Evaluation of Productivity and Cost Analysis on a Combined Logging System
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Site
2.2. Description of the Machines, Work Team, and Time Study
- Carriage outhaul (CO);
- Lateral outhaul and hook (LOH);
- Lateral inhaul (LI);
- Carriage inhaul (CI);
- Unhook (U);
- Delay time (D).
- Travel unloaded (TU);
- Maneuvering (M);
- Winching (W);
- Loading (LOAD);
- Travel loaded (TL);
- Unloading (UNLOAD);
- Sorting and piling (SP);
- Delays (DS).
2.3. Costs Analysis
2.4. Data Analysis
3. Results and Discussion
3.1. Duration of Work Cycle Elements—Tower Yarder Unit
3.2. Duration of Work Cycle Elements—Clambunk Skidder
3.3. Productivity Analysis
3.4. Costs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schweier, J.; Klein, M.L.; Kirsten, H.; Jaeger, D.; Brieger, F.; Sauter, U.H. Productivity and cost analysis of tower yarder systems using the Koller 507 and the Valentini 400 in southwest Germany. Int. J. For. Eng. 2020, 31, 172–183. [Google Scholar] [CrossRef]
- Stoilov, S.; Proto, A.R.; Angelov, G.; Papandrea, S.F.; Borz, S.A. Evaluation of salvage logging productivity and costs in sensitive forests of Bulgaria. Forests 2021, 12, 309. [Google Scholar] [CrossRef]
- Stoilov, S.; Angelov, G.; Panicharova, T.; Mederski, P.S.; Proto, A.R. Modeling productivity and estimating costs of processor tower yarder in shelterwood cutting of pine stand. Forests 2023, 14, 195. [Google Scholar] [CrossRef]
- LeDoux, C.B.; Huyler, N.K. Cost Comparisons for Three Harvesting Systems Operating in Northern Hardwood Stands; Research Paper NE-715; U.S. Department of Agriculture, Forest Service, Northeastern Research Station: Newtown Square, PA, USA, 2000; 4p. [Google Scholar] [CrossRef]
- Spinelli, R.; Magagnotti, N.; Lombardini, C. Performance, capability and costs of small-scale cable yarding technology. Small-Scale For. 2010, 9, 123–135. [Google Scholar] [CrossRef]
- Tampekis, S.; Kantartzis, A.; Arabatzis, G.; Sakellariou, S.; Kolkos, G.; Malesios, C. Conceptualizing Forest Operations Planning and Management Using Principles of Functional Complex Systems Science to Increase the Forest’s Ability to Withstand Climate Change. Land 2024, 13, 217. [Google Scholar] [CrossRef]
- Peters, P.A.; LeDoux, C.B. Stream Protection with Small Cable Yarding Systems; Northeastern Forest Experiment Station, USDA Forest Service: Morgantown, WV, USA, 1984; 17p. [Google Scholar]
- Spinelli, R.; Magagnotti, N.; Cosola, G.; Labelle, E.; Visser, R.; Erber, G. The Effect of Yarding Technique on Yarding Productivity and Cost: Conventional Single-Hitch Suspension vs. Horizontal Double-Hitch Suspension. Croat. J. For. Eng. 2021, 43, 369–380. [Google Scholar] [CrossRef]
- Stoilov, S. Productivity and costs of cable yarding in group shelterwood system in deciduous forests. For. Ideas 2021, 27, 331–342. [Google Scholar]
- LeDoux, C.B. Stump-to-Mill Timber Production Cost Equations for Cable Logging Eastern Hardwoods; USDA Forest Service, Research Paper NE-566; U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station: Broomall, PA, USA, 1985; 6p. [Google Scholar] [CrossRef]
- LeDoux, C.B. When is Hardwood Cable Logging Economical? J. For. 1985, 83, 295–298. [Google Scholar] [CrossRef]
