Enhanced Properties of Cryptomeria japonica (Thunb ex L.f.) D.Don from the Azores Through Heat-Treatment †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Composition
2.2. Physical and Mechanical Properties
2.3. Surface Properties
2.4. Termite Durability
3. Results and Discussion
3.1. Physical and Mechanical Properties
3.2. Termite Durability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yasue, M.; Ogiyama, K.; Suto, S.; Tsukahara, H.; Miyahara, F.; Ohba, K. Geogaphical Differentiation of Natural Cryptomeria Stands Analyzed by Diterpene Hydrocarbon Constituents of Individual Trees. J. Jpn. For. Soc. 1987, 69, 152–156. [Google Scholar]
- Cryptomeria japonica (Japanese Cedar, Japanese Cryptomeria)|North Carolina Extension Gardener Plant Toolbox. Available online: https://plants.ces.ncsu.edu/plants/cryptomeria-japonica/ (accessed on 13 March 2024).
- Pavão, D.C.; Brunner, D.; Resendes, R.; Jevšenak, J.; Borges Silva, L.; Silva, L. Climatic Drivers and Tree Growth in a Key Production Species: The Case of Cryptomeria japonica (Thunb. Ex L.f.) D.Don in the Azores Archipelago. Dendrochronologia 2024, 85, 126204. [Google Scholar] [CrossRef]
- Tsukada, M. Cryptomeria japonica: Glacial Refugia and Late-Glacial and Postglacial Migration. Ecology 1982, 63, 1091–1105. [Google Scholar] [CrossRef]
- Almeida, M.H.; Faria, C.; Belerique, J.; Nobrega, C.; Penacho, L.; Rocheta, M. Resultados Preliminares dos Testes Genéticos Com Cryptomeria japonica na Região Autónoma dos Açores; SPCF: Angeles, Philippines, 2005. [Google Scholar]
- Cheng, S.-S.; Lin, C.-Y.; Chung, M.-J.; Chang, S.-T. Chemical Composition and Antitermitic Activity against Coptotermes formosanus Shiraki of Cryptomeria japonica Leaf Essential Oil. Chem. Biodivers. 2012, 9, 352–358. [Google Scholar] [CrossRef]
- Shibutani, S.; Takata, K.; Doi, S. Quantitative Comparisons of Antitermite Extractives in Heartwood from the Same Clones of Cryptomeria japonica Planted at Two Different Sites. J. Wood Sci. 2007, 53, 285–290. [Google Scholar] [CrossRef]
- Hill, C.A. Wood Modification: Chemical, Thermal and Other Processes; John Wiley & Sons: Hoboken, NJ, USA, 2006; Volume 5, ISBN 0-470-02173-X. [Google Scholar]
- Nuopponen, M.; Vuorinen, T.; Jämsä, S.; Viitaniemi, P. Thermal Modifications in Softwood Studied by FT-IR and UV Resonance Raman Spectroscopies. J. Wood Chem. Technol. 2005, 24, 13–26. [Google Scholar] [CrossRef]
- Tjeerdsma, B.F.; Boonstra, M.; Pizzi, A.; Tekely, P.; Militz, H. Characterisation of Thermally Modified Wood: Molecular Reasons for Wood Performance Improvement. Holz Als Roh Werkst. 1998, 56, 149–153. [Google Scholar] [CrossRef]
- Boonstra, M.J.; Tjeerdsma, B. Chemical Analysis of Heat Treated Softwoods. Holz Als Roh Werkst. 2006, 64, 204–211. [Google Scholar] [CrossRef]
- Tjeerdsma, B.F.; Stevens, M.; Militz, H.; Van Acker, J. Effect of Process Conditions on Moisture Content and Decay Resistance of Hydro-Thermally Treated Wood. Holzforsch. Holzverwert. 2002, 54, 94–99. [Google Scholar]
- Mayes, D.; Oksanen, O. Thermowood Handbook; Finnish Thermowood Association: Helsinki, Finland, 2002; pp. 5–15. [Google Scholar]
- TAPPI. 222 Om-02: Acid-Insoluble Lignin in Wood and Pulp; TAPPI: Atlanta, GA, USA, 2002. [Google Scholar]
- Mercado, Y.; Nunes, L.; Cruz-Lopes, L.; Esteves, B. Heat Treatment of Cryptomeria japonica from Azores. In Proceedings of the 11th European Conference on Wood Modification (ECWM11), Florence, Italy, 15–16 April 2024. [Google Scholar]
- Skaar, C. Wood-Water Relations; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- NP 619; Static Bending Test (in Portuguese). Inspecção Geral dos Produtos Agrícolas e Industriais (IGPAI): Lisbon, Portugal, 1973.
