Evaluation of the Fungitoxic Effect of Extracts from the Bark of Quercus laeta Liebm, the Cob of Zea mays and the Leaves of Agave tequilana Weber Blue Variety against Trametes versicolor L. Ex Fr
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Extracts
2.3. Wood Sample Preparation
Impregnation
2.4. Test Fungus Preparation
2.5. Bioassay
2.5.1. Soil Analysis
2.5.2. Culture Bottles
2.6. Leaching
2.7. Statistical Analysis
3. Results
3.1. Extractions
3.2. Soil Analysis
3.3. Impregnation of Preservative
3.4. Rooting Evaluation
3.5. Leaching
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kollmann, F.F.P. Tecnología de la Madera y Sus Aplicaciones; Forestry Institute of Investigations and Experiences and Wood Service: Madrid, Spain, 1959. [Google Scholar]
- Echenique-Manrique, R.; Robles Fernández, F. Ciencia y Tecnología de la Madera; Universidad Veracruzana: Xalapa Veracruz, Mexico, 1993. [Google Scholar]
- Fengel, D.; Wegener, G. Wood: Chemistry, Ultrastructure, Reactions; Walter de Gruyter: Berlin, Germany, 1989. [Google Scholar]
- Zabel, R.A.; Morrell, J.J. Wood Microbiology: Decay and Its Prevention; Academic press: San Diego, CA, USA, 2012. [Google Scholar]
- Nicholas, D.D. Wood Deterioration and Its Preservation by Preservative Treatments; No. 691.12 N5; Syracuse University Press: Syracuse, NY, USA, 1973. [Google Scholar]
- Wang, L.; Chen, S.S.; Tsang, D.C.W.; Poon, C.-S.; Shih, K. Recycling contaminated wood into eco-friendly particleboard using green cement and carbon dioxide curing. J. Clean. Prod. 2016, 137, 861–870. [Google Scholar] [CrossRef]
- García, E.S. Determinación de la Actividad Fungitóxica de los Compuestos Extraíbles de Cuarto de Cortezas de Coníferas, Hacia los Hongos Xilófagos. Bachelor Thesis, University of Guadalajara, Guadalajara, Mexico, 2000. [Google Scholar]
- Sen, S.; Tascioglu, C.; Tırak, K. Fixation, leachability, and decay resistance of wood treated with some commercial extracts and wood preservative salts. Int. Biodeterior. Biodegrad. 2009, 63, 135–141. [Google Scholar] [CrossRef]
- Barbero-López, A.; Monzó-Beltrán, J.; Virjamo, V.; Akkanen, J.; Haapala, A. Revalorization of coffee silverskin as a potential feedstock for antifungal chemicals in wood preservation. Int. Biodeterior. Biodegrad. 2020, 152, 105011. [Google Scholar] [CrossRef]
- Vega-Ceja, J.E.; Jiménez-Amezcua, R.M.; Anzaldo-Hernández, J.; Silva-Guzmán, J.A.; Torres-Rendón, J.G.; Lomelí-Ramírez, M.G.; García-Enriquez, S. Antifungal Activity of Datura stramonium L. Extractives against Xylophagous Fungi. Forests 2022, 13, 1222. [Google Scholar] [CrossRef]
- Brocco, V.F.; Paes, J.B.; da Costa, L.G.; Brazolin, S.; Arantes, M.D.C. Potential of teak heartwood extracts as a natural wood preservative. J. Clean. Prod. 2017, 142, 2093–2099. [Google Scholar] [CrossRef]
- da Silva, D.T.; Herrera, R.; Batista, B.F.; Heinzmann, B.M.; Labidi, J. Physicochemical characterization of leaf extracts from Ocotea lancifolia and its effect against wood-rot fungi. Int. Biodeterior. Biodegrad. 2017, 117, 158–170. [Google Scholar] [CrossRef]
- Tomak, E.D.; Gonultas, O. The wood preservative potentials of valonia, chestnut, tara and sulphited oak tannins. J. Wood Chem. Technol. 2018, 38, 183–197. [Google Scholar] [CrossRef]
- Vek, V.; Balzano, A.; Poljanšek, I.; Humar, M.; Oven, P. Improving fungal decay resistance of less durable sapwood by impregnation with scots pine knotwood and black locust heartwood hydrophilic extractives with antifungal or antioxidant properties. Forests 2020, 11, 1024. [Google Scholar] [CrossRef]
- Kadirvelu, K. Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solutions. Bioresour. Technol. 2003, 87, 129–132. [Google Scholar] [CrossRef]
