Habitat Suitability Modeling of Endemic Genus Chimonanthus in China under Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Species Distribution Data
2.2. Environmental Variables
2.3. Ecological Niche Modeling
2.4. Suitable Area Division
2.5. Distribution Centroid Analysis
2.6. Niche Overlap and Range Overlap Analysis
3. Results
3.1. Model Performance and Important Environmental Variables
3.2. Predictions of Potential Distributions under the Current Climate Scenario
3.3. Range Changes in Chimonanthus under Future Climate Change
3.4. Migration of the Distribution Centroid in the Potential Distribution Area of Chimonanthus under Different Climate Change Scenarios
3.5. Niche Comparisons
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jamal, A.; Wen, J.; Ma, Z.Y.; Ahmed, I.; Abdullah; Chen, L.Q.; Nie, Z.; Liu, X.Q. Comparative Chloroplast Genome Analyses of the Winter-Blooming Eastern Asian Endemic Genus Chimonanthus (Calycanthaceae) With Implications for its Phylogeny and Diversification. Front. Genet. 2021, 12, 709996. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.G.; Zhou, M.Q.; Chen, L.Q.; Zhang, D.; Gituru, R.W. Genetic Diversity and Discrimination of Chimonanthus praecox (L.) Link Germplasm Using ISSR and RAPD Markers. Hortscience 2007, 42, 1144–1148. [Google Scholar] [CrossRef]
- Lu, J.G.; Du, L.J. RAPD Analyses of the Chimonanthus praecox Cultivars. J. Nanjing For. Univ. (Nat. Ences Ed.) 2007, 31, 109–112. [Google Scholar]
- Zhang, R.H.; Liu, H.E. Wax Shrubs in World (Calycanthaceae); China Science and Technology Press: Beijing, China, 1998. [Google Scholar]
- Shu, R.G.; Wan, Y.L.; Wang, X.M. Non-volatile constituents and pharmacology of Chimonanthus: A review. Chin. J. Nat. Med. 2019, 17, 9–34. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; He, J.; Chen, L.; Wang, W. Chimonanthus nitens Oliv leaves essential oil alleviates colitis induced by sodium dextran sulfate in BALB/C mice via MAPK/NF-κB/Nrf2 signaling pathway. J. Funct. Foods 2024, 115, 106095. [Google Scholar] [CrossRef]
- Azuma, H.; Toyota, M.; Asakawa, Y. Floral Scent Chemistry and Stamen Movement of Chimonanthus praecox (L.) Link (Calycanthaceae). Acta Phytotax. Geobot. 2005, 56, 197–201. [Google Scholar]
- Deng, C.; Song, G.; Hu, Y. Rapid determination of volatile compounds emitted from Chimonanthus praecox flowers by HS-SPME-GC-MS. Z. Für Naturforschung C J. Biosci. 2004, 59, 636–640. [Google Scholar] [CrossRef]
- Du, H.C.; Jiang, Y.T.; Tian, M.; Zhang, Y.; Wang, C.X. Morphological variation in flowers of wild populations of Chimonanthus praecox in Zhejiang Province and its correlation with environment factors. Acta Ecol. Sin. 2018, 38, 5800–5809. [Google Scholar]
- Dawson, T.P.; Jackson, S.T.; House, J.I.; Prentice, C.I.; Mace, G.M. Beyond Predictions: Biodiversity Conservation in a Changing Climate. Science 2011, 6025, 53–58. [Google Scholar] [CrossRef]
