Predicting Impacts of Climate Change on Suitable Distribution of Critically Endangered Tree Species Yulania zenii (W. C. Cheng) D. L. Fu in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Species Occurrence Data
2.2. Environmental Variables
2.3. Modeling Process
2.4. Geospatial Data Analysis
3. Results
3.1. Model Performance
3.2. Main Environmental Factors
3.3. Current Potential Suitable Distribution
3.4. Potential Suitable Distribution in the Past
3.5. Potential Suitable Distribution in the Future
3.6. Centroid Migration under Different Scenarios
4. Discussion
4.1. Model Evaluation
4.2. Key Environmental Factors
4.3. Current Suitable Area of Y. zenii
4.4. Suitable Area Change in the Past and Future
4.5. Conservation Implications for Y. zenii
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Dyderski, M.K.; Pawlik, Ł. Spatial distribution of tree species in mountain national parks depends on geomorphology and climate. For. Ecol. Manag. 2020, 474, 118366. [Google Scholar] [CrossRef]
- Veloz, S.D.; Williams, J.W.; Blois, J.L.; He, F.; Otto-Bliesner, B.; Liu, Z.Y. No-analog climates and shifting realized niches during the late quaternary: Implications for 21st-century predictions by species distribution models. Glob. Chang. Biol. 2012, 18, 1698–1713. [Google Scholar] [CrossRef]
- Turney, C.S.M.; Jones, R.T. Does the Agulhas current amplify global temperatures during Super-Interglacials? J. Quat. Sci. 2010, 25, 839–843. [Google Scholar] [CrossRef]
- Shi, Y.F.; Kong, Z.Z.; Wang, S.M.; Tang, L.Y.; Wang, F.B.; Yao, T.D.; Zhao, X.T.; Zhang, P.Y.; Shi, S.H. Mid-Holocene climates and environments in China. Glob. Planet. Chang. 1993, 7, 219–233. [Google Scholar]
- Feng, L.; Sun, J.J.; El-Kassaby, Y.A.; Yang, X.Y.; Tian, X.N.; Wang, T.L. Predicting potential habitat of a plant species with small populations under climate change: Ostrya rehderiana. Forests 2022, 13, 129. [Google Scholar] [CrossRef]
- Kikstra, J.S.; Nicholls, Z.R.J.; Smith, C.J.; Lewis, J.; Lamboll, R.D.; Byers, E.; Sandstad, M.; Meinshausen, M.; Gidden, M.J.; Rogelj, J.; et al. The IPCC Sixth Assessment Report WGIII climate assessment of mitigation pathways: From emissions to global temperatures. Geosci. Model Dev. 2022, 15, 9075–9109. [Google Scholar] [CrossRef]
- Ren, Z.C.; Zagortchev, L.; Ma, J.X.; Yan, M.; Li, J.M. Predicting the potential distribution of the parasitic Cuscuta chinensis under global warming. BMC Ecol. 2020, 20, 28. [Google Scholar] [CrossRef] [PubMed]
- Qin, A.L.; Liu, B.; Guo, Q.S.; Bussmann, R.W.; Ma, F.Q.; Jian, Z.J.; Xu, G.X.; Pei, S.X. Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch., an extremely endangered conifer from southwestern China. Glob. Ecol. Conserv. 2017, 10, 139–146. [Google Scholar] [CrossRef]
- Vincent, H.; Bornand, C.N.; Kempel, A.; Fischer, M. Rare species perform worse than widespread species under changed climate. Biol. Conserv. 2020, 246, 108586. [Google Scholar] [CrossRef]