- Huyler, N.K.; LeDoux, C.B. Cycle-Time Equation for the Koller K300 Cable Yarder Operating on Steep Slopes in the Northeast; Research Paper NE-705; U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station: Radnor, PA, USA, 1997; 4p. [Google Scholar] [CrossRef]
- Huyler, N.K.; LeDoux, C.B. Yarding cost for the Koller K300 cable yarder: Results from field trials and simulations. North. J. Appl. For. 1997, 14, 5–9. [Google Scholar] [CrossRef]
- Visser, R.; Shawn, B.; Hank, S. Cable Logging Opportunities in the Appalachian Mountains; US Forest Service: Washington, DC, USA, 2001. [Google Scholar]
- Zimbalatti, G.; Proto, A.R. Cable logging opportunities for firewood in Calabrian forests. Biosyst. Eng. 2009, 102, 63–68. [Google Scholar] [CrossRef]
- Proto, A.R.; Zimbalatti, G. Firewood cable extraction in the southern Mediterranean area of Italy. For. Sci. Technol. 2016, 12, 16–23. [Google Scholar] [CrossRef]
- Dimitrov, D. Investigation on work time and productivity of forest skyline Koller K 300 in Ograzhden Mountain. For. Ideas 2012, 18, 92–96. [Google Scholar]
- Melemez, K.; Tunay, M.; Emir, T. A comparison of productivity in five small-scale harvesting systems. Small-Scale For. 2014, 13, 35–45. [Google Scholar] [CrossRef]
- EFA. Annual Report of Executive Forest Agency; Executive Forest Agency (EFA), Ministry of Agriculture: Sofia, Bulgaria, 2022; 80p. [Google Scholar]
- Stoilov, S.; Proto, A.R.; Oslekov, D.; Angelov, G.; Papandrea, S.F. Forest operations using a combi–forwarder in deciduous forests. Small-Scale For. 2023, 23, 25–40. [Google Scholar] [CrossRef]
- Kellogg, L.D. Machines and Techniques for Skyline Yarding of Smallwood; Research Bulletin 36; Forest Research Laboratory, School of Forestry, Oregon State University: Corvallis, OR, USA, 1981; 17p. [Google Scholar]
- Kellogg, L.D.; Olsen, E.D. Increasing the Productivity of a Small Yarder: Crew Size, Skidder Swinging, Hot Thinning; Research Bulletin 46; Forest Research Laboratory, School of Forestry, Oregon State University: Corvallis, OR, USA, 1984; 45p. [Google Scholar]
- Senturk, N.; Özturk, T.; Demir, M. Productivity and costs in the course of timber transportation with the Koller K300 cable system in Turkey. Build. Environ. 2007, 42, 2107–2113. [Google Scholar] [CrossRef]
- Stoilov, S.; Papandrea, S.F.; Angelov, G.; Oslekov, D.; Zimbalatti, G.; Proto, A.R. Productivity analysis and costs of wheel cable skidder during salvage logging in European beech stand. J. Agric. Eng. 2023, 54, 2. [Google Scholar] [CrossRef]
- LeDoux, C.B. Mechanized Systems for Harvesting Eastern Hardwoods; Gen. Tech. Rep. NRS-69; U.S. Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA, USA, 2010; 13p. [Google Scholar] [CrossRef]
- Stokes, B.J. Schilling, Improved harvesting systems for wet sites. For. Ecol. Manag. 1997, 90, 155–160. [Google Scholar] [CrossRef]
- Stokes, B.J.; Ashmore, C.; Rawlins, C.L.; Sirois, D.L. Glossary of Terms Used in Timber Harvesting and Forest Engineering; General Technical Report SO—73; U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station: New Orleans, LA, USA, 1989; 33p. [Google Scholar] [CrossRef]
- Oberholz, F. Articulated skidders. Forest Engineering South Africa. 2002. Technical Note 1/5-2002. 7p. Available online: https://forestry.co.za/ (accessed on 7 May 2024).
