution
3.2.2. Temporal Variations
3.3. Analysis of the Time-Lag and -Accumulation Effects of Climatic Factors at the Upper Limit of MDBF
3.3.1. Analysis of the Time-Lag Effect
3.3.2. Analysis of the Time-Accumulation Effect
3.3.3. Analysis of Time-Lag and -Accumulation Effects
3.4. The Relative Contribution of Climate Factors to the NDVI Variations at the Upper Limit of MDBF
3.4.1. Short-Term Scale
3.4.2. Interannual Scale
4. Discussion
4.1. Time-Lag and -Accumulation Effects of Climatic Factors at the Upper Limit of MDBF
4.2. The Impact of Climatic Factors on NDVI Variations at the Upper Limit of MDBF
4.3. The Impact of Other Factors on NDVI Variations at the Upper Limit of MDBF
4.4. The Impact of Elevation and Aspect on the Vegetation at the Upper Limit of MDBF
4.5. Limitations of This Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Wang, G.X.; Liu, G.H.; Shen, Z.H.; Wang, W.Z. Research progress and future perspectives on the landscape ecology of mountainous areas. Acta Ecol. Sin. 2017, 37, 3967–3981. [Google Scholar]
- Engler, R.; Randin, C.F.; Thuiller, W.; Dullinger, S.; Zimermann, N.E.; Araújo, M.B.; Pearman, P.B.; Lay, G.L.; Piedallu, C.; Albert, C.H.; et al. 21st century climate change threatens mountain flora unequally across Europe. Glob. Chang. Biol. 2011, 17, 2330–2341. [Google Scholar] [CrossRef]
- Sanz-Elorza, M.; Dana, E.D.; González, A.; Sobrino, E. Changes in the high-mountain vegetation of the central Iberian Peninsula as a probable sign of global warming. Ann. Bot. 2003, 92, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Baker, B.B.; Moseley, R.K. Advancing treeline and retreating glaciers: Implications for conservation in Yunnan, P.R. China. Arct. Antarct. Alp. Res. 2007, 39, 200–209. [Google Scholar] [CrossRef]
- Körner, C. Alpine Treelines: Treeline Formation-Currently, in the Past and in the Future; Springer: Basel, Switzerland, 2012. [Google Scholar]
- Greenwood, S.; Chen, J.C.; Chen, C.T.; Jump, A.S. Strong topographic sheltering effects lead to spatially complex treeline advance and increased forest density in a subtropical mountain region. Glob. Chang. Biol. 2014, 20, 3756–3766. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Hirosawa, T.; Morishima, R. How the timberline formed: Altitudinal changes in stand structure and dynamics around the timberline in central Japan. Ann. Bot. 2012, 109, 1165–1174. [Google Scholar]
- Lu, X.L.; Hu, N.; Ding, S.Y.; Fan, Y.L.; Liao, B.H.; Zhai, Y.J.; Liu, J. The pattern of plant species diversity of Funiu Mountain Nature Reserve. Acta Ecol. Sin. 2010, 30, 5790–5798. [Google Scholar]
- Zhang, B.P.; Yao, Y.H.; Xiao, F.; Zhou, W.Z.; Zhu, L.Q.; Zhang, J.H.; Zhao, F.; Bai, H.Y.; Wang, J.; Yu, F.Q.; et al. The finding and significance of the super altitudinal belt of montane deciduous broad-leaved forests in central Qinling Mountains. Acta Geogr. Sin. 2022, 77, 2236–2248. [Google Scholar]
- Guo, D. The Study of Topographic Controls on Altitudinal Belt on Changbai Mountain; Northeast Normal University: Changchun, China, 2014; pp. 14–20. [Google Scholar]
- LePrieur, C.; Verstraete, M.M.; Pinty, B. Evaluation of the performance of various vegetation indices to retrieve vegetation cover from AVHRR data. Remote Sens. Rev. 1994, 10, 265–284. [Google Scholar] [CrossRef]
- Pinty, B.; Verstraete, M.M. GEMI: A non-linear index to monitor global vegetation from satellites. Vegetatio 1992, 101, 15–20. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Baret, F.; Guyot, G. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens. Environ. 1991, 35, 161–173. [Google Scholar] [CrossRef]
