Responses of Soil Carbon and Nitrogen Dynamics and GHG Fluxes in Forest Ecosystems to Climate Change and Human Activity
Abstract
:Funding
Conflicts of Interest
References
- Nieder, R.; Benbi, D.K. Carbon and Nitrogen in the Terrestrial Environment; Spring Science + Business Media B.V.: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Cox, P.M.; Betts, R.A.; Jones, C.D.; Spall, S.A.; Totterdell, I.J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 2000, 408, 184–187. [Google Scholar] [CrossRef] [PubMed]
- Zaehle, S.; Bondeau, A.; Carter, T.R.; Cramer, W.; Erhard, M.; Prentice, I.C.; Reginster, I.; Rounsevell, M.D.A.; Sitch, S.; Smith, B.; et al. Projected changes in terrestrial carbon storage in Europe under climate and land-use change, 1990–2100. Ecosystems 2007, 10, 380–401. [Google Scholar] [CrossRef]
- Bond-Lamberty, B.; Bailey, V.L.; Chen, M.; Gough, C.M.; Vargas, R. Globally rising soil heterotrophic respiration over recent decades. Nature 2018, 560, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Ceulemans, R.; Janssens, I.A.; Jach, M.E. Effect of CO2 enrichment on trees and forests: Lessons to be learned in view of future ecosystem studies. Ann. Bot. 1999, 84, 577–590. [Google Scholar] [CrossRef]
- Xu, X.K.; Luo, X.B. Effect of wetting intensity on soil GHG fluxes and microbial biomass under a temperate forest floor during dry season. Geoderma 2012, 170, 118–126. [Google Scholar] [CrossRef]
- Assefa, D.; Rewald, B.; Sandén, H.; Rosinger, C.; Abiyu, A.; Yitaferu, B.; Godbold, D.L. Deforestation and land use strongly effect soil organic carbon and nitrogen stock in Northwest Ethiopia. Catena 2017, 153, 89–99. [Google Scholar] [CrossRef]
- Mayer, M.; Prescott, C.E.; Abaker, W.E.A.; Augusto, L.; Cécillon, L.; Ferreira, G.W.D.; James, J.; Jandl, R.; Katzensteiner, K.; Laclau, J.P.; et al. Tamm Review: Influence of forest management activities on soil organic carbon stocks: A knowledge syhthesis. Forest Ecol. Manag. 2020, 466, 118127. [Google Scholar] [CrossRef]
- Rasmussen, C.; Southard, R.J.; Horwath, W.R. Litter type and soil minerals control temperate forest soil carbon response to climate change. Glob. Chang. Biol. 2008, 14, 2064–2080. [Google Scholar] [CrossRef]
- Xu, X.K.; Han, L.; Luo, X.B.; Han, S.J. Effects of nitrogen addition on dissolved N2O and CO2, dissolved organic matter, and inorganic nitrogen in soil solution under a temperate old-growth forest. Geoderma 2009, 151, 370–377. [Google Scholar] [CrossRef]
- Xu, X.K.; Duan, C.T.; Wu, H.H.; Luo, X.B.; Han, L. Effects of changes in throughfall on soil GHG fluxes under a mature temperate forest, northeastern China. J. Environ. Manag. 2021, 294, 112950. [Google Scholar] [CrossRef]
- Janssens, I.A.; Dieleman, W.; Luyssaert, S.; Subke, J.A.; Reichstein, M.; Ceulemans, R.; Ciais, P.; Dolman, A.J.; Grace, J.; Matteucci, G.; et al. Reduction of forest soil respiration in response to nitrogen deposition. Nat. Geosci. 2010, 3, 315–322. [Google Scholar] [CrossRef]
- Lu, M.; Zhou, X.H.; Yang, Q.; Li, H.; Luo, Y.Q.; Fang, C.M.; Chen, J.K.; Yang, X.; Li, B. Responses of ecosystem carbon cycle to experimental warming: A meta-analysis. Ecology 2013, 94, 726–738. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Shugart, H.H.; Lerdau, M.T. Sensitivity of global greenhouse gas budgets to tropospheric ozone pollution mediated by the biosphere. Environ. Res. Lett. 2017, 12, 084001. [Google Scholar] [CrossRef]
- Xu, X.K. Effect of freeze-thaw disturbance on soil C and N dynamics and GHG fluxes of East Asia forests: Review and future perspectives. Soil. Sci. Plant Nutr. 2022, 68, 15–26. [Google Scholar] [CrossRef]
- Andresen, L.C.; Ambus, P.; Beier, C.; Michelsen, A. Moderate nitrogen retention in temperate heath ecosystem after elevated CO2, drought and warming through 7 years. Eur. J. Soil. Sci. 2023, 74, e13397. [Google Scholar] [CrossRef]
- Cattânio, J.; Davidson, E.; Nepstad, D.; Verchot, L.; Ackerman, I. Unexpected results of a pilot throughfall exclusion experiment on soil emissions of CO2, CH4, N2O, and NO in eastern Amazonia. Biol. Fertil. Soils 2002, 36, 102–108. [Google Scholar]
