Development of a Forest Fire Diagnostic Model Based on Machine Learning Techniques
Abstract
:1. Introduction
2. Materials and Method
2.1. Study Area
2.2. Data
2.2.1. Forest Fire Label Data
2.2.2. Remote Sensing Data
2.2.3. Forest Fires Activity Map
2.2.4. Meteorological Data
2.2.5. Topographical and Environmental Data
2.3. Development of the VTCI Prediction Model
2.4. Development of a Forest Fire Diagnostic Model
2.5. SHapley Additive exPlanations (SHAP)
3. Results and Discussion
3.1. VTCI Prediction Model Performance
3.2. Forest Fire Diagnostic Model Performance
3.3. Variable Impact Analysis Based on SHAP Value
3.4. Forest Fire Forecast for Republic of Korea
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Ding, A. Contrasting Trends of Carbon Emission from Savanna and Boreal Forest Fires during 1999–2022. Meteorol. Appl. 2024, 31, e2177. [Google Scholar] [CrossRef]
- Bennett, L.T.; Bruce, M.J.; MacHunter, J.; Kohout, M.; Krishnaraj, S.J.; Aponte, C. Assessing Fire Impacts on the Carbon Stability of Fire-Tolerant Forests. Ecol. Appl. 2017, 27, 2497–2513. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D.; Reich, P.; Phillips, H.; Menton, M.; Patel, A.; Vos, E.; Peterson, D.; Knops, J. Fire Suppression and Ecosystem Carbon Storage. Ecology 2000, 81, 2680–2685. [Google Scholar] [CrossRef]
- Halofsky, J.E.; Peterson, D.L.; Harvey, B.J. Changing Wildfire, Changing Forests: The Effects of Climate Change on Fire Regimes and Vegetation in the Pacific Northwest, USA. Fire Ecol. 2020, 16, 4. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Williams, A.P.; Barbero, R. Global Emergence of Anthropogenic Climate Change in Fire Weather Indices. Geophys. Res. Lett. 2019, 46, 326–336. [Google Scholar] [CrossRef]
- Korea Forest Service. Forest Fire Occurrence Status. Available online: https://smartcity.go.kr/en/2020/01/22/%EC%82%B0%EB%A6%BC%EC%B2%AD-2020%EB%85%84-%EC%A0%84%EA%B5%AD-%EC%82%B0%EB%B6%88%EB%B0%A9%EC%A7%80-%EC%A2%85%ED%95%A9%EB%8C%80%EC%B1%85-%EB%B0%9C%ED%91%9C/ (accessed on 13 April 2024).
- Kang, Y.; Jang, E.; Im, J.; Kwon, C.; Kim, S. Developing a New Hourly Forest Fire Risk Index Based on Catboost in Republic of Korea. Appl. Sci. 2020, 10, 8213. [Google Scholar] [CrossRef]
- Myoung, B.; Kim, S.H.; Nghiem, S.V.; Jia, S.; Whitney, K.; Kafatos, M.C. Estimating Live Fuel Moisture from MODIS Satellite Data for Wildfire Danger Assessment in Southern California USA. Remote Sens. 2018, 10, 87. [Google Scholar] [CrossRef]
- Verbesselt, J.; Jönsson, P.; Lhermitte, S.; Van Aardt, J.; Coppin, P. Evaluating Satellite and Climate Data-Derived Indices as Fire Risk Indicators in Savanna Ecosystems. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1622–1632. [Google Scholar] [CrossRef]
- Kim, S.J.; Lim, C.H.; Kim, G.S.; Lee, J.; Geiger, T.; Rahmati, O.; Son, Y.; Lee, W.K. Multi-Temporal Analysis of Forest Fire Probability Using Socio-Economic and Environmental Variables. Remote Sens. 2019, 11, 86. [Google Scholar] [CrossRef]