- Zhao, R.N.; Chu, X.J.; He, Q.Q.; Tang, Y.; Song, M.; Zhu, Z.L. Modeling current and future potential geographical distribution of Carpinus tientaiensis, a critically endangered species from China. Forests 2020, 11, 774. [Google Scholar] [CrossRef]
- Yan, G.; Zhang, G.F. Predicting the potential distribution of endangered Parrotia subaequalis in China. Forests 2022, 13, 1595. [Google Scholar] [CrossRef]
- Nie, Z.L.; Wen, J.; Azuma, H.; Qiu, Y.L.; Sun, H.; Meng, Y.; Sun, W.B.; Zimmer, E.A. Phylogenetic and biogeographic complexity of Magnoliaceae in the Northern Hemisphere inferred from three nuclear data sets. Mol. Phylogenet. Evol. 2008, 48, 1027–1040. [Google Scholar] [CrossRef] [PubMed]
- Linsky, J.; Coffey, E.E.D.; Beech, E.; Rivers, M.; Cicuzza, D.; Oldfield, S.; Crowley, D. Assessing Magnoliaceae through time: Major global efforts to track extinction risk status and ex situ conservation. Plants People Planet 2023, 5, 496–501. [Google Scholar] [CrossRef]
- Qin, H.N. Seed Plants of China: Checklist, Uses and Conservation Status; Hebei Science and Technology Press: Shijiazhuang, China, 2020; ISBN 9787571706494. [Google Scholar]
- Cheng, W.C. Magnoliaceae, in vascular plants of Nanjing II, by C. P’ei. Contrib. Biol. Lab. Sci. Soc. China Bot. Ser. 1933, 8, 291–293. [Google Scholar]
- Jiang, G.M.; Sun, G.; Zhang, G.F.; Wang, J.W. Intra-and interspecific competition of endangered plant Magnolia zenii. Chin. J. Ecol. 2010, 29, 201–206. [Google Scholar]
- Wu, Z.Y.; Raven, P.H.; Hong, D.Y. Flora of China; Science Press: Beijing, China, 2008; Volume 7, ISBN 9781930723818. [Google Scholar]
- Chu, X.L. Conservation and related research progress of rare and endangered plant Yulania zenii. Bot. Res. 2021, 10, 331. [Google Scholar]
- Chen, Y.X.; Nan, C.H. ISSR Analysis on genetic diversity of endangered plant Magnolia zenii. J. Sichuan Agric. Univ. 2016, 34, 445–449. [Google Scholar]
- Wang, S. Study on the Reproductive Biology of the Critically Endangered Plant Magnolia Zenii ‘Cheng’; Nanjing Forestry University: Nanjing, China, 2020. [Google Scholar]
- Zhang, G.F.; Yi, X.G. Vegegraphy of Jiangsu; Fujian Science and Technology Publishing House: Fuzhou, China, 2023; ISBN 9787533571337. [Google Scholar]
- Hao, R.M.; Huang, Z.Y.; Liu, X.J.; Wang, Z.L.; Xu, H.Q.; Yao, Z.G. The natural distribution and characteristics of the rare and endangered plants in Jiangsu, China. Chin. Biodivers. 2000, 8, 153–162. [Google Scholar]
- Yin, H. Rare and Endangered Plants in China; China Forestry Publishing House: Beijing, China, 2013; ISBN 9787503870262. [Google Scholar]
- Liu, Q.X. Flora of Jiangsu; Jiangsu Phoenix Science and Technology Press: Nanjing, China, 2015; Volume 2, ISBN 9787553701073. [Google Scholar]
- Zhang, G.F.; Xiong, T.S.; Sun, T.; Li, K.D.; Shao, L.Y. Diversity, distribution, and conservation of rare and endangered plant species in Jiangsu Province. Biodivers. Sci. 2022, 30, 21335. [Google Scholar] [CrossRef]
- Jin, X.H.; Zhou, Z.H.; Yuan, L.C. National Key Protected Wild Plants of China; Hubei Science and Technology Press: Wuhan, China, 2023; ISBN 9787570625895. [Google Scholar]