- Pillet, M.; Goettsch, B.; Merow, C.; Maitner, B.; Feng, X.; Roehrdanz, P.R.; Enquist, B.J. Elevated extinction risk of cacti under climate change. Nat. Plants 2022, 8, 366–372. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, Y.; Guo, X.; Ning, D.; Zhou, X.; Feng, J.; Yuan, M.M.; Liu, S.; Guo, J.; Gao, Z. Reduction of microbial diversity in grassland soil is driven by long-term climate warming. Nat. Microbiol. 2022, 7, 1054. [Google Scholar] [CrossRef] [PubMed]
- Kerr, J.T.; Pindar, A.; Galpern, P.; Packer, L.; Potts, S.G.; Roberts, S.M.; Rasmont, P.; Schweiger, O.; Colla, S.R.; Richardson, L.L.; et al. Climate change impacts on bumblebees converge across continents. Science 2015, 349, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Ehrlén, J.; Morris, W.F. Predicting changes in the distribution and abundance of species under environmental change. Ecol. Lett. 2015, 18, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Pecl, G.T.; Araújo, M.B.; Bell, J.D.; Blanchard, J.; Bonebrake, T.C.; Chen, I.; Clark, T.D.; Colwell, R.K.; Danielsen, F.; Evengård, B. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 2017, 355, eaai9214. [Google Scholar] [CrossRef] [PubMed]
- Soroye, P.; Newbold, T.; Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 2020, 367, 685–688. [Google Scholar] [CrossRef] [PubMed]
- Castillo, E.M.D.; Zang, C.S.; Buras, A.; Hacket-Pain, A.; Esper, J.; Serrano-Notivoli, R.; Hartl, C.; Weigel, R.; Klesse, S.; de Dios, V.R.; et al. Climate-change-driven growth decline of European beech forests. Commun. Biol. 2022, 5, 163. [Google Scholar]
- Zhang, K.; Yao, L.; Meng, J.; Tao, J. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Sci. Total Environ. 2018, 634, 1326–1334. [Google Scholar] [CrossRef]
- Weiskopf, S.R.; Rubenstein, M.A.; Crozier, L.G.; Gaichas, S.; Griffis, R.; Halofsky, J.E.; Hyde, K.J.W.; Morelli, T.L.; Morisette, J.T.; Muoz, R.C. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Sci. Total Environ. 2020, 733, 137782. [Google Scholar] [CrossRef]
- Osland, M.J.; Stevens, P.W.; Lamont, M.M.; Brusca, R.C.; Seminoff, J.A. Tropicalization of temperate ecosystems in North America: The northward range expansion of tropical organisms in response to warming winter temperatures. Glob. Chang. Biol. 2021, 27, 3009–3034. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group i to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, NY, USA, 2013. [Google Scholar]
- Jaureguiberry, P.; Titeux, N.; Wiemers, M.; Bowler, D.E.; Coscieme, L.; Golden, A.S.; Guerra, C.A.; Jacob, U.; Takahashi, Y.; Settele, J.; et al. The direct drivers of recent global anthropogenic biodiversity loss. Sci. Adv. 2022, 8, eabm9982. [Google Scholar] [CrossRef]
- Malte, M.; Zebedee, R.J.N.; Jared, L.; Matthew, J.G.; Elisabeth, V.; Mandy, F.; Urs, B.; Claudia, G.; Alexander, N.; Nico, B.; et al. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 2020, 13, 3571–3605. [Google Scholar]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Stockwell, D.; Peters, D.P. The GARP modelling system: Problems and solutions to automated spatial prediction. Int. J. Geogr. Inf. Sci. 1999, 13, 143–158. [Google Scholar] [CrossRef]
- Busby, J.R. BIOCLIM: A bioclimate analysis and prediction system. Plant Prot. Q. 1991, 6, 8–9. [Google Scholar]