- Azam, M.; Maeng, S.J.; Kim, H.S.; Lee, S.W.; Lee, J.E. Spatial and Temporal Trend Analysis of Precipitation and Drought in Republic of Korea. Water 2018, 10, 765. [Google Scholar] [CrossRef]
- Chang, H.; Kwon, W.T. Spatial Variations of Summer Precipitation Trends in Republic of Korea, 1973–2005. Environ. Res. Lett. 2007, 2, 045012. [Google Scholar] [CrossRef]
- Jeon, B.R.; Chae, H.M. The Analysis on Forest Fire Occurrence Characteristics by Regional Area in Korea from 1990 to 2014 Year. J. For. Environ. Sci. 2016, 32, 149–157. [Google Scholar] [CrossRef]
- Won, M.; Yoon, S.; Jang, K. Developing Korean Forest Fire Occurrence Probability Model Reflecting Climate Change in the Spring of 2000s. Korean J. Agric. For. Meteorol. 2016, 18, 199–207. [Google Scholar] [CrossRef]
- Kwak, H.; Lee, W.K.; Saborowski, J.; Lee, S.Y.; Won, M.S.; Koo, K.S.; Lee, M.B.; Kim, S.N. Estimating the Spatial Pattern of Human-Caused Forest Fires Using a Generalized Linear Mixed Model with Spatial Autocorrelation in Republic of Korea. Int. J. Geogr. Inf. Sci. 2012, 26, 1589–1602. [Google Scholar] [CrossRef]
- Kwak, H.-B.; Lee, W.-K.; Won, M.-S.; Koo, K.-S.; Lee, M.-B.; Lee, S.-C. Spatial and Temporal Pattern of the Human-Caused Forest Fire Occurrences in Korea. In Proceedings of the ESRI User Conference, San Diego, CA, USA, 13–17 July 2009. [Google Scholar]
- Korea Forest Service. Causes and Impacts of Forest Fires. Available online: https://www.globalforestwatch.org/dashboards/country/KOR/?category=fires (accessed on 16 April 2024).
- Choung, Y.; Lee, B.-C.; Cho, J.-H.; Lee, K.-S.; Jang, I.-S.; Kim, S.-H.; Hong, S.-K.; Jung, H.-C.; Choung, H.-L. Forest Responses to the Large-Scale East Coast Fires in Korea. Ecol. Res. 2004, 19, 43–54. [Google Scholar] [CrossRef]
- Si, L.; Shu, L.; Wang, M.; Zhao, F.; Chen, F.; Li, W.; Li, W. Study on Forest Fire Danger Prediction in Plateau Mountainous Forest Area. Nat. Hazards Res. 2022, 2, 25–32. [Google Scholar] [CrossRef]
- Piao, Y.; Lee, D.; Park, S.; Kim, H.G.; Jin, Y. Forest Fire Susceptibility Assessment Using Google Earth Engine in Gangwon-Do, Republic of Korea. Geomat. Nat. Hazards Risk 2022, 13, 432–450. [Google Scholar] [CrossRef]
- Patel, N.R.; Mukund, A.; Parida, B.R. Satellite-Derived Vegetation Temperature Condition Index to Infer Root Zone Soil Moisture in Semi-Arid Province of Rajasthan, India. Geocarto. Int. 2022, 37, 179–195. [Google Scholar] [CrossRef]
- Peng, J.; Loew, A.; Zhang, S.; Wang, J.; Niesel, J. Spatial Downscaling of Satellite Soil Moisture Data Using a Vegetation Temperature Condition Index. IEEE Trans. Geosci. Remote Sens. 2016, 54, 558–566. [Google Scholar] [CrossRef]
- Wang, P.-X.; Li, X.-W.; Gong, J.-Y.; Song, C. Vegetation Temperature Condition Index and Its Application for Drought Monitoring. In Proceedings of the IEEE 2001 International Geoscience and Remote Sensing Symposium, Sydney, Australia, 9–13 July 2001. [Google Scholar]