- Dos Santos, P.H.A.; de Souza, A.P.; da Cunha Marzano, F.L.; Minette, L.J. Produtividade e custos de extração de madeira de Eucalipto com clambunk skidder (Productivity and costs of eucalyptus wood extraction with Clambunk skidder). Rev. Árvore Viçosa-MG 2013, 37, 511–518. [Google Scholar] [CrossRef]
- Ghaffariyan, M.R. Reviewing productivity studies of skidders working in coniferous forests and plantations. Silva Balc. 2020, 21, 83–98. [Google Scholar] [CrossRef]
- Kellogg, L.D.; Milota, G.V.; Miller, J.R.M. A Comparison of Skyline Harvesting Costs for Alternative Commercial Thinning Prescriptions. J. For. Eng. 1996, 7, 7–23. [Google Scholar] [CrossRef]
- Olsen, E.D.; Hossain, M.M.; Miller, M.E. Statistical Comparison of Methods Used in Harvesting Work Studies; College of Forestry, Forest Research Laboratory: Corvallis, OR, USA, 1998. [Google Scholar]
- Proto, A.R.; Skoupy, A.; Macrì, G.; Zimbalatti, G. Time consumption and productivity of a medium size mobile tower yarder in downhill and uphill configurations: A case study in Czech Republic. J. Agric. Eng. 2016, 47, 216–221. [Google Scholar] [CrossRef]
- Munteanu, C.; Ignea, G.H.; Akay, A.E.; Borz, S.A. Yarding pre-bunched stems in thinning operations: Estimates on time consumption. Bull. Transilv. Univ. Bras. Ser. II For. Wood Ind. Agric. Food Eng. 2017, 10, 43–54. [Google Scholar]
- Ackerman, P.; Belbo, H.; Eliasson, L.; De Jong, A.; Lazdins, A.; Lyons, J. The COST model for calculation of forest operations costs. Int. J. For. Eng. 2014, 25, 75–81. [Google Scholar] [CrossRef]
- Spinelli, R.; Magagnotti, N. The effects of introducing modern technology on the financial, labour and energy performance of forest operations in the Italian Alps. Forest Policy Econ. 2011, 13, 520–524. [Google Scholar] [CrossRef]
- Proto, A.R.; Macrì, G.; Visser, R.; Russo, D.; Zimbalatti, G. Comparison of Timber extraction Productivity between Winch and Grapple Skidding: A Case Study in Southern Italian Forests. Forests 2018, 9, 61. [Google Scholar] [CrossRef]
- Orlovský, L.; Messingerová, V.; Danihelová, Z. Analysis of the time efficiency of skidding technology based on the skidders. Cent. Eur. For. J. 2020, 66, 177–187. [Google Scholar] [CrossRef]
- Spinelli, R.; Magagnotti, N. Wood extraction with farm tractor and sulky: Estimating productivity; cost and energy consumption. Small-Scale For. 2012, 11, 73–85. [Google Scholar] [CrossRef]
- Borz, S.A.; Ignea, G.; Popa, B.; Spârchez, G.; Iordache, E. Estimating time consumption and productivity of roundwood skidding in group shelterwood system—A case study in a broadleaved mixed stand located in reduced accessibility conditions. Croat. J. For. Eng. J. Theory Appl. For. Eng. 2015, 36, 137–146. [Google Scholar]
- Yoshimura, T.; Suzuki, Y.; Sato, N. Assessing the Productivity of Forest Harvesting Systems Using a Combination of Forestry Machines in Steep Terrain. Forests 2023, 14, 1430. [Google Scholar] [CrossRef]
- Stoilov, S.; Angelov, G.; Aladzhov, S.; Nichev, P. Productivity models and costs of combined skidder-Harvester in coniferous forests. For. Ideas 2021, 27, 169–181. [Google Scholar]