- Johnson, D.W.; Todd, D.E.; Hanson, P.J. Effects of throughfall manipulation on soil nutrient status: Results of 12 years of sustained wet and dry treatments. Glob. Chang. Biol. 2008, 14, 1661–1675. [Google Scholar] [CrossRef]
- Cleveland, C.C.; Wieder, W.R.; Reed, S.C.; Townsend, A.R. Experimental drought in a tropical rain forest increases soil carbon dioxide losses to the atmosphere. Ecology 2010, 91, 2313–2323. [Google Scholar] [CrossRef]
- Deng, Q.; Hui, D.; Zhang, D.; Zhou, G.; Liu, J.; Liu, S.; Chu, G.; Li, J. Effects of precipitation increase on soil respiration: A three-year field experiment in subtropical forests in China. PLoS ONE 2012, 7, e41493. [Google Scholar] [CrossRef]
- Hinko-Najera, N.; Fest, B.; Livesley, S.J.; Arndt, S.K. Reduced throughfall decreases autotrophic respiration, but not heterotrophic respiration in a dry temperate broadleaved evergreen forest. Agric. For. Meteorol. 2015, 200, 66–77. [Google Scholar] [CrossRef]
- Liu, Y.C.; Liu, S.R.; Wan, S.Q.; Wang, J.X.; Luan, J.W.; Wang, H. Differential responses of soil respiration to soil warming and experimental throughfall reduction in a transitional oak forest in central China. Agric. For. Meteorol. 2016, 226, 186–198. [Google Scholar] [CrossRef]
- Xu, X. Effect of changes in throughfall on soil respiration in global forest ecosystems: A meta-analysis. Forests 2023, 14, 1037. [Google Scholar] [CrossRef]
- Yang, J.Y.; Jia, X.Y.; Ma, H.Z.; Chen, X.; Liu, J.; Shuangguan, Z.P.; Yan, W.M. Effects of warming and precipitation changes on soil GHG fluxes: A meta-analysis. Sci. Total Environ. 2022, 827, 154351. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Xu, T.; Yue, J. Effect of in situ large soil column translocation on CO2 and CH4 fluxes under two temperate forests of northeastern China. Forests 2023, 14, 1531. [Google Scholar] [CrossRef]
- Schuur, E.A.G.; Crummer, K.G.; Vogel, J.G.; Mack, M.C. Plant species composition and productivity following permafrost thaw and thermokarst in Alaskan tundra. Ecosystems 2007, 10, 280–292. [Google Scholar] [CrossRef]
- Lin, D.L.; Xia, J.Y.; Wan, S.Q. Climate warming and biomass accumulation of terrestrial plants: A meta-analysis. New Phytol. 2010, 188, 187–198. [Google Scholar] [CrossRef]
- Schuur, E.A.G.; Vogel, J.G.; Crummer, K.G.; Lee, H.; Sickman, J.O.; Osterkamp, T. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 2009, 459, 556–559. [Google Scholar] [CrossRef]
- Adiya, S.; Dalantai, S.; Wu, T.H.; Wu, X.D.; Yamkhin, J.; Bao, Y.H.; Sumiya, E.; Yadamsuren, G.; Avirmed, D.; Dorjgotov, B. Spatial and temporal change patterns of near-surface CO2 and CH4 concentrations in different permafrost regions on the Mongolian Plateau from 2010 to 2017. Sci. Total Environ. 2021, 800, 149433. [Google Scholar] [CrossRef]
- Song, Y.; Huang, S.; Zhang, H.; Wang, Q.; Ding, L.; Liu, Y. The impact of permafrost change on soil organic carbon stocks in northeast China. Forests 2024, 15, 14. [Google Scholar] [CrossRef]
- Henry, H.A.L. Climate change and soil freezing dynamics: Historical trends and projected changes. Clim. Chang. 2008, 87, 421–434. [Google Scholar] [CrossRef]
- Wu, H.H.; Xu, X.K.; Cheng, W.G.; Han, L. Dissolved organic matter and inorganic N jointly regulate greenhouse gases fluxes from forest soils with different moistures during a freeze-thaw period. Soil. Sci. Plant Nutr. 2020, 66, 163–176. [Google Scholar] [CrossRef]
- Wu, H.H.; Xu, X.K.; Fu, P.Q.; Cheng, W.G.; Fu, C.S. Responses of soil WEOM quantity and quality to freeze-thaw and litter manipulation with contrasting soil water content: A laboratory experiment. Catena 2021, 198, 105058. [Google Scholar] [CrossRef]
- Xu, X.; Wu, H.; Yue, J.; Tang, S.; Cheng, W. Effects of snow cover on carbon dioxide emissions and their δ13C values of temperate forest soils with and without litter. Forests 2023, 14, 1384. [Google Scholar] [CrossRef]
- Wang, E.; Yuan, N.; Lv, S.; Tang, X.; Wang, G.; Wu, L.; Zhou, Y.; Zhou, G.; Shi, Y.; Xu, L. Biochar-based fertilizer decreased soil N2O emission and increased soil CH4 uptake in a subtropical typical bamboo plantation. Forests 2022, 13, 2181. [Google Scholar] [CrossRef]