- Zhou, X.; Wang, P.; Tansey, K.; Zhang, S.; Li, H.; Wang, L. Developing a Fused Vegetation Temperature Condition Index for Drought Monitoring at Field Scales Using Sentinel-2 and MODIS Imagery. Comput. Electron. Agric. 2020, 168, 105144. [Google Scholar] [CrossRef]
- Won, M.S.; Miah, D.; Koo, K.S.; Lee, M.B.; Shin, M.Y. Meteorological Determinants of Forest Fire Occurrence in the Fall, Republic of Korea. J. Korean Soc. For. Sci. 2010, 99, 163–171. [Google Scholar]
- Kang, S.-C. Large Fire Forecasting Depending on the Changing Wind Speed and Effective Humidity in Korean Red Pine Forests Through a Case Study. J. Korean Assoc. Geogr. Inf. Stud. 2016, 19, 146–156. [Google Scholar] [CrossRef]
- Van Nest, T.A.; Alexander, M.E. Systems for Rating Fire Danger and Predicting Fire Behavior Used in Canada. In Proceedings of the National Interagency Fire Behavior Workshop, Phoenix, AZ, USA, 1–5 March 1999. [Google Scholar]
- Van Wagner, C.E. Structure of the Canadian Forest Fire Weather Index; Environment Canada, Forestry Service: Ottawa, ON, Canada, 1974. [Google Scholar]
- Jo, H.W.; Krasovskiy, A.; Hong, M.; Corning, S.; Kim, W.; Kraxner, F.; Lee, W.K. Modeling Historical and Future Forest Fires in Republic of Korea: The FLAM Optimization Approach. Remote Sens. 2023, 15, 1446. [Google Scholar] [CrossRef]
- Cawson, J.G.; Nyman, P.; Schunk, C.; Sheridan, G.J.; Duff, T.J.; Gibos, K.; Bovill, W.D.; Conedera, M.; Pezzatti, G.B.; Menzel, A. Estimation of Surface Dead Fine Fuel Moisture Using Automated Fuel Moisture Sticks across a Range of Forests Worldwide. Int. J. Wildland Fire 2020, 29, 548–559. [Google Scholar] [CrossRef]
- Fan, J.; Hu, T.; Ren, J.; Liu, Q.; Sun, L. A Comparison of Five Models in Predicting Surface Dead Fine Fuel Moisture Content of Typical Forests in Northeast China. Front. For. Glob. Chang. 2023, 6, 1122087. [Google Scholar] [CrossRef]
- Kang, Z.; Quan, X.; Lai, G. Assessing the Effects of Fuel Moisture Content on the 2018 Megafires in California. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 868–877. [Google Scholar] [CrossRef]
- Ruffault, J.; Martin-StPaul, N.; Pimont, F.; Dupuy, J.L. How Well Do Meteorological Drought Indices Predict Live Fuel Moisture Content (LFMC)? An Assessment for Wildfire Research and Operations in Mediterranean Ecosystems. Agric. For. Meteorol. 2018, 262, 391–401. [Google Scholar] [CrossRef]
- Jung, J.; Kim, C.; Jayakumar, S.; Kim, S.; Han, S.; Kim, D.H.; Heo, J. Forest Fire Risk Mapping of Kolli Hills, India, Considering Subjectivity and Inconsistency Issues. Nat. Hazards 2013, 65, 2129–2146. [Google Scholar] [CrossRef]
- Pourtaghi, Z.S.; Pourghasemi, H.R.; Rossi, M. Forest Fire Susceptibility Mapping in the Minudasht Forests, Golestan Province, Iran. Environ. Earth Sci. 2015, 73, 1515–1533. [Google Scholar] [CrossRef]
- Xu, M.; Yao, N.; Yang, H.; Xu, J.; Hu, A.; Gustavo Goncalves de Goncalves, L.; Liu, G. Downscaling SMAP Soil Moisture Using a Wide & Deep Learning Method over the Continental United States. J. Hydrol. 2022, 609, 127784. [Google Scholar] [CrossRef]
