Spring’s Signal: Can Bud Burst Timing Enhance Resistance to Ash Dieback in Europe?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Climate of Seed Orgin and Study Area
2.3. Confirmation of H. fraxineus on Ash Trees
2.4. Phenotyping and Defoliation Assessment
- Dormant bud.
- Swelling of bud, slight greening of bud scales.
- Buds begin to burst, first green visible.
- Bud burst, petioles of leaves visible, no lengthening of twig.
- Bud burst, petioles of leaves visible, twig has started lengthening, leaves are fully expanded.
2.5. Bioclimatic Analysis
2.6. Statistical Analyses
3. Results
3.1. Bioclimatic Analyses
3.2. Phenology and Defoliation Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dobrowolska, D.; Hein, S.; Oosterbaan, A.; Wagner, S.; Clark, J.; Skovsgaard, J.P. A review of European ash (Fraxinus excelsior L.): Implications for silviculture. Forestry 2011, 84, 133–148. [Google Scholar] [CrossRef]
- Hemery, G.E. Forest management and silvicultural responses to projected climate change impacts on European broadleaved trees and forests. Int. For. Rev. 2008, 10, 591–607. [Google Scholar] [CrossRef]
- Rawlik, K.; Jagodzinski, A.M. Ekologiczne znaczenie roslin runa lesnego. Acad.-Mag. Pol. Akad. Nauk. 2019, 3–4, 50–53. [Google Scholar]
- Dyderski, M.K.; Paź, S.; Frelich, L.E.; Jagodziński, A.M. How much does climate change threaten European forest tree species distributions? Glob. Chang. Biol. 2018, 24, 1150–1163. [Google Scholar] [CrossRef]
- Bakys, R.; Vasaitis, R.; Barklund, P.; Ihrmark, K.; Stenlid, J. Investigations concerning the role of Chalara fraxinea in declining Fraxinus excelsior. Plant Pathol. 2009, 58, 284–292. [Google Scholar] [CrossRef]
- Gross, A.; Holdenrieder, O.; Pautasso, M.; Queloz, V.; Sieber, T.N. Hymenoscyphus pseudoalbidus, the causal agent of European ash dieback. Mol. Plant Pathol. 2014, 15, 5–21. [Google Scholar] [CrossRef]
- Kowalski, T.; Holdenrieder, O. Pathogenicity of Chalara fraxinea. For. Pathol. 2009, 39, 1–7. [Google Scholar] [CrossRef]
- Carroll, D.; Boa, E. Ash dieback: From Asia to Europe. Plant Pathol. 2024, 73, 741–759. [Google Scholar] [CrossRef]
- McKinney, L.V.; Nielsen, L.R.; Hansen, J.K.; Kjær, E.D. Presence of natural genetic resistance in Fraxinus excelsior (Oleraceae) to Chalara fraxinea (Ascomycota): An emerging infectious disease. Heredity 2011, 106, 788–797. [Google Scholar] [CrossRef]
- Kowalski, T.; Bartnik, C. Morphologial variation in colonies of Chalara fraxinea isolated from ash (Fraxinus excelsior L.) stems with symptoms of dieback and effects of temperature on colony growth and structure. Acta Agrobot. 2010, 63, 99–106. [Google Scholar] [CrossRef]
- Pautasso, M.; Aas, G.; Queloz, V.; Holdenrieder, O. European ash (Fraxinus excelsior) dieback—A conservation biology challenge. Biol. Conserv. 2013, 158, 37–49. [Google Scholar] [CrossRef]
- Coker, T.L.; Rozsypalek, J.; Edwards, A.; Harwood, T.P.; Butfoy, L.; Buggs, R.J. Estimating mortality rates of European ash (Fraxinus excelsior) under the ash dieback (Hymenoscyphus fraxineus) epidemic. Plants People Planet 2019, 1, 48–58. [Google Scholar] [CrossRef]
- Nawrot-Chorabik, K.; Sułkowska, M.; Gumulak, N. Secondary Metabolites Produced by Trees and Fungi: Achievements So Far and Challenges Remaining. Forests 2022, 13, 1338. [Google Scholar] [CrossRef]
- Musolin, D.L.; Selikhovkin, A.V.; Shabunin, D.A.; Zviagintsev, V.B.; Baranchikov, Y.N. Between ash dieback and emerald ash borer: Two Asian invaders in Russia and the future of ash in Europe. Baltic For. 2017, 23, 316–333. [Google Scholar]
- Turczański, K.; Rutkowski, P.; Dyderski, M.K.; Wronska-Pilarek, D.; Nowiński, M. Soil pH and organic matter content affects European ash (Fraxinus excelsior L.) crown defoliation and its impact on understory vegetation. Forests 2020, 11, 22. [Google Scholar] [CrossRef]
- Davydenko, K.; Meshkova, V. The Current Situation Concerning Severity and Causes of Ash Dieback in Ukraine Caused by Hymenoscyphus fraxineus. 2017. Available online: https://www.research.ed.ac.uk/files/173440007/Marzano_et_al_2017_Who_has_a_stake_in_ash_dieback.pdf#page=236 (accessed on 11 January 2024).