- Brown, L.J.; Chen, J.M.; Leblanc, S.G.; Cihlar, J. A shortwave infrared modification to the simple ratio for LAI retrieval in boreal forests: An image and model analysis. Remote Sens. Environ. 2000, 71, 16–25. [Google Scholar] [CrossRef]
- Liu, H.Q.; Huete, A. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE T. Geosci. Remote. 1995, 33, 457–465. [Google Scholar] [CrossRef]
- Holben, B.N.; Justice, C.O. The topographic effect on spectral response from nadir-pointing sensors. Photogramm. Eng. Remote Sens. 1980, 46, 1191–1200. [Google Scholar]
- Jiang, R.G.; Xie, J.C.; He, H.L.; Kuo, C.C.; Zhu, J.W.; Yang, M.X. Spatiotemporal variability and predictability of Normalized Difference Vegetation Index (NDVI) in Alberta, Canada. Int. J. Biometeorol. 2016, 60, 1389–1403. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.L.; Tang, H.P. Analysis of vegetation changes and water temperature driving factors in two alpine grasslands on the Qinghai-Tibet Plateau. Acta Ecol. Sin. 2022, 42, 287–300. [Google Scholar]
- Ji, Z.X.; Pei, T.T.; Chen, Y.; Qing, G.X.; Hou, Q.Q.; Xie, B.P.; Wu, H.W. Vegetation phenology change and its response to seasonal climate changes on the Loess Plateau. Acta Ecol. Sin. 2021, 41, 6600–6612. [Google Scholar]
- Shi, S.; Li, W.; Qu, C.; Yang, Z.Y. Spatiotemporal evolution and quantitative attribution analysis of vegetation NDVI in Greater Khingan Mountains Forest-Steppe Ecotone. Environ. Sci. 2024, 45, 248–261. [Google Scholar]
- Xu, L.; Gao, G.Y.; Wang, X.F.; Chen, Y.Z.; Zhou, C.W.; Wang, K.; Fu, B.J. Quantifying the contributions of climate change and human activities to vegetation greening in the drylands of northern China. Acta Ecol. Sin. 2023, 43, 7274–7283. [Google Scholar]
- Jing, J.L.; Deng, Q.F.; He, C.X.; Wang, Y.F.; Ma, B.X. Spatiotemporal evolution of NDVI and its climatic driving factors in the Southwest Karst area from 1999 to 2019. Res. Soil Water Conserv. 2023, 30, 232–239. [Google Scholar]
- Bao, C.L.; Chen, H.G. On time-lag response of vegetation cover to climate change in Northeast Plain. Std. Surv. Map. 2020, 36, 14–20. [Google Scholar]
- Yuan, J.G.; Zhang, S.; Hu, C.Z. Multitemporal SPOT-VGT NDVI change in growing seasons and relationships to climatic factors in Heibei Province. Bull. Sci. Technol. 2015, 31, 47–52. [Google Scholar]
- Jin, K. Spatio-Temporal Variations of Vegetation Cover and Its Relationships between Climate Change and Human Activities over China; Northwest A & F University: Yangling, China, 2019. [Google Scholar]
- Braswell, B.H.; Schimel, D.S.; Linder, E.; Moore III, B. The response of global terrestrial ecosystems to interannual temperature variability. Science 1977, 278, 870–873. [Google Scholar] [CrossRef]
- Guo, L.; Cheng, J.M.; Luedeling, E.; Koerner, S.E.; He, J.S.; Xu, J.C.; Gang, C.C.; Li, W.; Luo, R.M.; Peng, C.H. Critical climate periods for grassland productivity on China’s Loess Plateau. Agric. For. Meteorol. 2017, 233, 101–109. [Google Scholar] [CrossRef]
- Chen, L.Z. Flora and Vegetation Geography of China; Science Press: Beijing, China, 2014. [Google Scholar]
- Guo, Z.D.; Hu, H.F.; Li, P.; Li, N.Y.; Fang, J.Y. Spatio-temporal changes in biomass carbon sinks in China’s forest during 1977–2008. Sci. China Life Sci. 2013, 43, 421–431. [Google Scholar]
- Liu, Y.L.; Hua, Y.; Zhou, H.C.; Ye, L.; Wang, G.Q.; Jin, J.L.; Bao, Z.X. Precipitation variation and trend projection in the eastern monsoon region of China since 1470. Adv. Water Sci. 2022, 33, 1–14. [Google Scholar]
- Zheng, J.Y.; Hao, Z.X.; Fang, X.Q.; Ge, Q.S. Changing characteristics of extreme climate events during past 2000 years in China. Prog. Geogr. 2014, 33, 3–12. [Google Scholar]