- Reed, R.A.; Williams, P.T. Thermal processing of biomass natural fibre waste by pyrolisis. Int. J. Energy Res. 2003, 28, 131–145. [Google Scholar] [CrossRef]
- Shah, M.P.; Reddy, G.V.; Bonarjee, R.; Babu, P.R.; Kothahi, I.L. Microbial degradation of banana waste under solid state bioprocessing using two lignocellulotytic fungi (Phylosticta spp. MPS-001 and Aspergillus spp. MPS-002). Process Biochem. 2005, 40, 445–451. [Google Scholar] [CrossRef]
- Gañan, P.; Cruz, J.; Garbizu, S.; Arbelaiz, A.; Mondragón, I. Steam and bunch banana fibers form cultivation wastes: Effect of treatments on physico-chemical behavior. J. Appl. Polym. Sci. 2004, 94, 1489–1495. [Google Scholar] [CrossRef]
- Villela-Suárez, J.M.; Aguirre-Calderón, O.A.; Treviño-Garza, E.J.; Vargas-Larreta, B. Disponibilidad de residuos forestales y su potencial para la generación de energía en los bosques templados de El Salto, Durango. Madera Bosques 2018, 24, 3. [Google Scholar] [CrossRef]
- Marlina, M.; Putra, A.; Padang JH, A.T.; Tel, I. Preparation and Characterization of Activated Carbon from Waste of Corn Cob (Zea mays). Int. J. Sci. Res. Eng. Dev. 2019, 2, 221–227. [Google Scholar]
- Palomo-Briones, R.; López-Gutiérrez, I.; Islas-Lugo, F.; Galindo-Hernández, K.L.; Munguía-Aguilar, D.; Rincón-Pérez, J.A.; Cortés-Carmona, M.; Alatriste-Mondragón, F.; Razo-Flores, E. Agave bagasse biorefinery: Processing and perspectives. Clean Technol. Environ. Policy 2018, 20, 1423–1441. [Google Scholar] [CrossRef]
- Mass, P.J. Los encinos como fuente potencial de madera para celulosa y papel en México. Rev. Cienc. For. México 1977, 9, 39–58. [Google Scholar]
- Bonfil, C. La RIqueza de Los Encinos. 1993. Available online: http://revistas.unam.mx/index.php/cns/article/viewFile/11329/10654 (accessed on 5 October 2021).
- Challenger, A.; Caballero, J.; Zarate, S.; Elizondo, R. Utilización y Conservación de los Ecosistemas Terrestres de México: Pasado, Presente y Futuro; No. 04; QH77. M6, C4.; Comisión Nacional para el Concimiento y Uso de la Biodiversidad: Mexico City, Mexico, 1998. [Google Scholar]
- Morales, D. Oak trees (Quercus spp.) as a source of extracts with biological activities: A narrative review. Trends Food Sci. Technol. 2021, 109, 116–125. [Google Scholar] [CrossRef]
- Camacho, L.M.; Rojo, R.; Salem, A.Z.M.; Mendoza, G.D.; López, D.; Tinoco, J.L.; Albarrán, B.; Montanez-Valdez, O.D. In vitro ruminal fermentation kinetics and energy utilization of three Mexican tree fodder species during the rainy and dry period. Anim. Feed Sci. Technol. 2010, 160, 110–120. [Google Scholar] [CrossRef]
- Hernández-Jiménez, J.A.; Jiménez-Amezcua, R.M.; Lomelí-Ramírez, M.G.; Silva-Guzmán, J.A.; Torres-Rendón, J.G.; García-Enriquez, S. Utilization of Wood Flour from White Oak Branches as Reinforcement in a Polypropylene Matrix: Physical and Mechanical Characterization. J. Compos. Sci. 2022, 6, 184. [Google Scholar] [CrossRef]
- Flores-Hernandez, M.A.; González, I.R.; Lomeli-Ramirez, M.G.; Fuentes-Talavera, F.J.; Silva-Guzman, J.A.; Cerpa-Gallegos, M.A.; Garcia-Enriquez, S. Physical and mechanical properties of wood plastic composites polystyrene-white oak wood flour. J. Compos. Mater. 2014, 48, 209–217. [Google Scholar] [CrossRef]
- Montañez-Soto, J.; Venegas-González, J.; Vivar-Vera, M.; Ramos-Ramírez, E. Extracción, caracterización y cuantificación de los fructanos contenidos en la cabeza y en las hojas del Agave tequilana Weber azul. Bioagro 2011, 23, 199–206. [Google Scholar]