- Peng, Y. A critically endangered species of Yulania zenii was discovered in Hunan Province for the first time. For. Ecol. 2022, 4, 48. [Google Scholar]
- Yackulic, C.B.; Chandler, R.; Zipkin, E.F.; Royle, J.A.; Nichols, J.D.; Campbell Grant, E.H.; Veran, S. Presence-only modelling using MAXENT: When can we trust the inferences? Methods Ecol. Evol. 2013, 4, 236–243. [Google Scholar] [CrossRef]
- Evans, T.G.; Diamond, S.E.; Kelly, M.W. Mechanistic species distribution modelling as a link between physiology and conservation. Conserv. Physiol. 2015, 3, cov056. [Google Scholar] [CrossRef]
- Shabani, F.; Kumar, L.; Ahmadi, M. A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area. Ecol. Evol. 2016, 6, 5973–5986. [Google Scholar] [CrossRef] [PubMed]
- Sillero, N.; Arenas-Castro, S.; Enriquez-Urzelai, U.; Vale, C.G.; Sousa-Guedes, D.; Martínez-Freiría, F.; Real, R.; Barbosa, A.M. Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling. Ecol. Model. 2021, 456, 109671. [Google Scholar] [CrossRef]
- Kong, W.Y.; Li, X.H.; Zou, H.F. Optimizing MaxEnt model in the prediction of species distribution. Chin. J. Appl. Ecol. 2019, 30, 2116–2128. [Google Scholar]
- Rathore, M.K.; Sharma, L.K. Efficacy of species distribution models (SDMs) for ecological realms to ascertain biological conservation and practices. Biodivers. Conserv. 2023, 32, 3053–3087. [Google Scholar] [CrossRef]
- Hills, R.; Bachman, S.; Forest, F.; Moat, J.; Wilkin, P. Incorporating evolutionary history into conservation assessments of a highly threatened group of species, South African Dioscorea (Dioscoreaceae). S. Afr. J. Bot. 2019, 123, 296–307. [Google Scholar] [CrossRef]
- Li, Y.C.; Li, M.Y.; Li, C.; Liu, Z.Z. Optimized maxent model predictions of climate change impacts on the suitable distribution of Cunninghamia lanceolata in China. Forests 2020, 11, 302. [Google Scholar] [CrossRef]
- Kiser, A.H.; Cummings, K.S.; Tiemann, J.S.; Smith, C.H.; Johnson, N.A.; Lopez, R.R.; Randklev, C.R. Using a multi-model ensemble approach to determine biodiversity hotspots with limited occurrence data in understudied areas: An example using freshwater mussels in Mexico. Ecol. Evol. 2022, 12, e8909. [Google Scholar] [CrossRef]
- Hao, T.X.; Elith, J.; Guillera-Arroita, G.; Lahoz-Monfort, J.J. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers. Distrib. 2019, 25, 839–852. [Google Scholar] [CrossRef]
- Li, R.Z.; Hu, X.J.; Li, Q.Z.; Liu, L.Y.; He, Y.R.; Chen, C.Y. Gap analysis of Firmiana danxiaensis, a rare tree species endemic to southern China. Ecol. Indic. 2024, 158, 111606. [Google Scholar] [CrossRef]
- Radosavljevic, A.; Anderson, R.P. Making better Maxent models of species distributions: Complexity, overfitting and evaluation. J. Biogeogr. 2014, 41, 629–643. [Google Scholar] [CrossRef]
- Brown, J.L.; Bennett, J.R.; French, C.M. SDMtoolbox 2.0: The next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ 2017, 5, e4095. [Google Scholar] [CrossRef] [PubMed]