- Qin, J.; Bai, H.Y.; Zhao, P.; Yang, N.J.; Yue, J.W. Age-dependent response of Abies fargesii tree radial growth to climatic factors in the Qinling Mountains. Acta Ecol. Sin. 2022, 42, 7167–7176. [Google Scholar]
- Hou, G.L.; Zhang, H.Y.; Guo, D.; Guo, X.Y. Spatial-temporal variation of NDVI in the growing season and its sensitivity to climatic factors in Changbai Mountains. Prog. Geogr. 2012, 31, 285–292. [Google Scholar]
- Deng, C.H.; Bai, H.Y.; Gao, S.; Liu, R.J.; Ma, X.P.; Huang, X.Y.; Meng, Q. Spatial-temporal variation of the vegetation coverage in Qinling Mountains and its dual response to climate change and human activities. J. Nat. Res. 2018, 33, 425–438. [Google Scholar]
- Liu, Q.; Jing, H.T.; Liu, P.P.; Tang, J.Y.; Wang, L. Research on the relationship between temporal and spatial changes of NDVI and climate factors in the Taihang Mountains. J. Northeast For. Univ. 2023, 38, 1–9+33. [Google Scholar]
- Li, M.W.; Luan, Q.; Zhang, N.; Chang, Q.; Fan, Z.H.; Yang, Q.; Zhao, Y.Q.; Mi, X.L. Analysis of spatiotemporal dynamics and influencing factors of vegetation NDVI in Lvliang city from 2000 to 2019. Res. Soil Water Conserv. 2022, 29, 248–254. [Google Scholar]
- Zhang, L.; Jiang, J. Temporal and spatial variation characteristics of surface vegetation and its relationship with environmental factors based on MODIS-NDVI. J. Anhui Agric. Sci. 2022, 50, 57–63. [Google Scholar]
- Huang, C.X.; Hu, S.S.; Huang, Y. Analysis on spatiotemporal variation characteristics and influencing factors of NDVI in Hunan Province. Ecol. Sci. 2023, 42, 114–126. [Google Scholar]
- Liu, C.; Shi, R.X. GIS dataset of boundaries among four geo-eco regions of China. J. Glob. Change Data Discov. 2018, 2, 42–50+173–181. [Google Scholar]
- Wang, Z.Y.; Han, F.; Li, C.R.; Mu, H.X.; Wang, Z. Dataset of the upper limit of montane deciduous broad-leaved forests in the east monsoon realm of China. Digit. J. Glob. Change Data Repos. 2023. [CrossRef]
- Didan, K.; Munoz, A.B. MODIS Vegetation Index User’s Guide (MOD13 Series); University of Arizona: Tucson, AZ, USA, 2019. [Google Scholar]
- Kumari, N.; Saco, P.M.; Rodrigues, J.F.; Johnstone, S.A.; Srivastava, A.; Chun, K.P.; Yetemen, O. The grass is not always greener on the other side: Seasonal reversal of vegetation greenness in aspect-driven semiarid ecosystems. Geophys. Res. Lett. 2020, 47, e2020GL088918. [Google Scholar] [CrossRef]
- Zhu, G.L.; Liu, Y.B.; Ju, W.M.; Chen, J.M. Evaluation of topographic effects on four commonly used vegetation indices. J. Remote Sens. 2013, 17, 210–234. [Google Scholar]
- Wang, J.B.; Wang, J.W.; Ye, H.; Liu, Y.; He, H.L. An interpolated temperature and precipitation dataset at 1-km grid resolution in China (2000–2012). China Sci. Data 2017, 2, 73–80+205–212. [Google Scholar]
- Wang, J.B. The Nation’s 1 km of the Country’s Surface Net Radiating Data Set during 2000–2018; National Ecological Science Data Center: Beijing, China, 2021. [Google Scholar]
- Peng, S.S.; Piao, S.L.; Ciais, P.; Myneni, R.B.; Chen, A.; Chevallier, F.; Dolman, A.J.; Janssens, I.A.; Penuelas, J.; Zhang, G.X.; et al. Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature 2013, 501, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.X.; Li, Z.; Peng, S.Z. Global analysis of time-lag and -accumulation effects of climate on vegetation growth. Int. J. Appl. Earth Obs. 2020, 92, 102179. [Google Scholar] [CrossRef]
- Gourdji, S.M.; Sibley, A.M.; Lobell, D.B. Global crop exposure to critical high temperatures in the reproductive period: Historical trends and future projections. Environ. Res. Lett. 2013, 8, 024041. [Google Scholar] [CrossRef]