- Gao, L.; Gao, Q.; Zhang, H.; Li, X.; Chaubell, M.J.; Ebtehaj, A.; Shen, L.; Wigneron, J.P. A Deep Neural Network Based SMAP Soil Moisture Product. Remote Sens. Environ. 2022, 277, 113059. [Google Scholar] [CrossRef]
- Achieng, K.O. Modelling of Soil Moisture Retention Curve Using Machine Learning Techniques: Artificial and Deep Neural Networks vs Support Vector Regression Models. Comput. Geosci. 2019, 133, 104320. [Google Scholar] [CrossRef]
- Rodríguez-Fernández, N.J.; Aires, F.; Richaume, P.; Kerr, Y.H.; Prigent, C.; Kolassa, J.; Cabot, F.; Jiménez, C.; Mahmoodi, A.; Drusch, M. Soil Moisture Retrieval Using Neural Networks: Application to SMOS. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5991–6007. [Google Scholar] [CrossRef]
- Albergel, C.; de Rosnay, P.; Gruhier, C.; Muñoz-Sabater, J.; Hasenauer, S.; Isaksen, L.; Kerr, Y.; Wagner, W. Evaluation of Remotely Sensed and Modelled Soil Moisture Products Using Global Ground-Based in Situ Observations. Remote Sens. Environ. 2012, 118, 215–226. [Google Scholar] [CrossRef]
- Whig, P.; Gupta, K.; Jiwani, N.; Jupalle, H.; Kouser, S.; Alam, N. A Novel Method for Diabetes Classification and Prediction with Pycaret. Microsyst. Technol. 2023, 29, 1479–1487. [Google Scholar] [CrossRef]
- Sarangpure, N.; Dhamde, V.; Roge, A.; Doye, J.; Patle, S.; Tamboli, S. Automating the Machine Learning Process Using PyCaret and Streamlit. In Proceedings of the 2023 2nd International Conference for Innovation in Technology, INOCON 2023, Bangalore, India, 3–5 March 2023; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2023. [Google Scholar]
- Hancock, J.T.; Khoshgoftaar, T.M. CatBoost for Big Data: An Interdisciplinary Review. J. Big Data 2020, 7, 94. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, M.; Fu, Y.; Zhang, L.; Wang, X. A Wildfire Detection Algorithm Based on the Dynamic Brightness Temperature Threshold. Forests 2023, 14, 477. [Google Scholar] [CrossRef]
- Adler, A.I.; Painsky, A. Feature Importance in Gradient Boosting Trees with Cross-Validation Feature Selection. Entropy 2022, 24, 687. [Google Scholar] [CrossRef]
- Wang, D.; Thunéll, S.; Lindberg, U.; Jiang, L.; Trygg, J.; Tysklind, M. Towards Better Process Management in Wastewater Treatment Plants: Process Analytics Based on SHAP Values for Tree-Based Machine Learning Methods. J. Environ. Manag. 2022, 301, 113941. [Google Scholar] [CrossRef]
- Abdollahi, A.; Pradhan, B. Explainable Artificial Intelligence (XAI) for Interpreting the Contributing Factors Feed into the Wildfire Susceptibility Prediction Model. Sci. Total Environ. 2023, 879, 163004. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 4765–4774. [Google Scholar]
- Korea Forest Service. The Forest Fire Occurrences by Region over the Past Decade. Available online: https://www.forest.go.kr/kfsweb/kfi/kfs/frfr/selectFrfrStatsArea.do (accessed on 14 April 2024).