- Poirazidis, K.; Bontzorlos, V.; Xofis, P.; Zakkak, S.; Xirouchakis, S.; Grigoriadou, E.; Kechagioglou, S.; Gasteratos, I.; Alivizatos, H.; Panagiotopoulou, M. Bioclimatic and environmental suitability models for Capercaillie (Tetrao urogallus) conservation: Identification of optimal and marginal areas in Rodopi Mountain-Range National Park (Northern Greece). Glob. Ecol. Conserv. 2019, 17, e00526. [Google Scholar] [CrossRef]
- Zhou, Y.Z.; Lu, X.; Zhang, G.F. Potentially differential impacts on niche overlap between Chinese endangered Zelkova schneideriana and its associated tree species under climate change. Front. Ecol. Evol. 2023, 11, 1218149. [Google Scholar] [CrossRef]
- Chen, Q.H.; Yin, Y.J.; Zhao, R.; Yang, Y.; Teixeira da Silva, J.A.; Yu, X.N. Incorporating local adaptation into species distribution modeling of Paeonia mairei, an endemic plant to China. Front. Plant Sci. 2020, 10, 1717. [Google Scholar] [CrossRef]
- Zhang, J.H.; Li, K.J.; Liu, X.F.; Yang, L.; Shen, S.K. Interspecific variance of suitable habitat changes for four alpine Rhododendron species under climate change: Implications for their reintroductions. Forests 2021, 12, 1520. [Google Scholar] [CrossRef]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; Van Vuuren, D.P.; Carter, T.R.; Seita, E.; Mikiko, K.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Stanton, J.C.; Pearson, R.G.; Horning, N.; Ersts, P.; Reşit Akçakaya, H. Combining static and dynamic variables in species distribution models under climate change. Methods Ecol. Evol. 2012, 3, 349–357. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, Y.X.; Chen, Q.H.; Liu, C.; Liu, G.L.; Cheng, S.P.; Wang, L.S. Potential spatiotemporal distribution changes and conservation recommendations of two connected endangered tree peony species (Paeonia decomposita & P. rotundiloba). Flora 2022, 294, 152131. [Google Scholar]
- Sillero, N.; Barbosa, A.M. Common mistakes in ecological niche models. Int. J. Geogr. Inf. Sci. 2021, 35, 213–226. [Google Scholar] [CrossRef]
- Zhao, G.H.; Cui, X.Y.; Sun, J.J.; Li, T.T.; Wang, Q.; Ye, X.Z.; Fan, B.G. Analysis of the distribution pattern of Chinese Ziziphus jujuba under climate change based on optimized biomod2 and MaxEnt models. Ecol. Indic. 2021, 132, 108256. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Singh, M.; Arunachalam, R.; Kumar, L. Modeling potential hotspots of invasive Prosopis juliflora (Swartz) DC in India. Ecol. Inform. 2021, 64, 101386. [Google Scholar] [CrossRef]
- Wang, Z.W.; Yin, J.; Wang, X.; Chen, Y.; Mao, Z.K.; Lin, F.; Gong, Z.Q.; Wang, X.G. Habitat suitability evaluation of invasive plant species Datura stramonium in Liaoning Province: Based on Biomod2 combination model. Chin. J. Appl. Ecol. 2023, 34, 1272–1280. [Google Scholar]
- Liu, C.R.; White, M.; Newell, G. Selecting thresholds for the prediction of species occurrence with presence-only data. J. Biogeogr. 2013, 40, 778–789. [Google Scholar] [CrossRef]
- Xu, Y.D.; Huang, Y.; Zhao, H.R.; Yang, M.L.; Zhuang, Y.Q.; Ye, X.P. Modelling the effects of climate change on the distribution of endangered Cypripedium japonicum in China. Forests 2021, 12, 429. [Google Scholar] [CrossRef]