- Praznik, W.; Löppert, R.; Rubio, J.M.C.; Zangger, K.; Huber, A. Structure of fructo-oligosaccharides from leaves and stem of Agave tequilana Weber, var. azul. Carbohydr. Res. 2013, 381, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Oyarzábal, I.S.; Ritsema, T.; Pearce, S.R. Analysis and Characterization of Fructan Oligosaccharides and Enzymatic Activities in the Leaves of Agave tequilana (Weber) var. Azul. Dyn. Biochem. Process Biotechnol. Mol. Biolgy 2009, 3, 40–51. [Google Scholar]
- Close, D.; Rodriguez, M., Jr.; Hu, R.; Yang, X. Disposition and bioavailability of inulin and free sugar in untreated and dilute acid pretreated Agave tequilana leaves. Biomass Bioenergy 2017, 106, 176–181. [Google Scholar] [CrossRef]
- Montañez, J.L.; Victoria, J.C.; Flores, R.; Vivar, M.Á. Fermentation of Agave tequilana Weber Azul fructans by Zymomonas mobilis and Sacchamomyces cerevisiae in the production of bioethanol. Inf. Tecnológica 2011, 22, 3–14. [Google Scholar] [CrossRef]
- Rijal, D.; Vancov, T.; McIntosh, S.; Ashwath, N.; Stanley, G.A. Process options for conversion of Agave tequilana leaves into bioethanol. Ind. Crops Prod. 2016, 84, 263–272. [Google Scholar] [CrossRef]
- Avila-Gaxiola, E.; Avila-Gaxiola, J.; Velarde-Escobar, O.; Ramos-Brito, F.; Atondo-Rubio, G.; Yee-Rendon, C. Effect of drying temperature on Agave tequilana leaves: A pretreatment for releasing reducing sugars for biofuel production. J. Food Process Eng. 2017, 40, e12455. [Google Scholar] [CrossRef]
- Avila-Gaxiola, J.C.; Avila-Gaxiola, E. Ethanol production from Agave tequilana leaves powder by Saccharomyces cerevisiae yeast applying enzymatic saccharification without detoxification. Ind. Crops Prod. 2022, 177, 114515. [Google Scholar] [CrossRef]
- Rodríguez, I.S.V. Extracción de Azúcares a Partir de Residuos de Agave tequilana Para la Producción de Ácido Succínico por Fermentación. Master’s Thesis, University of Guadalajara, Guadalajara, Mexico, 2019. [Google Scholar]
- Flores-Méndez, D.A.; Ortiz, C.P.; Gómez, Á.D.J.M.; González, G.T.; Guatemala-Morales, G.M.; Corona-González, R.I. Evaluation of Agave tequilana byproducts for microbial production of hyaluronic acid. Bioresour. Technol. Rep. 2023, 21, 101366. [Google Scholar]
- Iñiguez-Covarrubias, G.; Dıaz-Teres, R.; Sanjuan-Dueñas, R.; Anzaldo-Hernández, J.; Rowell, R.M. Utilization of by-products from the tequila industry. Part 2: Potential value of Agave tequilana Weber azul leaves. Bioresour. Technol. 2001, 77, 101–108. [Google Scholar] [CrossRef]
- Prieto-García, F.; Jiménez-Muñoz, E.; Acevedo-Sandoval, O.A.; Rodríguez-Laguna, R.; Canales-Flores, R.A.; Prieto-Méndez, J. Obtaining and optimization of cellulose pulp from leaves of Agave tequilana Weber Var. Blue. Preparation of handmade craft paper. Waste Biomass Valorization 2019, 10, 2379–2395. [Google Scholar] [CrossRef]
- Negrete, L.A.P. Extracción de fibras de agave para elaborar papel y artesanías. Acta Univ. 2010, 20, 77–83. [Google Scholar]
- Vilcanqui Pérez, F. Extracción y Caracterización Funcional de la Fibra de Hojas del Agave tequilana Weber Destinados Para la Inclusión en Alimentos. Ph.D. Thesis, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico, 2009. [Google Scholar]
- Reyes-Castro, S.; Valencia-Posadas, M.; Gutiérrez-Arenas, D.A.; De la Luz Ruiz, G.M.; Gutiérrez-Chávez, A.J.; Isidrón-Pérez, M.F.; Núñez-Palenius, H.G. Uso del ensilado de Agave tequilana weber cv. azul en la alimentación de ovinos en crecimiento. Braz. J. Anim. Environ. Res. 2022, 5, 2137–2148. [Google Scholar] [CrossRef]
- Ponce, C.; Chanona, J.; Garibay, V.; Palacios, E.; Calderón, G.; Sabo, R. Functionalization of Agave Cellulose Nanoparticles and its Characterization by Microscopy and Spectroscopy Techniques. Microsc. Microanal. 2013, 19 (Suppl. S2), 200–201. [Google Scholar] [CrossRef]