Location | Subcompartment 91-v N 42°49′9.788″; E 23°43′7.0468″ |
Elevation | 1300 m asl |
Forest tree | European beech (Fagus sylvatica, L.) 100% |
Stand age | 90 years |
Silvicultural system | High natural forest |
Total area | 12.0 ha |
Cutting area | 10.0 ha |
Silvicultural intervention | Thinning, removal intensity 15% |
Average tree height | 21 m |
Average DBH of tree | 30 cm |
Average slope | 29° (55%) |
Volume site | 3580 m3 (334 m3·ha−1) |
Extraction direction | Uphill |
Parameter | Value |
---|---|
Skyline | |
Length/cable diameter | 400 m/16–17 mm |
Pulling force | 67 kN |
Mainline | |
Length/cable diameter | 400 m/10 mm |
Pulling force | 21–28 kN |
Pulling speed | 3–4.5 m/s (10.8–16.2 km/h) |
Guylines | 4(5) × 60 m, Ø14 mm |
Tower height | 10 m |
Base machine | Belarus 1221.3 farm tractor (96 kW) |
Diesel engine power | Minimum 89 kW (120 hp) |
Weight of tower yarder (incl. cables) | 3800 kg |
Parameter | Value |
---|---|
Engine type: | John Deere 4045 HTJ76 |
Rated power | 86 kW at 2000 min−1 |
Maximum net torque | 498 Nm at 1400 min−1 |
Transmission | Hydrostatic-mechanical transmission with low and high range |
Travel speeds forward and reverse | High: 0–22 km/h; Low: 0–8 km/h |
Max. tractive effort | 140 kN |
Sizes: | |
Length | 9.05 m |
Width | 2.70 m |
Transport height | 3.70 m |
Ground clearance | 605 mm |
Wheelbase | 4.80 m |
Load capacity | 11,000 kg |
Operating weight | 12,700–13,700 kg |
Max. load rating | 10,000 kg |
Crane: | CF5 |
Gross lifting torque | 102 kNm |
Winch | One-drum |
Cable length | 65 m |
Nominal pulling force of winch | 50 kN |
Variables | Cycle Time, Minutes | Distance, m | ||||
---|---|---|---|---|---|---|
Mean Value ± St. dev. | Min | Max | Mean Value ± St. Dev. | Min | Max | |
Yarding | ||||||
Carriage outhaul (CO) | 0.72 ± 0.089 | 0.60 | 0.90 | 123.83 ± 17.47 | 90 | 150 |
Lateral outhaul and hook (LOH) | 3.49 ± 0.54 | 2.20 | 4.60 | 12.84 ± 3.29 | 6 | 22 |
Lateral inhaul (LI) | 0.36 ± 0.047 | 0.25 | 0.43 | 12.84 ± 3.29 | 6 | 22 |
Carriage inhaul (CI) | 0.86 ± 0.11 | 0.70 | 1.08 | 123.83 ± 17.47 | 90 | 150 |
Unhook (U) | 0.40 ± 0.087 | 0.25 | 0.50 | |||
Delays (DY) | 7.72 ± 13.16 | 0.33 | 33.22 | |||
Total cycle time (TTY) | 13.68 ± 13.62 | 5.07 | 39.15 | |||
Delay-free cycle time (Tnet,TY) | 6.04 ± 0.71 | 4.63 | 7.55 | |||
Load volume per cycle (turn), m3 | 1.01 ± 0.33 | 0.75 | 1.91 | |||
Productivity, m3 per PMH | 10.34 ± 2.07 | 7.20 | 17.63 | |||
Productivity, m3 per SMH | 8.11 ± 3.83 | 1.17 | 15.15 | |||
Number of stems per cycle | 1.43 ± 0.50 | 1 | 2 | |||
Skyline slope, deg | 17.25 ± 2.05 | 14 | 19 | |||
Number of cycles per SMH | 7.66 ± 3.53 | 1.53 | 11.84 | |||
Skidding | ||||||
Travel unloaded (TU) | 6.08 ± 1.37 | 3.88 | 7.50 | 693.03 ± 180.38 | 467 | 870 |
Maneuvering (M) | 0.35 ± 0.12 | 0.17 | 0.58 | |||
Winching (W) | 22.61 ± 6.72 | 6.73 | 38.50 | |||
Loading (LOAD) | 2.55 ± 0.15 | 2.32 | 305 | |||
Travel loaded (TL) | 12.46 ± 2.29 | 8.67 | 15.00 | 693.03 ± 180.38 | 467 | 870 |
Unloading (UNLOAD) | 2.32 ± 0.08 | 2.15 | 2.50 | |||
Sorting and piling (SP) | 2.23 ± 0.12 | 2.00 | 2.40 | |||
Delays (DS) | 12.51 ± 1.43 | 10.33 | 16.47 | |||