- Li, B.; Chen, G.; Lu, X.; Jiao, H. Effects of nitrogen and phosphorus additions on soil N2O emissions and CH4 uptake in a phosphorus-limited subtropical Chinese fir plantation. Forests 2022, 13, 772. [Google Scholar] [CrossRef]
- Wu, Y.; Zeng, Q.; Su, X.; Zheng, W.; Zhang, Q.; Chen, Y. The different factors driving SOC stability under different N addition durations in a Phyllostachys edulis Forest. Forests 2023, 14, 1890. [Google Scholar] [CrossRef]
- Kong, B.; Zhou, J.; Qi, L.; Jiao, S.; Ma, L.; Geng, W.; Zhao, Y.; Gao, T.; Gong, J.; Li, K.; et al. Effects of nitrogen deposition on leaf litter decomposition and soil organic carbon density in arid and barren rocky mountainous regions: A case study of Yimeng mountain. Forests 2023, 14, 1351. [Google Scholar] [CrossRef]
- Kong, Y.; Qu, A.; Feng, E.; Chen, R.; Yang, X.; Lai, Y. Seasonal dynamics of soil enzymatic activity under different land-use types in rocky mountainous region of north China. Forests 2023, 14, 536. [Google Scholar] [CrossRef]
- Feng, E.; Zhang, L.; Kong, Y.; Xu, X.; Wang, T.; Wang, C. Distribution characteristics of active soil substances along elevation gradients in the southern of Taihang mountain, China. Forests 2023, 14, 370. [Google Scholar] [CrossRef]
- Neff, J.C.; Townsend, A.R.; Gleixner, G.; Lehman, S.J.; Turnbull, J.; Bowman, W.D. Variable effects of nitrogen additions on the stability and turnover of soil carbon. Nature 2002, 419, 915–917. [Google Scholar] [CrossRef]
- Melillo, J.M.; Frey, S.D.; DeAngelis, K.M.; Werner, W.J.; Bernard, M.J.; Bowles, F.P.; Pold, G.; Knorr, M.A.; Grandy, A.S. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 2017, 358, 101–104. [Google Scholar] [CrossRef]
- Yu, M.X.; Wang, Y.P.; Baldock, J.A.; Jiang, J.; Mo, J.M.; Zhou, G.Y.; Yan, J.H. Divergent responses of soil organic carbon accumulation to 14 years of nitrogen addition in two typical subtropical forests. Sci. Total Environ. 2020, 707, 136104. [Google Scholar] [CrossRef]
- Rocci, K.S.; Lavallee, J.M.; Stewart, C.E.; Cotrufo, M.F. Soil organic carbon response to global environmental change depends on its distribution between mineral-associated and particulate organic matter: A meta-analysis. Sci. Total Environ. 2021, 793, 148569. [Google Scholar] [CrossRef]
- Fukami, T.; Wardle, D.A. Long-tern ecological dynamics: Reciprocal insights from natural and anthropogenic gradients. Proc. R. Soc. B 2005, 272, 2105–2115. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, R.K.; Strahm, B.D.; Sucre, E.B. Greenhouse gas emissions in response to nitrogen fertilization in managed forest ecosystems. New Forests 2015, 46, 167–193. [Google Scholar] [CrossRef]
- Phillips, C.L.; Bond-Lamberty, B.; Desai, A.R.; Lavoie, M.; Risk, D.; Tang, J.W.; Todd-Brown, K.; Vargas, R. The value of soil respiration measurements for interpreting and modeling terrestrial carbon cycling. Plant Soil. 2017, 413, 1–25. [Google Scholar] [CrossRef]
- Clément, R.; Pärn, J.; Maddison, M.; Henine, H.; Chaumont, C.; Tournebize, J.; Uri, V.; Espenberg, M.; Günther, T.; Mander, U. Frequency-domain electromagnetic induction for upscaling greenhouse gas fluxes in two hemiboreal drained peatland forests. J. Appl. Geophys. 2020, 173, 103944. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X. Responses of Soil Carbon and Nitrogen Dynamics and GHG Fluxes in Forest Ecosystems to Climate Change and Human Activity. Forests 2024, 15, 1235. https://doi.org/10.3390/f15071235
Xu X. Responses of Soil Carbon and Nitrogen Dynamics and GHG Fluxes in Forest Ecosystems to Climate Change and Human Activity. Forests. 2024; 15(7):1235. https://doi.org/10.3390/f15071235
Chicago/Turabian StyleXu, Xingkai. 2024. "Responses of Soil Carbon and Nitrogen Dynamics and GHG Fluxes in Forest Ecosystems to Climate Change and Human Activity" Forests 15, no. 7: 1235. https://doi.org/10.3390/f15071235
APA StyleXu, X. (2024). Responses of Soil Carbon and Nitrogen Dynamics and GHG Fluxes in Forest Ecosystems to Climate Change and Human Activity. Forests, 15(7), 1235. https://doi.org/10.3390/f15071235