Altitude and Stem Height Position as Determinants of the Hydrological Properties of Norway Spruce Bark
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Bark Samples Collection
2.2. Laboratory Tests
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- (1)
- The bulk density of spruce bark decreases with both the height along the tree stem and increasing altitude.
- (2)
- The time required for the bark to absorb water is inversely related to the vertical stem gradient. Specifically, bark collected from the highest altitude (~1150 m asl) took over 68% longer to saturate compared to bark from lower altitudes.
- (3)
- There is a negative correlation between bulk density and bark water storage capacity: as bulk density increases, the bark water storage capacity decreases.
- (4)
- Bark water storage capacity consistently increases with both stem height and altitude, with bark from the top of the tree and from high altitudes showing the greatest water storage capacity.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nooraei Beidokhti, A.; Moore, T.L. The Effects of Precipitation, Tree Phenology, Leaf Area Index, and Bark Characteristics on Throughfall Rates by Urban Trees: A Meta-Data Analysis. Urban For. Urban Green. 2021, 60, 127052. [Google Scholar] [CrossRef]
- Magliano, P.N.; Whitworth-Hulse, J.I.; Cid, F.D.; Leporati, J.L.; Van Stan, J.T.; Jobbágy, E.G. Global Rainfall Partitioning by Dryland Vegetation: Developing General Empirical Models. J. Hydrol. 2022, 607, 127540. [Google Scholar] [CrossRef]
- Levia, D.F.; Herwitz, S.R. Interspecific Variation of Bark Water Storage Capacity of Three Deciduous Tree Species in Relation to Stemflow Yield and Solute Flux to Forest Soils. CATENA 2005, 64, 117–137. [Google Scholar] [CrossRef]
- Magliano, P.N.; Whitworth-Hulse, J.I.; Baldi, G. Interception, Throughfall and Stemflow Partition in Drylands: Global Synthesis and Meta-Analysis. J. Hydrol. 2019, 568, 638–645. [Google Scholar] [CrossRef]
- Tonello, K.C.; Campos, S.D.; de Menezes, A.J.; Bramorski, J.; Mathias, S.L.; Lima, M.T. How Is Bark Absorbability and Wettability Related to Stemflow Yield? Observations From Isolated Trees in the Brazilian Cerrado. Front. For. Glob. Change 2021, 4, 650665. [Google Scholar] [CrossRef]
- Ponette-González, A.G. Accumulator, Transporter, Substrate, and Reactor: Multidimensional Perspectives and Approaches to the Study of Bark. Front. For. Glob. Change 2021, 4, 716557. [Google Scholar] [CrossRef]
- Hsueh, M.-L.; Shaio, M.-T. Rainfall Redistribution and Associated Chemical Alterations in Three Forest Types in Montane Cloud Forest Ecosystems in Mid-Elevation Areas of Taiwan. Taiwan J. For. Sci. 2022, 37, 207–226. [Google Scholar]
- Oka, A.; Takahashi, J.; Endoh, Y.; Seino, T. Bark Effects on Stemflow Chemistry in a Japanese Temperate Forest II. The Role of Bark Anatomical Features. Front. For. Glob. Change 2021, 4, 657850. [Google Scholar] [CrossRef]