- Grosdidier, M.; Scordia, T.; Ioos, R.; Marçais, B. Landscape epidemiology of ash dieback. J. Ecol. 2020, 108, 1789–1799. [Google Scholar] [CrossRef]
- Nielsen, L.R.; McKinney, L.V.; Hietala, A.M.; Kjær, E.D. The susceptibility of Asian, European, and North American Fraxinus species to ash dieback. Eur. J. For. Res. 2017, 136, 59–73. [Google Scholar] [CrossRef]
- Wylder, B.; Biddle, M.; King, K.; Baden, R.; Webber, J. Evidence from mortality dating of Fraxinus excelsior indicates ash dieback (Hymenoscyphus fraxineus) was active in England in 2004–2005. Forestry 2018, 91, 434–443. [Google Scholar] [CrossRef]
- Przybylski, P.; Sikora, K.; Mohytych, V.; Wlostowski, M. Wpływ zabiegu agrotechnicznego na stan zdrowotny klonalnej plantacji nasiennej jesionu wyniosłego (Fraxinus excelsior L.) w kontekście jej porażenia przez Hymenoscyphus fraxineus (T. Kowalski). Sylwan 2020, 164, 404–413. [Google Scholar]
- Anderson, J.T.; Inouye, D.W.; McKinney, A.M.; Colautti, R.I.; Mitchell-Olds, T. Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change. Proc. Biol. Sci. 2012, 279, 3843–3852. [Google Scholar] [CrossRef]
- Smintina, I. Provenance trials of Fraxinus excelsior. Results 10 years after planting. Rev. Padur. 1993, 108, 10–17. [Google Scholar]
- Kleinschmit, J.; Svolba, J.; Enescu, V.; Franke, A.; Rau, H.; Ruetz, W. First results of provenance trials of Fraxinus excelsior established in 1982. Forstarchiv 1996, 67, 114–122. [Google Scholar]
- Bakys, R.; Vasaitis, R.; Skovsgaard, J.P. Patterns and severity of crown dieback in young even-aged stands of european ash (Fraxinus excelsior L.) in relation to stand density, bud flushing phenotype, and season. Plant Prot. Sci. 2013, 49, 120–126. [Google Scholar] [CrossRef]
- Chandelier, A.; Andre, F.; Laurent, F. Detection of Chalara fraxinea in common ash (Fraxinus excelsior) using real time PCR. For. Pathol. 2009, 40, 87–95. [Google Scholar] [CrossRef]
- Lorenz, M. International co-operative programme on assessment and monitoring of air pollution effects on forests-ICP forests. Water Air Soil Pollut. 1995, 85, 1221–1226. [Google Scholar] [CrossRef]
- Starzycka, J. Geographic information system in the state forests. In Geoinformation Challenges; Gajos, M., Styblinska, M., Eds.; Croatian Information Technology Association: Rijeka, Croatia, 2008; pp. 259–267. [Google Scholar]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data: An Introduction to Cluster Analysis; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2008. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Hill, L.; Jones, G.; Atkinson, N.; Hector, A.; Hemery, G.; Brown, N. The £15 billion cost of ash dieback in Britain. Curr. Biol. 2019, 29, R315–R316. [Google Scholar] [CrossRef]
- Queloz, V.; Grünig, C.R.; Berndt, R.; Kowalski, T.; Sieber, T.N.; Holdenrieder, O. Cryptic speciation in Hymenoscyphus albidus. For. Pathol. 2010, 41, 133–142. [Google Scholar] [CrossRef]