- Zhuo, G.; Chen, S.R.; Zhou, B. Spatio-temporal variation of vegetation coverage over the Tibetan Plateau and its responses to climatic factors. Acta Ecol. Sin. 2018, 38, 3208–3218. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, W.T.; Dou, S.Q.; Guo, Z.D.; Li, X.Y.; Zheng, Z.W.; Jing, J.L. Responding mechanism of vegetation cover to climate change and human activities in Southwest China from 2000 to 2020. Environ. Sci. 2022, 43, 3230–3240. [Google Scholar]
- Gessner, U.; Naeimi, V.; Klein, I.; Kuenzer, C.; Klein, D.; Dech, S. The relationship between precipitation anomalies and satellite-derived vegetation activity in Central Asia. Global Planet. Change 2013, 110, 74–87. [Google Scholar] [CrossRef]
- Ge, W.Y.; Deng, L.Q.; Wang, F.; Han, J.Q. Quantifying the contributions of human activities and climate change to vegetation net primary productivity dynamics in China from 2001 to 2006. Sci. Total Environ. 2021, 773, 145648. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, H.H.; Chen, Y.; Gang, C.C. Spatio-temporal dynamics of vegetation optical depth and its driving forces in China from 2000 to 2018. Acta Geogr. Sin. 2023, 78, 729–745. [Google Scholar]
- Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C.; Tucker, C.J.; Myneni, R.B.; Running, S.W. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 2003, 300, 1560–1563. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.H.; Zhao, X.; Liang, S.L.; Zhou, T.; Huang, K.C.; Tang, B.J.; Zhao, W.Q. Time-lag effects of global vegetation responses to climate change. Global Change Biol. 2015, 21, 3520–3531. [Google Scholar] [CrossRef] [PubMed]
- Ershadi, A.; McCabe, M.F.; Evans, J.P.; Wood, E.F. Impact of model structure and parameterization on Penman-Monteith type evaporation models. J. Hydrol. 2015, 525, 521–535. [Google Scholar] [CrossRef]
- Shi, C.G.; Sun, G.; Zhang, H.X.; Xiao, B.X.; Zhang, N.N.; Wu, N. Effects of warming on chlorophyll degradation and carbohydrate accumulation of alpine herbaceous species during plant senescence on the Tibetan Plateau. PLoS ONE 2014, 9, e107874. [Google Scholar] [CrossRef]
- Busetto, L.; Colombo, R.; Migliavacca, M.; Cremonese, E.; Meroni, M.; Galvagno, M.; Rossini, M.; Siniscalco, C.; Morra Di Cella, U.; Pari, E. Remote sensing of larch phenological cycle and analysis of relationships with climate in the Alpine region. Global Change Biol. 2010, 16, 2504–2517. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Julio Camarero, J.; Azorin-Molina, C. Diverse responses of forest growth to drought time-scales in the Northern Hemisphere. Global Ecol. Biogeogr. 2014, 23, 1019–1030. [Google Scholar] [CrossRef]
- Lin, P.F.; Zhu, X.; He, Z.B.; Du, J.; Chen, L.F. Research progress on soil moisture temporal stability. Acta Ecol. Sin. 2018, 38, 3403–3413. [Google Scholar]
- Wei, S.J.; Luo, B.Z.; Sun, L.; Wei, S.W.; Liu, F.F.; Hu, H.Q. Spatial and temporal heterogeneity and effect factors of soil respiration in forest ecosystems: A review. Ecol. Environ. Sci. 2013, 22, 689–704+17. [Google Scholar]
- Liu, Y.N.; Ao, M.; Li, B.; Guan, Y.X. Effect of ultraviolet-B (UV-B) radiation on plant growth and development and its application value. Soils Crops 2020, 9, 191–202. [Google Scholar]
- Lei, Q.; Hu, Z.W.; Wang, J.Z.; Zhang, Y.H.; Wu, G.F. Spatiotemporal dynamics of NDVI in China from 1985 to 2015, Ecosystem variation, regional differences, and response to climatic factors. Acta Ecol. Sin. 2023, 43, 6378–6391. [Google Scholar]
- Liu, Y.L.; Guo, R.Q.; Sun, S.C. Variations in the vertical vegetation zonation of subtropical Chinese mountains: The importance of climatic seasonality. Acta Ecol. Sin. 2010, 30, 3912–3922. [Google Scholar]