- Lima, M.T.; Guandique, M.E.G.; Tonello, K.C. Bark Morphology and Nutrient Flux in Urban Trees: Investigating Water Absorption and Ion Concentration Dynamics. Hydrology 2024, 11, 56. [Google Scholar] [CrossRef]
- Kozłowski, R.; Jóźwiak, M.; Borowska, E. Porównanie Wybranych Metod Do Obliczania Wysokości Opadu Spływającego Po Pniach Drzew (Comparison of Selected Methods for Calculation of Stemflow Volume). Monit. Sr. Przyr. 2010, 11, 25–33. [Google Scholar]
- Norozi, A.; Attarod, P.; Pypker, T.G.; Sadeghi, S.M.M.; Etemad, V. Estimation of Bark Water Storage Capacity of Broad- and Needle-Leaved Trees Planted in a Semi-Arid Climate Zone. J. Arid Environ. 2024, 220, 105100. [Google Scholar] [CrossRef]
- Valová, M.; Bieleszová, S. Interspecific Variations of Bark´s Water Storage Capacity of Chosen Types of Trees and the Dependance on Occurance of Epiphytic Mosses. GeoSci. Eng. 2008, 54, 45–51. [Google Scholar]
- Ilek, A.; Siegert, C.M.; Wade, A. Hygroscopic Contributions to Bark Water Storage and Controls Exerted by Internal Bark Structure over Water Vapor Absorption. Trees-Struct. Funct. 2021, 35, 831–843. [Google Scholar] [CrossRef]
- Ilek, A.M.; Kucza, J.; Morkisz, K. Hydrological Properties of Bark of Selected Forest Tree Species. Part 2: Interspecific Variability of Bark Water Storage Capacity. Folia For. Pol. Ser. A 2017, 59, 110–122. [Google Scholar] [CrossRef]
- Quilhó, T.; Pereira, H. Within and Between-Tree Variation of Bark Content and Wood Density of Eucalyptus Globulus in Commercial Plantations. IAWA J. 2001, 22, 255–265. [Google Scholar] [CrossRef]
- Berrill, J.-P.; O’Hara, K.L.; Kichas, N.E. Bark Thickness in Coast Redwood (Sequoia sempervirens (D.Don) Endl.) Varies According to Tree- and Crown Size, Stand Structure, Latitude and Genotype. Forests 2020, 11, 637. [Google Scholar] [CrossRef]
- Wilms, F.; Duppel, N.; Cremer, T.; Berendt, F. Bark Thickness and Heights of the Bark Transition Area of Scots Pine. Forests 2021, 12, 1386. [Google Scholar] [CrossRef]
- Konôpka, B.; Pajtík, J.; Šebeň, V.; Merganičová, K. Modeling Bark Thickness and Bark Biomass on Stems of Four Broadleaved Tree Species. Plants 2022, 11, 1148. [Google Scholar] [CrossRef] [PubMed]
- Keleş, S.Ö. The Effect of Altitude on the Growth and Development of Trojan Fir (Abies nordmanniana subsp. Equi-Trojani [Asch. & Sint. Ex Boiss] Coode & Cullen) Saplings. CERNE 2020, 26, 381–392. [Google Scholar] [CrossRef]
- Bauer, R.; Billard, A.; Mothe, F.; Longuetaud, F.; Houballah, M.; Bouvet, A.; Cuny, H.; Colin, A.; Colin, F. Modelling Bark Volume for Six Commercially Important Tree Species in France: Assessment of Models and Application at Regional Scale. Ann. For. Sci. 2021, 78, 104. [Google Scholar] [CrossRef]
- Levia, D.F.; Wubbena, N.P. Vertical Variation of Bark Water Storage Capacity of Pinus strobus L. (Eastern White Pine) in Southern Illinois. Northeast. Nat. 2006, 13, 131–137. [Google Scholar] [CrossRef]
- Ilek, A.; Van Stan, J.T.; Morkisz, K.; Kucza, J. Vertical Variability in Bark Hydrology for Two Coniferous Tree Species. Front. For. Glob. Change 2021, 4, 687907. [Google Scholar] [CrossRef]