- Lee, S.-Y.; Won, M.-S.; Han, S.-Y. Developing of Forest Fire Occurrence Danger Index Using Fuel and Topographical Characteristics on the Condition of Ignition Point in Korea. Fire Sci. Eng. 2005, 19, 75–79. [Google Scholar]
Dataset | Name | Source | Abbreviation |
---|---|---|---|
Label Data | Forest Fire Inventory Data | Korea Forest Service (KFS) | - |
Remote Sensing Data | Vegetation Temperature Condition Index | Moderate Resolution Imaging Spectroradiometer (MODIS) | VTCI |
Land Surface Temperature | LST | ||
Normalized Difference Vegetation Index | NDVI | ||
Fire Activity Map | Road | National Geographic Information Institute (NGII) | - |
Building | - | ||
Cropland | - | ||
Meteorological Data | Effective Humidity | Korea Meteorological Administration (KMA) | EH |
Duff Moisture Contents | DMC | ||
Fine Fuel Moisture Contents | FFMC | ||
Humidity | HMD | ||
Precipitation | PCP | ||
Wind Speed | WND | ||
Average Temperature | Avg TMP | ||
Maximum Temperature | Max TMP | ||
Minimum Temperature | Min TMP | ||
Topographical and Environmental Data | Digital Elevation Model | National Geographic Information Institute (NGII) | DEM |
Slope | - | ||
Aspect | - | ||
Landcover | Korea Ministry of Environment (KME) | LC | |
Coordinate (longitude and latitude) | - | - |
Month | (a) Forest Fires | (b) Ratio of Forest Fire | (c) Value | (d) Ratio of Value | (e) Non-Occurrence Data |
---|---|---|---|---|---|
January | 634 | 8% | 1279.96 | 3% | 439 |
February | 999 | 12% | 812.31 | 2% | 279 |
March | 2053 | 25% | 395.27 | 1% | 136 |
April | 1990 | 25% | 407.78 | 1% | 140 |
May | 697 | 9% | 1164.27 | 2% | 400 |
June | 467 | 6% | 11,737.68 | 4% | 597 |
July | 52 | 1% | 15,605.76 | 33% | 5358 |
August | 87 | 1% | 9327.58 | 20% | 3203 |
September | 94 | 1% | 8632.97 | 19% | 2964 |
October | 266 | 3% | 3050.75 | 7% | 1048 |
November | 390 | 5% | 2080.76 | 4% | 714 |
December | 386 | 5% | 2102.33 | 5% | 722 |
Total | 8115 | 100% | 46,597.49 | 100% | 16,000 |
Metric | January | February | March | April | May | June | ||||||
Train | Test | Train | Test | Train | Test | Train | Test | Train | Test | Train | Test | |
MSE | 0.002 | 0.002 | 0.001 | 0.001 | 0.002 | 0.002 | 0.002 | 0.002 | 0.003 | 0.003 | 0.004 | 0.004 |
MAE | 0.033 | 0.036 | 0.029 | 0.029 | 0.035 | 0.035 | 0.037 | 0.037 | 0.04 | 0.04 | 0.05 | 0.05 |
R2 | 0.921 | 0.899 | 0.937 | 0.937 | 0.913 | 0.912 | 0.908 | 0.907 | 0.88 | 0.879 | 0.818 | 0.809 |
Metric | July | August | September | October | November | December | ||||||
Train | Test | Train | Test | Train | Test | Train | Test | Train | Test | Train | Test | |
MSE | 0.005 | 0.005 | 0.005 | 0.008 | 0.004 | 0.004 | 0.004 | 0.004 | 0.003 | 0.003 | 0.002 | 0.002 |