- Aguirre-Gutiérrez, J.; Carvalheiro, L.G.; Polce, C.; van Loon, E.E.; Raes, N.; Reemer, M.; Biesmeijer, J.C. Fit-for-purpose: Species distribution model performance depends on evaluation criteria-Dutch hoverflies as a case study. PloS ONE 2013, 8, e63708. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.D.; Yin, Q.; Sang, Z.Y.; Zhu, Z.G.; Jia, Z.G.; Ma, L.Y. Prediction of potentially suitable areas for the introduction of Magnolia wufengensis under climate change. Ecol. Indic. 2021, 127, 107762. [Google Scholar] [CrossRef]
- Kong, F. Spatial and temporal variation characteristics and regional differences of days of diurnal temperature range in China from 1961 to 2018. J. Zhejiang Univ. (Sci. Ed.) 2020, 47, 422–434. [Google Scholar]
- Yu, S.X.; Wang, Z.H.; Peng, Y.D.; Zhao, H. Color Illustrations of Endangered and Protected Plants of China; China Customs Press: Beijing, China, 2023; ISBN 9787517507147. [Google Scholar]
- Wang, Y.M. A study on Subgenus Yulania; Northwest Sci-Tech University of Agriculture and Forestry: Yangling, China, 2003. [Google Scholar]
- Yan, H.; Ma, S.M.; Wei, B.; Zhang, H.X.; Zhang, D. Historical distribution patterns and environmental drivers of relict shrub Amygdalus pedunculata. Chin. J. Plant Ecol. 2022, 46, 766. [Google Scholar] [CrossRef]
- He, X.; Ma, W.X.; Zhao, T.T.; Ma, Q.H.; Liang, L.S.; Wang, G.X.; Yang, Z. Prediction of potential distribution of endangered species Corylus chinensis Franch in climate change context. For. Res. 2022, 35, 104–114. [Google Scholar]
- Wang, X.F.; Duan, Y.X.; Jin, L.L.; Wang, C.Y.; Peng, M.C.; Li, Y.; Wang, X.H.; Ma, Y.F. Prediction of historical, present and future distribution of Quercus sect. Heterobalanus based on the optimized MaxEnt model in China. Acta Ecol. Sin. 2023, 43, 6590–6604. [Google Scholar]
- Lang, X.P.; Fan, R.Y.; Li, Q.F. Analysis of potential suitable areas of Allium mongolicum in Northern China. Acta Agrestia Sin. 2023, 31, 3525–3534. [Google Scholar]
- Zhang, W.X.; Kou, Y.X.; Zhang, L.; Zeng, W.D.; Zhang, Z.Y. Suitable distribution of endangered species Pseudotaxus chienii (Taxaceae) in five periods using niche modeling. Chin. J. Ecol. 2020, 39, 600–613. [Google Scholar]
- Ye, X.Z.; Zhao, G.H.; Zhang, M.Z.; Cui, X.Y.; Fan, H.H.; Liu, B. Distribution pattern of endangered plant Semiliquidambar cathayensis (Hamamelidaceae) in response to climate change after the last interglacial period. Forests 2020, 11, 434. [Google Scholar] [CrossRef]
- Wu, Y.M.; Shen, X.L.; Tong, L.; Lei, F.W.; Mu, X.Y.; Zhang, Z.X. Impact of past and future climate change on the potential distribution of an endangered montane shrub Lonicera oblata and its conservation implications. Forests 2021, 12, 125. [Google Scholar] [CrossRef]
- Yang, K.M.; Chen, X.L.; Gong, X.; Wang, Y.L. Ex Situ Cultivated Flora of China (Magnoliaceae); Science Press: Beijing, China, 2016; ISBN 9787030429704. [Google Scholar]