- Ilek, A.; Szostek, M.; Kucza, J.; Stanek-Tarkowska, J.; Witek, W. The Water Absorbability of Beech (Fagus sylvatica L.) and Fir (Abies alba Mill.) Organic Matter in the Forest Floor. Ann. For. Res. 2019, 52, 21–32. [Google Scholar] [CrossRef]
- Caudullo, G.; Tinner, W.; de Rigo, D. Picea Abies in Europe: Distribution, Habitat, Usage and Threats; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Durrant, T.H., Mauri, A., Eds.; European Atlas of Forest Tree Species: Luxembourg, 2016. [Google Scholar]
- Mäkinen, H.; Nöjd, P.; Mielikäinen, K. Climatic Signal in Annual Growth Variation of Norway Spruce (Picea abies) along a Transect from Central Finland to the Arctic Timberline. Can. J. For. Res. 2000, 30, 769–777. [Google Scholar] [CrossRef]
- Mäkinen, H.; Nöjd, P.; Kahle, H.-P.; Neumann, U.; Tveite, B.; Mielikäinen, K.; Röhle, H.; Spiecker, H. Radial Growth Variation of Norway Spruce (Picea abies (L.) Karst.) across Latitudinal and Altitudinal Gradients in Central and Northern Europe. For. Ecol. Manag. 2002, 171, 243–259. [Google Scholar] [CrossRef]
- Rdzany, Z. Geographical Location and Regional Diversity of Poland; Łódź University Press: Łódź, Poland, 2014; pp. 9–41. ISBN 978-83-7969-134-0. [Google Scholar]
- Błaś, M.; Ojrzyńska, H. The Climate of Poland. In Landscapes and Landforms of Poland; Migoń, P., Jancewicz, K., Eds.; World Geomorphological Landscapes; Springer International Publishing: Cham, Switzerland, 2024; pp. 33–51. ISBN 978-3-031-45761-6. [Google Scholar]
- Bhat, K.M. Anatomy, Basic Density and Shrinkage of Birch Bark. IAWA J. 1982, 3, 207–213. [Google Scholar] [CrossRef]
- Matsunaga, H.; Matsuo, N.; Nakai, T.; Abe, H. Liquid-Phase Water Permeation Pathways on Outer-Bark Surfaces of Teak (Tectona grandis): A Tropical Deciduous Hardwood. J. Wood Sci. 2024, 70, 6. [Google Scholar] [CrossRef]
- Nie, W.; Liu, Y.; Tan, C.; Wang, Y.; Liu, J.; Zhao, X.; Jiang, Z.; Jia, Z. Characteristics and Factors Driving the Variations in Bark Thickness of Major Woody Plants in China. Ecol. Indic. 2022, 144, 109447. [Google Scholar] [CrossRef]
- MacFarlane, D.W. Highly Variable Bark-Wood Density Relationships across Tree Species Reflect Tradeoffs in Evolved Tolerances to Environmental Stressors. Trees 2024, 38, 1223–1239. [Google Scholar] [CrossRef]
- Meyer, R.W.; Kellogg, R.M.; Warren, W.G. Relative Density, Equilibrium Moisture Content, and Dimensional Stability of Western Hemlock Bark. Wood Fiber Sci. 1981, 13, 86–96. [Google Scholar]
- Kain, G.; Morandini, M.; Barbu, M.-C.; Petutschnigg, A.; Tippner, J. Specific Gravity of Inner and Outer Larch Bark. Forests 2020, 11, 1132. [Google Scholar] [CrossRef]
- Graves, S.J.; Rifai, S.W.; Putz, F.E. Outer Bark Thickness Decreases More with Height on Stems of Fire-resistant than Fire-sensitive Floridian Oaks ( Quercus spp.; Fagaceae). Am. J. Bot. 2014, 101, 2183–2188. [Google Scholar] [CrossRef] [PubMed]
- Ugulino, B.; Cáceres, C.B.; Hernández, R.E.; Blais, C. Influence of Temperature and Moisture Content on Bark/Wood Shear Strength of Black Spruce and Balsam Fir Logs. Wood Sci. Technol. 2020, 54, 963–979. [Google Scholar] [CrossRef]