- Liu, X.F.; Hu, B.Y.; Ren, Z.Y. Spatiotemporal variation of water use efficiency and its driving forces on the Loess Plateau during 2000–2014. Sci. Agric. Sin. 2018, 51, 302–314. [Google Scholar]
- Sun, R.; Chen, S.H.; Su, H.B. Climate Dynamics of the Spatiotemporal Changes of Vegetation NDVI in Northern China from 1982 to 2015. Remote Sens. 2021, 13, 187. [Google Scholar] [CrossRef]
- Kaufmann, R.K.; Zhou, L.; Tucker, C.J.; Slayback, D.; Shabanov, N.V.; Myneni, R.B. Reply to comment on “Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981–1999” by J. R. Ahlbeck. J. Geophys. Res. 2022, 107, 4127. [Google Scholar] [CrossRef]
- Yang, X.M. Spatial-Temporal Variations of Desert Vegetation and Its Response to Climate Change in Hexi Area during 1982–2013; Lanzhou University: Lanzhou, China, 2015. [Google Scholar]
- Zhu, Z.C.; Piao, S.L.; Myneni, R.B.; Huang, M.T.; Zeng, Z.Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Fridelingstein, P.; Arneth, A.; et al. Greening of the Earth and its drivers. Nat. Clim. Change 2016, 6, 791–795. [Google Scholar] [CrossRef]
- Wang, P.X.; Gong, J.Y.; Li, X.W.; Wang, J.D. Advances in drought monitoring by using remotely sensed normalized difference vegetation index and land surface temperature products. Adv. Earth Sci. 2003, 18, 527–533. [Google Scholar]
- Cantón, Y.; Del Barrio, G.; Solé-Benet, A.; Lázaro, R. Topographic controls on the spatial distribution of ground cover in the Tabernas badlands of SE Spain. CATENA 2004, 55, 341–365. [Google Scholar] [CrossRef]
- Xiong, X.T.; Li, C.H.; Chen, J.H. Topographic regulatory role of vegetation response to climate change. Acta Geogr. Sin. 2023, 78, 2256–2270. [Google Scholar]
- Singh, P.; Kumar, N. Effect of orography on precipitation in the western Himalayan region. J. Hydrol. 1997, 199, 183–206. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, B.; Yao, Y. The spatial pattern of the upper limit of montane deciduous broad-leaved forests and its geographical interpretation in the east monsoon realm of China. Forests 2021, 12, 1225. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Han, F.; Li, C.R.; Li, K.; Mu, H.X.; Wang, Z. Distribution characteristics and geographical interpretation of the upper limit of montane deciduous broad-leaved forests in the eastern monsoon region of China. Acta Geogr. Sin. 2024, 79, 240–258. [Google Scholar]
- Liu, J.J. Study on the Influence of Mass Elevation Effect on Solar Radiation and Altitudinal Belt of Vegetation in the Qinling-Daba Mountains; Henan University: Zhengzhou, China, 2020. [Google Scholar]
- Suo, N.D.Z.; Yao, Y.H.; Zhang, B.P. Comparative study on the mountain elevation effect of the Tibetan Plateau and the Alps. Geogr. Res. 2020, 39, 2568–2580. [Google Scholar]
- Yao, Y.H.; Zhang, B.P.; Han, F.; Pang, Y. Spatial pattern and exposure effect of altitudinal belts in the Hengduan Mountains. Mount. Res. 2010, 28, 11–20. [Google Scholar]
- Bochet, E.; García-Fayos, P. Factors controlling vegetation establishment and water erosion on motorway slopes in Valencia, Spain. Restor. Ecol. 2004, 12, 166–174. [Google Scholar] [CrossRef]
- Yang, W.J.; Wang, Y.H.; Webb, A.A.; Li, Z.Y.; Tian, X.; Han, Z.T.; Wang, S.L.; Yu, P.T. Influence of climatic and geographic factors on the spatial distribution of Qinghai spruce forests in the dryland Qilian Mountains of Northwest China. Sci. Total Environ. 2018, 612, 1007–1017. [Google Scholar] [CrossRef] [PubMed]
The Northern Region | The Central Region | The Southern Region | |||||||
---|---|---|---|---|---|---|---|---|---|