- Dirr, M.A.; Adkins, J.A.; Olsen, R.T. Magnolia zenii Cheng. ‘Pink Parchment’. Hortic. Sci. 2002, 37, 709–710. [Google Scholar] [CrossRef]
- Yang, J.; Cai, L.; Liu, D.T.; Chen, G.; Gratzfeld, J.; Sun, W.B. China’s conservation program on plant species with extremely small populations (PSESP): Progress and perspectives. Biol. Conserv. 2020, 244, 108535. [Google Scholar] [CrossRef]
- Chen, Z.D.; Lu, A.M.; Liu, B.; Ye, J.F. Tree of Life for Chinese Vascular Plants; Science Press: Beijing, China, 2020; ISBN 9787030635600. [Google Scholar]
Category | Variable | Description | Unit | Percent Contribution (%) | ||
---|---|---|---|---|---|---|
LIG | MH | Current | ||||
Bioclimate | Bio1 | Annual mean temperature | °C | 0.7 | ||
Bio2 | Mean diurnal range (mean of monthly temp (max temp–min temp)) | °C | 25.2 | 32.1 | 32.9 | |
Bio3 | Isothermality ((Bio2/Bio7) × 100) | % | 27.1 | 19.4 | 9.8 | |
Bio4 | Temperature seasonality (standard deviation × 100) | - | ||||
Bio5 | Max temperature of warmest month | °C | 0 | 3.1 | 0 | |
Bio6 | Min temperature of coldest month | °C | ||||
Bio7 | Temperature annual range (Bio5–Bio6) | °C | ||||
Bio8 | Mean temperature of wettest quarter | °C | 2.3 | |||
Bio9 | Mean temperature of driest quarter | °C | ||||
Bio10 | Mean temperature of warmest quarter | °C | 2.2 | |||
Bio11 | Mean temperature of coldest quarter | °C | ||||
Bio12 | Annual precipitation | mm | ||||
Bio13 | Precipitation of wettest month | mm | ||||
Bio14 | Precipitation of driest month | mm | ||||
Bio15 | Precipitation seasonality (coefficient of variation) | - | 43.1 | 39.9 | 21.1 | |
Bio16 | Precipitation of wettest quarter | mm | ||||
Bio17 | Precipitation of driest quarter | mm | 4.9 | |||
Bio18 | Precipitation of warmest quarter | mm | ||||
Bio19 | Precipitation of coldest quarter | mm | ||||
Terrain | Elevation | - | m | 14.8 | ||
Slope | - | ° | 0.4 | |||
Soil | T-BS | Topsoil Base Saturation | % | |||
T-CaCO3 | Topsoil Calcium Carbonate | % | ||||
T-CaSO4 | Topsoil Calcium Sulfate | % | ||||
T-CEC-CLAY | Topsoil CEC (clay) | - | ||||
T-CEC-SOIL | Topsoil CEC (soil) | - | ||||
T-CLAY | Topsoil Clay Fraction | % | ||||
T-ECE | Topsoil Electrical Conductivity | S/m | ||||
T-ESP | Topsoil Sodicity | - | ||||
T-GRAVEL | Topsoil Gravel Content | % | ||||
T-OC | Topsoil Organic Carbon | % | 0.5 | |||
T-PH-H2O | Topsoil PH (H2O) | - | 9.8 | |||
T-REF-BULK | Topsoil Reference Bulk Density | kg/m3 | ||||
T-SAND | Topsoil Sand Fraction | % | ||||
T-SILT | Topsoil Silt Fraction | % | 9.5 | |||
T-TEB | Topsoil Exchangeable Base | - | ||||
T-TEXTURE | Topsoil TEXTURE | - | 1.2 | |||
T-USDA-TEX | Topsoil USDA Texture Classification | - |
Model Name | Model Code | AUC | TSS |
---|---|---|---|
Artificial neural network model | ANN | 0.8231 ± 0.3113 | 0.4679 ± 0.3114 |
Classification tree analysis model | CTA | 0.7913 ± 0.3111 | 0.5828 ± 0.3112 |
Flexible discriminant analysis model | FDA | 0.9549 ± 0.3109 | 0.6893 ± 0.3106 |
Generalized additive model | GAM | Modeling failure | Modeling failure |
Generalized boosting model | GBM | 0.9836 ± 0.3118 | 0.4847 ± 0.3115 |