- Romero-González, J.; Parra-Vargas, F.; Cano-Rodríguez, I.; Rodríguez, E.; Ríos-Arana, J.; Fuentes-Hernández, R.; Ramírez-Flores, J. Biosorption of Pb (II) by Agave tequilana Weber (Agave azul) biomass. Rev. Mex. Ing. Química 2007, 6, 295–300. [Google Scholar]
- Binoj, J.S.; Bibin, J.S. Failure analysis of discarded Agave tequilana fiber polymer composites. Eng. Fail. Anal. 2019, 95, 379–391. [Google Scholar] [CrossRef]
- Ogunjobi, J.K.; Lajide, L. Characterisation of bio-oil and bio-char from slow-pyrolysed Nigerian yellow and white corn cobs. J. Sustain. Energy Env. 2013, 4, 77–84. [Google Scholar]
- Shariff, A.; Mohamad Aziz, N.S.; Ismail, N.I.; Abdullah, N. Corn Cob as a Potential Feedstock for Slow Pyrolysis of Biomass. J. Phys. Sci. 2016, 27, 123–137. [Google Scholar] [CrossRef]
- Abaza, I.; Omara, M. Effect of dietary corn cobs and enzymes supplementation on growing rabbits performance. J. Product. Dev. 2009, 16, 507–526. [Google Scholar]
- Adeyemi, O.A.; Sobayo, R.A.; Aluko, F.A.; Oke, D.B. Utilization of rumen filtrate fermented corn-cobs by weaner rabbits. Niger. J. Anim. Prod. 2008, 35, 69–75. [Google Scholar] [CrossRef]
- Lassiter, C.A.; Huffman, C.F.; Duncan, C.W. Ground corn cobs as a source of roughage for lactating dairy cows. J. Dairy Sci. 1958, 41, 176–181. [Google Scholar] [CrossRef]
- Robinson, T.; Chandran, B.; Nigam, P. Effect of pretreatments of three waste residues, wheat straw, corncobs and barley husks on dye adsorption. Bioresour. Technol. 2002, 85, 119–124. [Google Scholar] [CrossRef]
- Berber-Villamar, N.K.; Netzahuatl-Muñoz, A.R.; Morales-Barrera, L.; Chávez-Camarillo, G.M.; Flores-Ortiz, C.M.; Cristiani-Urbina, E. Corncob as an effective, eco-friendly, and economic biosorbent for removing the azo dye Direct Yellow 27 from aqueous solutions. PLoS ONE 2018, 13, e0196428. [Google Scholar] [CrossRef]
- Morales, C.B.K.; González, M.M.; Sanchez, S.P.; Torres, S.N.; Rojas, G.A.R.; Maldonado, P.M.D.L.A. Production of cellulases and laccases of Pleurotus ostreatus by solid fermentation using maize byproducts as substrates. Rev. Mex. Agroecosist. 2019, 6 (Suppl. S2), 1327–1332. [Google Scholar]
- Romero-Arenas, O.; Martínez, G.M.A.; Damián, H.M.A.; Ramírez, V.B.; López-Olguín, J. Production of mushroom Shiitake (Lentinula edodes Pegler) in synthetic blocks using agroforestry wastes. Rev. Mex. Cienc. Agrícolas 2015, 6, 1229–1238. [Google Scholar]
- Fabian Jurado, M. Caracterización Micelial y Cultivo de Cepas de Schizophyllum spp. Bachelor’s Thesis, Autonomous University of the State of Morelos, Cuernavaca, Mexico, 2022. [Google Scholar]
- Llangari, K.G.S.; Vinueza, X.R.C.; Mayorga, D.F.B.; Alcorser, M.A.G.; Valdivieso, J.E.V. Production of Paper from The Residue Of The Cellulose Extracted From The Corn Cob (Zea Mays L. Var. Ceratina). J. Pharm. Negat. Results 2022, 14, 73–90. [Google Scholar]
- Escamilla-García, M.; García-García, M.C.; Gracida, J.; Hernández-Hernández, H.M.; Granados-Arvizu J, Á.; Di Pierro, P.; Regalado-González, C. Properties and Biodegradability of Films Based on Cellulose and Cellulose Nanocrystals from Corn Cob in Mixture with Chitosan. Int. J. Mol. Sci. 2022, 23, 10560. [Google Scholar] [CrossRef]
- Guevara-Salnicov, L. Caracteristicas de Preservacion de 30 Maderas. Folia Amaz. 1996, 8, 65–78. [Google Scholar] [CrossRef]
- AWPA E10-22; Laboratory Method for Evaluating the Decay Resistance of Wood-Based Materials against Pure Basidiomycete Cultures: Soil/Block Test. American Wood Protection Association: Birmingham, AL, USA, 2022.