- Ngarega, B.K.; Nzei, J.M.; Saina, J.K.; Halmy, M.W.A.; Chen, J.; Li, Z. Mapping the habitat suitability of Ottelia species in Africa. Plant Divers. 2022, 44, 468–480. [Google Scholar] [CrossRef]
- Fournier, A.; Penone, C.; Pennino, M.G.; Courchamp, F. Predicting future invaders and future invasions. Proc. Natl. Acad. Sci. USA 2019, 116, 7905–7910. [Google Scholar] [CrossRef]
- Rewicz, A.; Myśliwy, M.; Rewicz, T.; Adamowski, W.; Kolanowska, M. Contradictory effect of climate change on American and European populations of Impatiens capensis Meerb.—Is this herb a global threat? Sci. Total Environ. 2022, 850, 157959. [Google Scholar] [CrossRef]
- Warren, D.L.; Glor, R.E.; Turelli, M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography 2010, 33, 1230–1237. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Qiu, L.; Jacquemyn, H.; Burgess, K.S.; Zhang, L.; Zhou, Y.; Yang, B.; Tan, S. Contrasting range changes of terrestrial orchids under future climate change in China. Sci. Total Environ. 2023, 895, 165128. [Google Scholar] [CrossRef]
- Yang, W.; Sun, S.; Wang, N.; Fan, P.; You, C.; Wang, R.; Zheng, P.; Wang, H. Dynamics of the distribution of invasive alien plants (Asteraceae) in China under climate change. Sci. Total Environ. 2023, 903, 166260. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Newell, G.; White, M. On the selection of thresholds for predicting species occurrence with presence-only data. Ecol. Evol. 2016, 6, 337–348. [Google Scholar] [CrossRef] [PubMed]
- Hughes, A.C. Mapping priorities for conservation in Southeast Asia. Biol. Conserv. 2017, 209, 395–405. [Google Scholar] [CrossRef]
- Jiao, S.; Zeng, Q.; Sun, G.; Lei, G. Improving Conservation of Cranes by Modeling Potential Wintering Distributions in China. J. Resour. Ecol. 2016, 7, 44–50. [Google Scholar]
- Warren, D.L.; Glor, R.E.; Turelli, M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution 2008, 62, 2868–2883. [Google Scholar] [CrossRef]
- Schoener, T.W. The Anolis lizards of Bimini: Resource partitioning in a complex fauna. Ecology 1968, 49, 704–726. [Google Scholar] [CrossRef]
- Li, X.; Chen, J.; Guo, W. A review of the influence factors of plant phenology under different climate types. J. Earth Environ. 2018, 9, 16–27. [Google Scholar]
- Zhang, Q.; Barnes, M.; Benson, M.; Burakowski, E.; Oishi, A.C.; Ouimette, A.; Sanders-Demott, R.; Stoy, P.; Wenzel, M.; Xiong, L.; et al. Reforestation and surface cooling in temperate zones: Mechanisms and implications. Glob. Chang. Biol. 2020, 26, 3384–3401. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, Q. Distribution and characteristic of Chimonanthus germplasm in China. Guihaia 2007, 27, 730–735. [Google Scholar]
- Li, S.; Yang, N.; Chen, L. Paraffin section observation of flower bud differentiation of Chimonanthus praecox in Kunming and comparison of the differentiation processes in different regions, China. Hortic. Plant J. 2022, 8, 221–229. [Google Scholar] [CrossRef]
- Camille, P.; Hanley, M.E. Plants and climate change: Complexities and surprises. Ann. Bot.-Lond. 2015, 116, 849–864. [Google Scholar]