Generalized linear model | GLM | 0.8387 ± 0.3121 | 0.6780 ± 0.3118 |
Maximum entropy model | MaxEnt | 0.9783 ± 0.0244 | 0.8913 ± 0.0889 |
Multivariate adaptive regression spline model | MARS | 0.8571 ± 0.3112 | 0.6377 ± 0.3109 |
Random forest model | RF | 0.9827 ± 0.3114 | 0.5291 ± 0.3112 |
Surface range envelope model | SRE | 0.6056 ± 0.3105 | 0.2110 ± 0.3121 |
Scenarios | AUC | TSS | |
---|---|---|---|
Last interglacial | 0.9848 ± 0.0077 | 0.9517 ± 0.0020 | |
Middle Holocene | 0.9770 ± 0.0126 | 0.9250 ± 0.0037 | |
Current | 0.9783 ± 0.0244 | 0.8913 ± 0.0889 | |
2050s | RCP 2.6 | 0.9837 ± 0.0213 | 0.8783 ± 0.1149 |
RCP 4.5 | 0.9775 ± 0.0251 | 0.8994 ± 0.0618 | |
RCP 8.5 | 0.9830 ± 0.0194 | 0.9008 ± 0.0845 | |
2070s | RCP 2.6 | 0.9800 ± 0.0221 | 0.8981 ± 0.0840 |
RCP 4.5 | 0.9894 ± 0.0146 | 0.9238 ± 0.0669 | |
RCP 8.5 | 0.9846 ± 0.0185 | 0.9080 ± 0.0759 |
Scenarios | Low-Suitability Area | Moderately Suitable Area | Highly Suitable Area | Suitable Area (Moderately and Highly) | |||||
---|---|---|---|---|---|---|---|---|---|
Area (×104 km2) | Trend (%) | Area (×104 km2) | Trend (%) | Area (×104 km2) | Trend (%) | Area (×104 km2) | Trend (%) | ||
Last interglacial | 19.09 | ↓18.80 | 12.16 | ↑28.95 | 11.42 | ↑117.52 | 23.58 | ↑60.63 | |
Middle Holocene | 31.19 | ↑32.67 | 20.95 | ↑122.16 | 14.73 | ↑180.57 | 35.68 | ↑143.05 | |
Current | 23.51 | - | 9.43 | - | 5.25 | - | 14.68 | - | |
2050s | RCP 2.6 | 22.66 | ↓3.62 | 6.54 | ↓30.65 | 4.08 | ↓22.29 | 10.62 | ↓27.66 |
RCP 4.5 | 31.46 | ↑33.82 | 9.69 | ↑2.76 | 4.69 | ↓10.67 | 14.38 | ↓2.04 | |
RCP 8.5 | 26.80 | ↑13.99 | 7.78 | ↓17.50 | 3.85 | ↓26.67 | 11.63 | ↓20.78 | |
2070s | RCP 2.6 | 24.93 | ↑6.04 | 8.16 | ↓13.47 | 3.81 | ↓27.43 | 11.97 | ↓18.46 |
RCP 4.5 | 17.63 | ↓25.01 | 6.10 | ↓35.31 | 2.74 | ↓47.81 | 8.84 | ↓39.78 | |
RCP 8.5 | 27.63 | ↑17.52 | 8.68 | ↓7.95 | 4.12 | ↓21.52 | 12.80 | ↓12.81 | |
The mean value of six future climate scenarios | 25.19 | ↑7.12 | 7.83 | ↓17.02 | 3.88 | ↓26.07 | 11.71 | ↓20.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Zhi, F.; Zhang, G. Predicting Impacts of Climate Change on Suitable Distribution of Critically Endangered Tree Species Yulania zenii (W. C. Cheng) D. L. Fu in China. Forests 2024, 15, 883. https://doi.org/10.3390/f15050883
Wang H, Zhi F, Zhang G. Predicting Impacts of Climate Change on Suitable Distribution of Critically Endangered Tree Species Yulania zenii (W. C. Cheng) D. L. Fu in China. Forests. 2024; 15(5):883. https://doi.org/10.3390/f15050883
Chicago/Turabian StyleWang, Haoran, Feiyun Zhi, and Guangfu Zhang. 2024. "Predicting Impacts of Climate Change on Suitable Distribution of Critically Endangered Tree Species Yulania zenii (W. C. Cheng) D. L. Fu in China" Forests 15, no. 5: 883. https://doi.org/10.3390/f15050883
APA StyleWang, H., Zhi, F., & Zhang, G. (2024). Predicting Impacts of Climate Change on Suitable Distribution of Critically Endangered Tree Species Yulania zenii (W. C. Cheng) D. L. Fu in China. Forests, 15(5), 883. https://doi.org/10.3390/f15050883