- AWPA E11-16; Standard Methods for Accelerated Evaluation of Preservative Leaching. Book of Standards. American Wood Protection Association: Birmingham, AL, USA, 2018.
- Ramírez, M.G.L.; Ruiz, H.G.O.; Arzate, F.N.; Gallegos MA, C.; Enriquez, S.G. Evaluation of fungi toxic activity of tannins and a tannin-copper complex from the mesocarp of Cocos nucifera Linn. Wood Fiber Sci. 2012, 44, 357–364. [Google Scholar]
- Guzmán, J.A.S.; Talavera, F.F.; Anda, R.R.; Andrade, P.T.; Ramírez, M.G.L.; Quirarte, J.R.; Waitkus, C.; Richter, H.G. Fichas de Propiedades Technológicas y usos de Maderas Nativas de México e Importadas; Departamento de Madera, Celulosa y Papel, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara: Guadalajara, México, 2010; pp. 26–27. [Google Scholar]
- ASTM D 2017-05; Standard Test Method for Accelerated Laboratory Test of Natural Decay Resistance of Woods. Annual Book of ASTM Standards. American Society for Testing and Materials: Philadelphia, PA, USA, 2017.
- Rowell, R.M.; Pettersen, R.; Han, J.S.; Rowell, J.S.; Tshabalala, M.A. Cell wall chemistry. In Handbook of Wood Chemistry and Wood Composites; Rowell, R.M., Ed.; CRC Press: Boca Raton, FL, USA, 2005; Volume 2, pp. 33–72. [Google Scholar]
- Stringer, C.A.; Taras, M.A. Termiticidal properties of slash pine wood related to position in the tree. Wood Sci. 1979, 12, 46–51. [Google Scholar]
- Carter FL: Huffman, J.B. Termite resistances to wood and extracts of Melaleuca. Wood Fiber Sci 1982, 14, 127–133. [Google Scholar]
- Harun, J.; Labosky, P. Antitermitic and antifungal properties of selected bark extractives. Wood Fiber Sci. 1985, 17, 327–335. [Google Scholar]
- Lomelí-Ramírez, M.G.; Dávila-Soto, H.; Silva-Guzmán, J.A.; Ruíz HG, O.; García-Enriquez, S. Fungitoxic potential of extracts of four Pinus spp. bark to inhibit fungus Trametes versicolor (L. ex. Fr.) Pilát. BioResources 2016, 11, 10575–10584. [Google Scholar] [CrossRef]
- Torres, R.S.B.; Hernández, J.J.A.; Galindo, R.; Lomelí, R.M.G.; López, U.L.C.; García, E.S. Efecto fungitóxico de los extractos etanólicos de 2 residuos agroindustriales hacia el hongo de pudrición Trametes versicolor (L.ex Fr.) Pilát. In Proceedings of the 5 Congreso Mexicano de Tecnología de Productos Forestales, Pachuca, Mexico, 3–5 November 2004. [Google Scholar]
- Velásquez, J.; Toro, M.E.; Rojas, L.; Encinas, O. Actividad antifúngica in vitro de los extractivos naturales de especies latifoliadas de la Guayana Venezolana. Madera Bosques 2006, 12, 51–61. [Google Scholar] [CrossRef]
- Herrera, J.R. Preservación de maderas por métodos sencillos y de bajo costo. In Ciencia Forestal; Universidad Nacional Agraria: Coyacan, México, 1977; Volume 2, pp. 25–49. [Google Scholar]
- Machuca-Velasco, R.; Fuentes-Salinas, M.; Borja-de la Rosa, A. Absorción de soluciones preservantes de nueve especies de maderas, mediante procesos de impregnación a vacío-presión e inmersión. Rev. Chapingo. Ser. Cienc. For. Ambiente 2006, 12, 71–78. [Google Scholar]