- Eberhardt, T.L. Thickness and Roughness Measurements for Air-Dried Longleaf Pine Bark. In Proceedings of the General Technical Report SRS-203; Holley, A.G., Connor, K.F., Haywood, J.D., Eds.; USDA Forest Service, Southern Research Station: Asheville, NC, USA, 2015; pp. 374–379. [Google Scholar]
- Eberhardt, T.L. Longleaf Pine Inner Bark and Outer Bark Thicknesses: Measurement and Relevance. South. J. Appl. For. 2013, 37, 177–180. [Google Scholar] [CrossRef]
Altitude (m asl) | Location | Average Annual Temperature 1 [°C] | Annual Precipitation 1 [mm] | Number of Trees Felled | Tree Height Range [m] | Diameter at Breast Height Range [cm] |
---|---|---|---|---|---|---|
1150 | 49.6045° N | 4.0 | 1200 | 3 | 21–24 | 32–36 |
18.9967° E | ||||||
700 | 49.5977° N | 5.5 | 1075 | 3 | 25–28 | 32–35 |
18.9422° E | ||||||
550 | 49.5616° N | 6.0 | 1000 | 3 | 28–32 | 31–33 |
18.8568° E | ||||||
400 | 49.7638° N | 8.0 | 850 | 3 | 30–32 | 33–35 |
18.8730° E |
Stem Height Position | Bulk Density [g cm−3] | Water Absorption Time [Days] | Bark Water Storage Capacity [%] | |||
---|---|---|---|---|---|---|
Mean | SE | Mean | SE | Mean | SE | |
0.0 | 0.414 a | 0.008 | 6.2 a | 0.3 | 153.3 a | 5.0 |
DBH | 0.317 b | 0.007 | 6.4 a | 0.3 | 237.3 b | 7.6 |
0.2 | 0.291 bd | 0.007 | 6.6 a | 0.4 | 266.2 bc | 7.5 |
0.3 | 0.282 cde | 0.006 | 5.7 ab | 0.3 | 272.2 bc | 6.7 |
0.4 | 0.285 bef | 0.006 | 5.0 ad | 0.2 | 270.9 bc | 6.9 |
0.5 | 0.279 cdf | 0.006 | 6.0 ae | 0.4 | 276.1 bc | 6.0 |
0.6 | 0.277 cdf | 0.005 | 5.7 af | 0.4 | 283.3 c | 5.1 |
0.7 | 0.277 cdf | 0.007 | 4.4 b-g | 0.2 | 283.9 c | 7.6 |
0.8 | 0.270 cdf | 0.005 | 4.0 cfh | 0.3 | 290.5 c | 6.4 |
0.9 | 0.266 cdf | 0.005 | 4.9 aghi | 0.3 | 292.6 c | 6.6 |
1.0 | 0.273 cdf | 0.007 | 4.2 bcdhi | 0.3 | 291.8 c | 10.6 |
Bark Properties | Altitude | Stem Height Position | Altitude × Stem Height Position | |||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
Bulk density | 98.1 | 0.000 | 50.9 | 0.000 | 3.4 | 0.000 |
Water absorption time | 159.3 | 0.000 | 18.4 | 0.000 | 5.8 | 0.000 |
Bark water storage capacity | 175.7 | 0.000 | 46.7 | 0.000 | 4.9 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilek, A.; Tonello, K.C. Altitude and Stem Height Position as Determinants of the Hydrological Properties of Norway Spruce Bark. Forests 2025, 16, 156. https://doi.org/10.3390/f16010156
Ilek A, Tonello KC. Altitude and Stem Height Position as Determinants of the Hydrological Properties of Norway Spruce Bark. Forests. 2025; 16(1):156. https://doi.org/10.3390/f16010156
Chicago/Turabian StyleIlek, Anna, and Kelly Cristina Tonello. 2025. "Altitude and Stem Height Position as Determinants of the Hydrological Properties of Norway Spruce Bark" Forests 16, no. 1: 156. https://doi.org/10.3390/f16010156
APA StyleIlek, A., & Tonello, K. C. (2025). Altitude and Stem Height Position as Determinants of the Hydrological Properties of Norway Spruce Bark. Forests, 16(1), 156. https://doi.org/10.3390/f16010156