- Drenkhan, R.; Riit, T.; Adamson, K.; Hanso, M. The earliest samples of Hymenoscyphus albidus vs. H. fraxineus in Estonian mycological herbaria. Mycol. Prog. 2016, 15, 835–844. [Google Scholar] [CrossRef]
- Zhao, Y.J.; Hosoya, T.; Baral, H.O.; Hosaka, K.; Kakishima, M. Hymenoscyphus pseudoalbidus, the Correct Name for Lambertella albida Reported from Japan; Mycotaxon: Ithaca, NY, USA, 2012; Volume 122, pp. 25–41. [Google Scholar] [CrossRef]
- Burokiene, D.; Prospero, S.; Jung, E.; Marciulyniene, D.; Moosbrugger, K.; Norkute, G.; Rigling, D.; Lygis, V.; Schoebel, C.N. Genetic population structure of the invasive ash dieback pathogen Hymenoscyphus fraxineus in its expanding range. Biol. Invasions 2015, 17, 2743–2756. [Google Scholar] [CrossRef]
- Meger, J.; Ulaszewski, B.; Pałucka, M.; Kozioł, C.; Burczyk, J. Genomic prediction of resistance to Hymenoscyphus fraxineus in common ash (Fraxinus excelsior L.) populations. Evol. Appl. 2024, 17, e13694. [Google Scholar] [CrossRef] [PubMed]
- Kirisits, T.; Matlakova, M.; Mottinger-Kroupa, S.; Halmschlager, E.; Lakatos, F. Chalara fraxinea associated with dieback of narrow-leafed ash (Fraxinus angustifolia). Plant Pathol. 2010, 59, 411. [Google Scholar] [CrossRef]
- Stener, L.G. Clonal differences in susceptibility to the dieback of Fraxinus excelsior in southern Sweden. Scand. J. For. Res. 2013, 28, 205–216. [Google Scholar] [CrossRef]
- Baliuckas, V.; Pliura, A. Development of dynamic multiple population breeding and conservation system of Quercus robur L. Proc. Nord. Balt. Situ Symp. 1998, 8, 14. [Google Scholar]
- Pliura, A.; Baliuckas, V. Genetic variation in adaptive traits of progenies of Lithuanian and western European populations of Fraxinus excelsior L. Baltic For. 2007, 13, 28–38. [Google Scholar]
- Timmermann, V.; Borja, I.; Hietala, A.M.; Kirisits, T.; Solheim, H. Ash dieback: Pathogen spread and diurnal patterns of ascospore dispersal; with special emphasis on Norway. EPPO Bull. 2011, 41, 14–20. [Google Scholar] [CrossRef]
- Kirisits, T.; Cech, T.L. Beobachtungen zum sexuellen stadium des eschentriebsterben-erregers Chalara fraxinea in osterreich. Forstsch. Aktuell 2009, 48, 21–25. [Google Scholar]
- Kjær, E.D.; McKinney, L.V.; Nielsen, L.R.; Hansen, L.N.; Hansen, J.K. Adaptive potential of ash (Fraxinus excelsior) populations against the novel emerging pathogen Hymenoscyphus pseudoalbidus. Evol. Appl. 2012, 5, 219–228. [Google Scholar] [CrossRef]
- Herms, D.A.; McCullough, D.G. Emerald ash borer invasion of North America: History, biology, ecology, impacts, and management. Annu. Rev. Entomol. 2014, 59, 13–30. [Google Scholar] [CrossRef]
Group of Climatic Zone | Provenance Name | Individual N° of Plus Trees | Numbers of Grafts in Plot 2 of Seed Orchard | Percentage of Ramet Survival in 2020 [%] | Included in Statistical Analysis [Yes (+)/No (−)] | |
---|---|---|---|---|---|---|
1 | south | Browsk | 3362 | 7 | 87.5 | + |
2 | Browsk | 3367 | 13 | 73.3 | + | |