- Otaño, M.E.; Keil, G.D.; Luna, M.L.; Díaz, B.; Marlats, R.M. Impregnación de maderas de Pinus radiata, P. pinaster, P. pinea y P. halepensis: Relación entre la absorción de preservantes hidrosolubles y sus características físicas y anatómicas. Rev. de la Fac. de Agron. la Plata 2005, 104, 75–84. [Google Scholar]
- Aburto Guzmán, G. Impregnación de la Madera de Mango (Mangifera indica L.) con Sales CCA y Sales de Boro por los Métodos de Inmersión y Célula Llena. Bachelor’s Thesis, Universidad Michoacana de San Nicolás de Hidalgo, Michoacán, Mexico, 2006. [Google Scholar]
- Díaz López, J.A. Evaluación de los Métodos de Impregnación Por Inmersión, Baño Caliente-Frío y Presión, Utilizando Sales de Boro y Azoles de Cobre en la Madera de Quercus rugosa Née. Bachelor’s Thesis, Universidad Michoacana de San Nicolás de Hidalgo, Michoacán, Mexico, 2014. [Google Scholar]
- Hathway, D.E. Oak-bark tannins. Biochem. J. 1958, 70, 34. [Google Scholar] [CrossRef]
- Parker, J. Phenolics in black oak bark and leaves. J. Chem. Ecol. 1977, 3, 489–496. [Google Scholar] [CrossRef]
- Stirling, R.; Daniels, C.R.; Clark, J.E.; Morris, P.I. Methods for Determining the Role of Extractives in the Natural Durability of Western Red Cedar; Doc No. IRG-WP 07e20356; International Research Group on Wood Protection: Knoxville, TN, USA, 2007. [Google Scholar]
- Tascioglu, C.; Yalcin, M.; Sen, S.; Akcay, C. Antifungal properties of some plant extracts used as wood preservatives. Int. Biodeterior. Biodegrad. 2013, 85, 23–28. [Google Scholar] [CrossRef]
- Goktas, O.; Mammadov, R.; Duru, M.E.; Ozen, E.; Colak, A.M. Application of extracts from the poisonous plant, Nerium Oleander L., as a wood preservative. Afr. J. Biotechnol. 2007, 6, 2000–2003. [Google Scholar]
- Lebow, S. Leaching of Wood Preservative Components and Their Mobility in the Environment: Summary of Pertinent Literature; US Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 1996; Volume 93. [Google Scholar]
- Woo, C.; Daniels, B.; Stirling, R.; Morris, P. Tebuconazole and propiconazole tolerance and possible degradation by Basidiomycetes: A wood-based bioassay. Int. Biodeterior. Biodegrad. 2010, 64, 403–408. [Google Scholar] [CrossRef]
- Humar, M.; Žlindra, D.; Pohleven, F. Influence of wood species, treatment method and biocides concentration on leaching of copper–ethanolamine preservatives. Build. Environ. 2007, 42, 578–583. [Google Scholar] [CrossRef]
Concentration (g/L) | Number of Cubes Impregnated with Extracts | |||||
---|---|---|---|---|---|---|
Agave Leaves | Corn Cob | Oak Bark | ||||
Leaching | Bioassay | Leaching | Bioassay | Leaching | Bioassay | |
0.0 | 10 | 16 | 10 | 16 | 10 | 16 |
0.1 | 10 | 16 | 10 | 16 | 10 | 16 |
0.5 | - | - | - | - | 10 | 16 |
1.0 | 10 | 16 | 10 | 16 | 10 | 16 |
3.0 | - | - | 10 | 16 | - | - |