- Loarie, S.R.; Duffy, P.B.; Hamilton, H.; Asner, G.P.; Field, C.B.; Ackerly, D.D. The velocity of climate change. Nature 2009, 462, 1052–1055. [Google Scholar] [CrossRef] [PubMed]
- Zellweger, F.; De Frenne, P.; Lenoir, J.; Vangansbeke, P.; Verheyen, K.; Bernhardt-Roemermann, M.; Baeten, L.; Hedl, R.; Berki, I.; Brunet, J.; et al. Forest microclimate dynamics drive plant responses to warming. Science 2020, 368, 772–775. [Google Scholar] [CrossRef]
- De Frenne, P.; Lenoir, J.; Luoto, M.; Scheffers, B.R.; Zellweger, F.; Aalto, J.; Ashcroft, M.B.; Christiansen, D.M.; Decocq, G.; De Pauw, K.; et al. Forest microclimates and climate change: Importance, drivers and future research agenda. Glob. Chang. Biol. 2021, 27, 2279–2297. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, B.; Zhang, M.; Jie, M.; Guo, S.; Wang, Y. Relict plants are better able to adapt to climate change: Evidence from desert shrub communities. Plants 2023, 12, 4065. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Sheng, Q.; Zhao, R.; Zhu, Z. Differences in the suitable distribution area between northern and southern China landscape plants. Plants 2023, 12, 2710. [Google Scholar] [CrossRef]
- MacDonald, J.S.; Lutscher, F.; Bourgault, Y. Climate change fluctuations can increase population abundance and range size. Ecol. Lett. 2024, 27, e14453. [Google Scholar] [CrossRef]
- Krosby, M.; Wilsey, C.B.; Mcguire, J.L.; Duggan, J.M.; Nogeire, T.M.; Heinrichs, J.A.; Tewksbury, J.J.; Lawler, J.J. Climate-induced range overlap among closely related species. Nat. Clim. Chang. 2015, 5, 883–886. [Google Scholar] [CrossRef]
- Schoener, T.W. Resource partitioning in ecological communities. Science 1974, 185, 27–39. [Google Scholar] [CrossRef]
- Hardin, G. The Competitive Exclusion Principle. Science 1960, 131, 1292–1297. [Google Scholar] [CrossRef]
Species | Distribution Records | AUC | MTSS |
---|---|---|---|
C. grammatus | 6 | 0.9966 | 0.4222 |
C. nitens | 237 | 0.9897 | 0.1368 |
C. praecox | 730 | 0.9706 | 0.2365 |
C. salicifolius | 110 | 0.9953 | 0.1885 |
C. zhejiangensis | 25 | 0.9983 | 0.2398 |
Species | Variable | Percent Contribution/% | Suitablity More Than 50% |
---|---|---|---|
C. grammatus | BIO03 | 31.9 | <29.98 |
BIO10 | 28.8 | >27.33 °C | |
BIO12 | 9.5 | >1576.74 mm | |
BIO18 | 8.9 | >515.28 mm | |
BIO02 | 8.7 | <8.64 °C | |
C. nitens | BIO18 | 48.0 | 493.43~690.08 mm |
BIO04 | 15.6 | 6.87~8.45 °C | |
HA | 10.1 | 25.90~58.95 | |
BIO16 | 7.3 | 602.53~846.80 mm | |
BIO14 | 5.6 | >10.21 mm | |
C. praecox | BIO18 | 42.9 | 406.03~640.92 mm |
HA | 20.3 | 39.37~209.50 | |
BIO04 | 18.7 | 7.04 ~9.23 °C | |
BIO15 | 7.5 | 52.70~80.49 | |
BIO06 | 6.3 | −4.59~2.60 °C | |
C. salicifolius | BIO18 | 35.3 | 509.82~635.45 mm |
BIO04 | 16.9 | 7.77~8.78 °C | |
BIO17 | 13.5 | 152.77~191.55 mm | |
BIO13 | 11.9 | 251.86~338.84 mm | |
BIO06 | 9.1 | −0.91~2.25 °C | |
C. zhejiangensis | BIO18 | 29.9 | 466.12~772.01 mm |
BIO17 | 24.7 | 142.19~188.03 mm | |
BIO04 | 17.5 | 6.76~8.61 °C | |
BIO15 | 11.4 | 46.14~61.80 | |
HA | 8.7 | 33.86~185.64 |
Species | Period | Climate Scenarios | Suitable Area | Optimal Area | Range Expansion | No Change | Range Contraction |