Changbai Mts. | Yanshan Mts. | Taihang Mts. | Lvliang Mts. | Qinling Mts. | Daba Mts. | Dabie Mts. | Wuling Mts. | Xuefeng Mts. | |
Latitude (°N) | 42.73 | 40.67 | 37.80 | 37.71 | 33.80 | 31.99 | 31.31 | 29.35 | 27.06 |
Longitude (°E) | 127.28 | 116.95 | 113.46 | 111.41 | 108.93 | 109.20 | 115.84 | 109.10 | 111.21 |
Altitude (m) | 965.77 | 1582.37 | 1805.03 | 1951.11 | 1993.52 | 1874.81 | 1359.78 | 1640.27 | 1347.99 |
Slope (°) | 16.99 | 26.29 | 30.95 | 25.39 | 30.26 | 31.28 | 29.62 | 25.25 | 22.41 |
Total number | 500 | 500 | 1300 | 700 | 2000 | 900 | 300 | 300 | 300 |
Lag Time | Cumulative Duration | |||
---|---|---|---|---|
1 | 2 | … | 6 | |
0 | 0–0 | 0–1 | … | 0–5 |
1 | 1–1 | 1–2 | … | 1–6 |
… | … | … | … | … |
6 | 6–6 | 6–7 | … | 6–11 |
Changbai Mts. | Yanshan Mts. | Taihang Mts. | Lvliang Mts. | Qinling Mts. | Daba Mts. | Dabie Mts. | Wuling Mts. | Xuefeng Mts. | ||
---|---|---|---|---|---|---|---|---|---|---|
PRE | r | 0.84 | 0.865 | 0.853 | 0.816 | 0.779 | 0.845 | 0.738 | 0.716 | 0.63 |
Lag time | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | |
Cumulative duration | 4 | 3 | 3 | 2 | 3 | 3 | 6 | 5 | 6 | |
TMP | r | 0.953 | 0.924 | 0.94 | 0.93 | 0.944 | 0.939 | 0.885 | 0.82 | 0.813 |
Lag time | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Cumulative duration | 3 | 3 | 3 | 3 | 3 | 3 | 2 | 3 | 4 | |
RAD | r | 0.975 | 0.939 | 0.949 | 0.941 | 0.946 | 0.946 | 0.897 | 0.815 | 0.815 |
Lag time | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 3 | |
Cumulative duration | 3 | 5 | 5 | 5 | 5 | 4 | 2 | 4 | 3 |
No. | Study Area | Study Period | Dominated Influencing Factor | References |
---|---|---|---|---|
1 | Tibetan Plateau | 2000–2017 | Temperature | [20] |
2 | Loess Plateau | 2001–2018 | Temperature | [21] |
3 | Greater Khingan Mountains | 2000–2020 | Wind speed | [22] |
4 | Semi-arid Region | 1981–2018 | Climate change | [23] |
5 | Southwest Karst Region | 1999–2019 | Temperature | [24] |
6 | Northeast Plain | 2000–2017 | Precipitation | [25] |
7 | North China Plain | 1998–2012 | Precipitation | [26] |
8 | Chinese Mainland | 1982–2015 | Human activities | [27] |
9 | Changbai Mountains | 2000–2009 | Temperature | [35] |
10 | Qinling Mountains | 2000–2015 | Human activities | [36] |
11 | Taihang Mountains | 1998–2018 | Precipitation | [37] |
12 | Lvliang Mountains | 2000–2019 | Precipitation | [38] |
13 | Dabie Mountains | 2000–2019 | Temperature | [39] |
14 | Wuling Mountains | 2001–2015 | Temperature | [40] |
15 | East Monsoon Region | 2001–2018 | Temperature | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Han, F.; Li, C.; Li, K.; Wang, Z. Analysis of Spatial Differentiation of NDVI and Climate Factors on the Upper Limit of Montane Deciduous Broad-Leaved Forests in the East Monsoon Region of China. Forests 2024, 15, 863. https://doi.org/10.3390/f15050863
Wang Z, Han F, Li C, Li K, Wang Z. Analysis of Spatial Differentiation of NDVI and Climate Factors on the Upper Limit of Montane Deciduous Broad-Leaved Forests in the East Monsoon Region of China. Forests. 2024; 15(5):863. https://doi.org/10.3390/f15050863
Chicago/Turabian StyleWang, Zhiyong, Fang Han, Chuanrong Li, Kun Li, and Zhe Wang. 2024. "Analysis of Spatial Differentiation of NDVI and Climate Factors on the Upper Limit of Montane Deciduous Broad-Leaved Forests in the East Monsoon Region of China" Forests 15, no. 5: 863. https://doi.org/10.3390/f15050863
APA StyleWang, Z., Han, F., Li, C., Li, K., & Wang, Z. (2024). Analysis of Spatial Differentiation of NDVI and Climate Factors on the Upper Limit of Montane Deciduous Broad-Leaved Forests in the East Monsoon Region of China. Forests, 15(5), 863. https://doi.org/10.3390/f15050863