3 | Białowieża | 3385 | 3 | 50.0 | − | |
4 | Hajnówka | 3418 | 13 | 85.71 | + | |
5 | Hajnówka | 5389 | 11 | 57.14 | + | |
6 | Hajnówka | 5390 | 13 | 75.0 | + | |
7 | Hajnówka | 5517 | 11 | 84.62 | + | |
8 | Hajnówka | 5523 | 7 | 43.75 | + | |
9 | Hajnówka | 5524 | 2 | 33.33 | − | |
10 | Hajnówka | 5525 | 13 | 75 | + | |
11 | Białowieża | 5542 | 7 | 58.33 | + | |
12 | Hajnówka | 5721 | 9 | 69.23 | + | |
13 | Hajnówka | 5722 | 11 | 78.57 | + | |
14 | Hajnówka | 5723 | 8 | 72.73 | + | |
15 | Hajnówka | 5726 | 10 | 64.29 | + | |
16 | Browsk | 6309 | 12 | 78.57 | + | |
17 | Browsk | 6313 | 7 | 50 | + | |
18 | Hajnówka | 6318 | 2 | 100 | − | |
19 | north | Borki | 7246 | 3 | 75 | − |
20 | Gołdap | 7268 | 3 | 50 | + | |
21 | Gołdap | 7280 | 8 | 70 | + | |
22 | Borki | 7301 | 10 | 76.92 | + | |
23 | Czerwony Dwór | 7312 | 9 | 72.73 | + | |
24 | Czerwony Dwór | 7313 | 8 | 60 | + | |
25 | Czerwony Dwór | 7875 | 4 | 75 | − | |
26 | Gołdap | 7882 | 3 | 16.67 | + | |
27 | Gołdap | 7887 | 11 | 76.92 | + | |
28 | Gołdap | 7888 | 4 | 66.67 | + | |
29 | Gołdap | 7916 | 6 | 100 | + | |
30 | Gołdap | 7918 | 3 | 37.5 | + | |
31 | Gołdap | 7919 | 7 | 77.78 | + |
Bioclimatic Variables | Abbreviation | Pearson’s Correlation | |
---|---|---|---|
PC1 | PC2 | ||
Temperature Seasonality (STD × 100) | bio4 | −0.42 | −0.6 |
Mean Temperature of Wettest Quarter | bio8 | 0.73 | −0.6 |
Mean Temperature of Driest Quarter | bio9 | 0.53 | −0.33 |
Mean Temperature of Warmest Quarter | bio10 | 0.73 | −0.62 |
Mean Temperature of Coldest Quarter | bio11 | 0.87 | 0.09 |
Precipitation Seasonality (CV) | bio15 | 0.17 | 0.82 |
Precipitation of Driest Quarter | bio17 | −0.84 | −0.28 |
Precipitation of Coldest Quarter | bio19 | −0.77 | −0.48 |
MeanFenKlon | |||
---|---|---|---|
Predictors | Estimates | CI | p |
Year (2018) (Intercept) | 3.27 | 3.01–3.54 | <0.001 |
Year (2019) | −0.16 | −0.40–0.08 | 0.196 |
Year (2020) | −0.37 | −0.61–−0.13 | 0.003 |
Random Effects | |||
σ2 | 0.16 | ||
τ00 Klon | 0.22 | ||
ICC | 0.57 | ||
N Klon | 22 | ||
Observations | 66 | ||
Marginal R2/Conditional R2 | 0.058/0.596 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Przybylski, P.; Mohytych, V.; Sikora, K. Spring’s Signal: Can Bud Burst Timing Enhance Resistance to Ash Dieback in Europe? Forests 2025, 16, 141. https://doi.org/10.3390/f16010141
Przybylski P, Mohytych V, Sikora K. Spring’s Signal: Can Bud Burst Timing Enhance Resistance to Ash Dieback in Europe? Forests. 2025; 16(1):141. https://doi.org/10.3390/f16010141
Chicago/Turabian StylePrzybylski, Paweł, Vasyl Mohytych, and Katarzyna Sikora. 2025. "Spring’s Signal: Can Bud Burst Timing Enhance Resistance to Ash Dieback in Europe?" Forests 16, no. 1: 141. https://doi.org/10.3390/f16010141
APA StylePrzybylski, P., Mohytych, V., & Sikora, K. (2025). Spring’s Signal: Can Bud Burst Timing Enhance Resistance to Ash Dieback in Europe? Forests, 16(1), 141. https://doi.org/10.3390/f16010141