---|---|---|---|---|---|---|---|
C. praecox | current | - | 246.45 | 3.41 | - | - | - |
2041–2060 | SSP126 | 230.21 | 13.89 | 16.02 | 228.08 | 21.78 | |
SSP245 | 251.61 | 7.9 | 21.61 | 237.91 | 11.95 | ||
SSP585 | 231.81 | 31.44 | 26.3 | 236.94 | 12.92 | ||
2081–2100 | SSP126 | 245.14 | 6.57 | 15.36 | 236.34 | 13.52 | |
SSP245 | 242.78 | 6.29 | 23.65 | 225.42 | 24.44 | ||
SSP585 | 242.03 | 12.98 | 46.59 | 208.41 | 41.45 | ||
C. grammatus | current | - | 36.83 | 41.85 | - | - | - |
2041–2060 | SSP126 | 32.31 | 84.01 | 37.9 | 78.46 | 0.16 | |
SSP245 | 32.55 | 80.06 | 34.19 | 78.42 | 0.2 | ||
SSP585 | 24.65 | 105.26 | 51.25 | 78.62 | 0 | ||
2081–2100 | SSP126 | 37.09 | 87.46 | 45.94 | 78.61 | 0.01 | |
SSP245 | 32.74 | 103.08 | 57.25 | 78.62 | 0 | ||
SSP585 | 48.97 | 164.08 | 134.49 | 78.62 | 0 | ||
C. zhejiangensis | current | - | 52.71 | 17.33 | - | - | - |
2041–2060 | SSP126 | 51.19 | 10.71 | 3.52 | 58.38 | 11.66 | |
SSP245 | 40.07 | 1.91 | 2.25 | 54.72 | 15.32 | ||
SSP585 | 51.72 | 20.68 | 14.51 | 57.9 | 12.14 | ||
2081–2100 | SSP126 | 55.43 | 28.22 | 20.22 | 63.43 | 6.61 | |
SSP245 | 42.96 | 34.72 | 14.01 | 63.67 | 6.37 | ||
SSP585 | 50.2 | 31.44 | 19.99 | 61.64 | 8.4 | ||
C. nitens | current | - | 156.22 | 14.29 | - | - | - |
2041–2060 | SSP126 | 168.83 | 17.87 | 19.56 | 167.14 | 3.37 | |
SSP245 | 127.91 | 32.87 | 8.9 | 151.89 | 18.62 | ||
SSP585 | 178.71 | 8.03 | 23.51 | 163.23 | 7.28 | ||
2081–2100 | SSP126 | 171.38 | 17.8 | 22.59 | 166.59 | 3.92 | |
SSP245 | 170.82 | 11.14 | 23.12 | 158.84 | 11.68 | ||
SSP585 | 150.29 | 6.22 | 17.72 | 138.79 | 31.72 | ||
C. salicifolius | current | - | 66.4 | 8.22 | - | - | - |
2041–2060 | SSP126 | 62.97 | 15.24 | 13.08 | 65.13 | 9.48 | |
SSP245 | 70.07 | 13.88 | 14.6 | 69.35 | 5.26 | ||
SSP585 | 78.38 | 9.17 | 18.65 | 68.89 | 5.72 | ||
2081–2100 | SSP126 | 60.07 | 9.3 | 8.22 | 61.15 | 13.46 | |
SSP245 | 55.66 | 20.5 | 11.24 | 64.92 | 9.69 | ||
SSP585 | 62.36 | 32.51 | 24.53 | 70.34 | 4.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Q.; Du, Z.; Xue, Y.; Li, H.; Zhang, Y.; Zhang, S.; Huang, X.; Zhou, B.; Qian, H.; Xiao, Y.; et al. Habitat Suitability Modeling of Endemic Genus Chimonanthus in China under Climate Change. Forests 2024, 15, 1625. https://doi.org/10.3390/f15091625
Su Q, Du Z, Xue Y, Li H, Zhang Y, Zhang S, Huang X, Zhou B, Qian H, Xiao Y, et al. Habitat Suitability Modeling of Endemic Genus Chimonanthus in China under Climate Change. Forests. 2024; 15(9):1625. https://doi.org/10.3390/f15091625
Chicago/Turabian StyleSu, Qitao, Zhixuan Du, Yuxi Xue, Heng Li, Yuxin Zhang, Shujian Zhang, Xinyi Huang, Bing Zhou, Hao Qian, Yi’an Xiao, and et al. 2024. "Habitat Suitability Modeling of Endemic Genus Chimonanthus in China under Climate Change" Forests 15, no. 9: 1625. https://doi.org/10.3390/f15091625
APA StyleSu, Q., Du, Z., Xue, Y., Li, H., Zhang, Y., Zhang, S., Huang, X., Zhou, B., Qian, H., Xiao, Y., & Zou, Z. (2024). Habitat Suitability Modeling of Endemic Genus Chimonanthus in China under Climate Change. Forests, 15(9), 1625. https://doi.org/10.3390/f15091625