MAE | 0.052 | 0.053 | 0.053 | 0.065 | 0.046 | 0.049 | 0.049 | 0.049 | 0.426 | 0.426 | 0.035 | 0.035 |
R2 | 0.834 | 0.83 | 0.816 | 0.715 | 0.847 | 0.826 | 0.865 | 0.865 | 0.899 | 0.898 | 0.911 | 0.813 |
Model | Accuracy | AUC | Recall | Precision | F1 | Kappa | MCC |
---|---|---|---|---|---|---|---|
CatBoost Classifier | 0.8899 | 0.9524 | 0.8423 | 0.8324 | 0.8372 | 0.7541 | 0.7543 |
Light Gradient Boosting Machine | 0.8875 | 0.9502 | 0.8414 | 0.8272 | 0.8340 | 0.7490 | 0.7493 |
Random Forest Classifier | 0.8844 | 0.9473 | 0.8281 | 0.8280 | 0.8279 | 0.7408 | 0.7410 |
Extreme Gradient Boosting | 0.8840 | 0.9480 | 0.8319 | 0.8248 | 0.8282 | 0.7407 | 0.7408 |
Gradient Boosting Classifier | 0.8839 | 0.9479 | 0.8294 | 0.8258 | 0.8275 | 0.7399 | 0.7401 |
Extra Tree Classifier | 0.8817 | 0.9460 | 0.8132 | 0.8313 | 0.8220 | 0.7334 | 0.7337 |
Ada Boost Classifier | 0.8777 | 0.9410 | 0.8155 | 0.8199 | 0.8175 | 0.7256 | 0.7257 |
Linear Discriminant Analysis | 0.8761 | 0.9371 | 0.7993 | 0.8262 | 0.8124 | 0.7199 | 0.7202 |
Ridge Classifier | 0.8757 | 0 | 0.7932 | 0.8292 | 0.8107 | 0.7182 | 0.7187 |
Logistic Regression | 0.8364 | 0.9099 | 0.7494 | 0.7630 | 0.7353 | 0.6325 | 0.6334 |
Decision Tree Classifier | 0.8267 | 0.8067 | 0.7458 | 0.6354 | 0.7430 | 0.6123 | 0.6124 |
Naïve Bayes | 0.7932 | 0.9043 | 0.9023 | 0.5857 | 0.7456 | 0.5801 | 0.6056 |
Quadratic Discriminant Analysis | 0.7147 | 0.7738 | 0.6828 | 0.8023 | 0.6001 | 0.38886 | 0.4174 |
K Neighbors Classifier | 0.6657 | 0.6513 | 0.3976 | 0.5026 | 0.4438 | 0.2095 | 0.2125 |
Dummy Classifier | 0.6643 | 0.5 | 0 | 0 | 0 | 0 | 0 |
SVM–Linear Kernel | 0.5520 | 0 | 0.3586 | 0.2278 | 0.2202 | 0.0094 | 0.0110 |
Risk | Risk Level | Number of Forest Fire Occurrences | Percentage |
---|---|---|---|
0.8–1.0 | Very High | 165 | 46% |
0.6–0.8 | High | 99 | 27% |
0.4–0.6 | Moderate | 21 | 6% |
0.2–0.4 | Low | 40 | 11% |
0–0.2 | Very Low | 37 | 10% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roh, M.; Lee, S.; Jo, H.-W.; Lee, W.-K. Development of a Forest Fire Diagnostic Model Based on Machine Learning Techniques. Forests 2024, 15, 1103. https://doi.org/10.3390/f15071103
Roh M, Lee S, Jo H-W, Lee W-K. Development of a Forest Fire Diagnostic Model Based on Machine Learning Techniques. Forests. 2024; 15(7):1103. https://doi.org/10.3390/f15071103
Chicago/Turabian StyleRoh, Minwoo, Sujong Lee, Hyun-Woo Jo, and Woo-Kyun Lee. 2024. "Development of a Forest Fire Diagnostic Model Based on Machine Learning Techniques" Forests 15, no. 7: 1103. https://doi.org/10.3390/f15071103
APA StyleRoh, M., Lee, S., Jo, H. -W., & Lee, W. -K. (2024). Development of a Forest Fire Diagnostic Model Based on Machine Learning Techniques. Forests, 15(7), 1103. https://doi.org/10.3390/f15071103