5.0 | 10 | 16 | - | - | - | - |
Samples | pH | Water Retention Capacity (%) | Normalized Volume (g) |
---|---|---|---|
1 | 4.86 ± 0.09 | 29.18 ± 1.89 | 114.9 ± 3.12 |
2 | 5.73 ± 0.08 | 22.61 ± 1.26 | 108.4 ± 2.73 |
3 | 6.12 ± 0.09 | 32.37 ± 1.72 | 131.0 ± 3.26 |
Concentration (g/L) | Average Retention (kg/m3) | ||
---|---|---|---|
Agave Leaves | Corn Cob | Bark Oak | |
0.0 | 0.000 | 0.000 | 0.000 |
0.1 | 0.065 ± 0.006 | 0.067 ± 0.067 | 0.067 ± 0.007 |
0.5 | - | - | 0.338 ± 0.026 |
1.0 | 0.653 ± 0.043 | 0.677 ± 0.077 | 0.621 ± 0.051 |
3.0 | - | 2.028 ± 0.179 | - |
5.0 | 3.367 ± 0.218 | - | - |
Linear analysis | |||
Retention (kg/m3) = A + B × Concentration (g/L) | |||
A | 0.0275 ± 0.0295 | 0.00289 ± 0.0034 | 0.0059 ± 0.0094 |
B | 0.7382 ± 0.0116 | 0.68495 ± 0.0022 | 0.6321 ± 0.0168 |
R2 | 0.999 | 0.999 | 0.998 |
Concentration (g/L) | Weight Loss (%) | ||
---|---|---|---|
Agave Leaves | Corn Cob | Bark Oak | |
0.0 | 75.68 ± 2.4 | 75.68 ± 2.4 | 75.68 ± 2.4 |
0.1 | 49.77 ± 3.2 | 53.64 ± 2.5 | 44.19 ± 3.2 |
0.5 | - | - | 28.05 ± 1.9 |
1.0 | 47.07± 4.1 | 50.37 ± 1.97 | 19.38 ± 2.1 |
3.0 | - | 40.69 ± 2.18 | - |
5.0 | 32.99 ± 3.9 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gálvez-Martínez, A.; Jiménez-Amezcua, R.M.; Anzaldo-Hernández, J.; Lomelí-Ramírez, M.G.; Silva-Guzmán, J.A.; Torres-Rendón, J.G.; García-Enriquez, S. Evaluation of the Fungitoxic Effect of Extracts from the Bark of Quercus laeta Liebm, the Cob of Zea mays and the Leaves of Agave tequilana Weber Blue Variety against Trametes versicolor L. Ex Fr. Forests 2024, 15, 1204. https://doi.org/10.3390/f15071204
Gálvez-Martínez A, Jiménez-Amezcua RM, Anzaldo-Hernández J, Lomelí-Ramírez MG, Silva-Guzmán JA, Torres-Rendón JG, García-Enriquez S. Evaluation of the Fungitoxic Effect of Extracts from the Bark of Quercus laeta Liebm, the Cob of Zea mays and the Leaves of Agave tequilana Weber Blue Variety against Trametes versicolor L. Ex Fr. Forests. 2024; 15(7):1204. https://doi.org/10.3390/f15071204
Chicago/Turabian StyleGálvez-Martínez, Alberto, Rosa María Jiménez-Amezcua, José Anzaldo-Hernández, María Guadalupe Lomelí-Ramírez, José Antonio Silva-Guzmán, José Guillermo Torres-Rendón, and Salvador García-Enriquez. 2024. "Evaluation of the Fungitoxic Effect of Extracts from the Bark of Quercus laeta Liebm, the Cob of Zea mays and the Leaves of Agave tequilana Weber Blue Variety against Trametes versicolor L. Ex Fr" Forests 15, no. 7: 1204. https://doi.org/10.3390/f15071204
APA StyleGálvez-Martínez, A., Jiménez-Amezcua, R. M., Anzaldo-Hernández, J., Lomelí-Ramírez, M. G., Silva-Guzmán, J. A., Torres-Rendón, J. G., & García-Enriquez, S. (2024). Evaluation of the Fungitoxic Effect of Extracts from the Bark of Quercus laeta Liebm, the Cob of Zea mays and the Leaves of Agave tequilana Weber Blue Variety against Trametes versicolor L. Ex Fr. Forests, 15(7), 1204. https://doi.org/10.3390/f15071204