Total cycle time (TCS) | 61.11 ± 7.63 | 46.97 | 79.27 | |||
Delay-free cycle time (Tnet,CS) | 48.60 ± 8.00 | 32.02 | 68.27 | |||
Productivity, m3 per PMH | 6.23 ± 1.35 | 3.85 | 10.23 | |||
Productivity, m3 per SMH | 4.93 ± 1.11 | 2.77 | 8.37 | |||
Number of stems per cycle | 6.63 ± 1.22 | 3 | 9 | |||
Number of cycles per SMH | 1.00 ± 0.13 | 0.76 | 1.28 | |||
Speed loaded, km∙h−1 | 3.30 ± 0.38 | 2.56 | 3.82 | |||
Speed unloaded, km∙h−1 | 6. 82 ± 0.58 | 4.42 | 7.45 | |||
Mean speed, km∙h−1 | 4.44 ± 0.43 | 3.63 | 5.02 |
Equations | F | R2 | R2adj | SE | p-Value |
---|---|---|---|---|---|
Tnet,TY = 1.88 + 0.026∙LTY + 0.053∙i. (1) | 36.01 | 0.38 | 0.37 | 0.59 | <0.05 |
Tnet,CS = 26.84 + 0.028∙LCS + 3.15 nCS. (2) | 18.11 | 0.57 | 0.54 | 5.21 | <0.05 |
TTY= 0.26∙LTY − 1.44∙l − 6.08∙nTY. (3) | 10.50 | 0.21 | 0.19 | 32.32 | <0.05 |
TCS = 0.29∙LCS + 3.64∙VCS. (4) | 21.04 | 0.61 | 0.58 | 5.30 | <0.05 |
Equations | F | R2 | R2adj | Std. Error | p-Value |
---|---|---|---|---|---|
PPMH,TY = 7.63 − 0.041∙LTY − 0.11∙i + 9.67∙VTY, m3·h−1 (5) | 110.48 | 0.74 | 0.73 | 1.07 | p < 0.05 |
PSMH,TY = 9.11 − 0.084∙LTY + 0.36∙l + 3.39∙nTY, m3∙h−1 (6) | 22.50 | 0.37 | 0.35 | 3.08 | p < 0.05 |
PPMH,CS = 4.42 − 0.0036∙LCS + 0.84∙VCS, m3·h−1 (7) | 63.27 | 0.91 | 0.81 | 0.61 | p < 0.05 |
PSMH,CS = 2.35 − 0.0021∙LCS + 0.79∙VCS, m3·h−1 (8) | 106.40 | 0.89 | 0.88 | 0.40 | p < 0.05 |
Classification of Costs | Costs per Hour, € h−1 | ||
---|---|---|---|
Valentini V400 | Timberjack 1010D | Production System | |
Purchase price | 130,000 | 25,000 | 155,000 |
Total fixed costs: | 21.08 | 10.79 | 31.27 |
Depreciation | 5.85 | 7.50 | 13.35 |
Interest | 3.93 | 0 | 3.93 |
Insurance | 9.67 | 0.74 | 10.41 |
Garaging | 0.74 | 0.74 | 1.48 |
Taxes | 0.15 | 0.07 | 0.23 |
Machine transfer | 0.74 | 0.74 | 1.48 |
Total variable costs: | 23.63 | 25.66 | 49.29 |
Fuel and lubricants | 15.53 | 15.53 | 31.06 |
Tires and tracks | 0.60 | 2.64 | 3.24 |
Maintenance and repair | 4.55 | 7 | 11.55 |
Winch cables and choker cables | 2.95 | 0.49 | 3.44 |
Labor costs | 26.66 | 13.2 | 39.86 |
Net costs | 71.37 | 49.5 | 120.87 |
Net costs, € per m3 | 6.90 | 8.03 | 14.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papandrea, S.F.; Stoilov, S.; Cataldo, M.F.; Petkov, K.; Angelov, G.; Zumbo, A.; Proto, A.R. Evaluation of Productivity and Cost Analysis on a Combined Logging System. Forests 2024, 15, 980. https://doi.org/10.3390/f15060980
Papandrea SF, Stoilov S, Cataldo MF, Petkov K, Angelov G, Zumbo A, Proto AR. Evaluation of Productivity and Cost Analysis on a Combined Logging System. Forests. 2024; 15(6):980. https://doi.org/10.3390/f15060980
Chicago/Turabian StylePapandrea, Salvatore F., Stanimir Stoilov, Maria Francesca Cataldo, Krasimir Petkov, Georgi Angelov, Antonio Zumbo, and Andrea R. Proto. 2024. "Evaluation of Productivity and Cost Analysis on a Combined Logging System" Forests 15, no. 6: 980. https://doi.org/10.3390/f15060980
APA StylePapandrea, S. F., Stoilov, S., Cataldo, M. F., Petkov, K., Angelov, G., Zumbo, A., & Proto, A. R. (2024). Evaluation of Productivity and Cost Analysis on a Combined Logging System. Forests, 15(6), 980. https://doi.org/10.3390/f15060980