- NP EN 310:2002; Placas de Derivados de Madeira—Determinação do Módulo de Elasticidade em Flexão e da Resistência à Flexão. Instituto Português da Qualidade: Caparica, Portugal, 2002.
- EN 118:2013; Wood and Wood-Based Products—Determination of the Resistance to Subterranean Termites. European Committee for Standardization (CEN): Brussels, Belgium, 2013.
- Fonte, A.P.N.; Trianoski, R.; Iwakiri, S.; dos Anjos, R.A.M. Physical and Chemical Properties of Heartwood and Sapwood of Cryptomeria japonica. Rev. Ciênc. Agrovet. 2017, 16, 277–285. [Google Scholar] [CrossRef]
- Yinodotlgör, N.; Kartal, S.N. Heat Modification of Wood: Chemical Properties and Resistance to Mold and Decay Fungi. For. Prod. J. 2010, 60, 357–361. [Google Scholar] [CrossRef]
- Lima, A.; Arruda, F.; Janeiro, A.; Medeiros, J.; Baptista, J.; Madruga, J.; Lima, E. Biological Activities of Organic Extracts and Specialized Metabolites from Different Parts of Cryptomeria japonica (Cupressaceae)—A Critical Review. Phytochemistry 2023, 206, 113520. [Google Scholar] [CrossRef] [PubMed]
- Esteves, B.; Ferreira, H.; Viana, H.; Ferreira, J.; Domingos, I.; Cruz-Lopes, L.; Jones, D.; Nunes, L. Termite Resistance, Chemical and Mechanical Characterization of Paulownia Tomentosa Wood before and after Heat Treatment. Forests 2021, 12, 1114. [Google Scholar] [CrossRef]
- Jurczyková, T.; Šárovec, O.; Kačík, F.; Hájková, K.; Jurczyk, T.; Hrčka, R. Chromophores’ Contribution to Color Changes of Thermally Modified Tropical Wood Species. Polymers 2023, 15, 4000. [Google Scholar] [CrossRef] [PubMed]
- Esteves, B.; Ayata, U.; Cruz-Lopes, L.; Brás, I.; Ferreira, J.; Domingos, I. Changes in the Content and Composition of the Extractives in Thermally Modified Tropical Hardwoods. Maderas Cienc. Tecnol. 2022, 24, 1–14. [Google Scholar] [CrossRef]
- Arihara, S.; Umeyama, A.; Bando, S.; Kobuke, S.; Imoto, S.; Ono, M.; Yoshikawa, K.; Amita, K.; Hashimoto, S. Termiticidal Constituents of the Black-Heart of Cryptomeria japonica. J. Jpn. Wood Res. Soc. 2004, 50, 413–421. [Google Scholar]
- Alén, R.; Kotilainen, R.; Zaman, A. Thermochemical Behavior of Norway Spruce (Picea Abies) at 180–225 C. Wood Sci. Technol. 2002, 36, 163–171. [Google Scholar] [CrossRef]
- Windeisen, E.; Strobel, C.; Wegener, G. Chemical Changes during the Production of Thermo-Treated Beech Wood. Wood Sci. Technol. 2007, 41, 523–536. [Google Scholar] [CrossRef]
- Kačík, F.; Kubovskỳ, I.; Bouček, J.; Hrčka, R.; Gaff, M.; Kačíková, D. Colour and Chemical Changes of Black Locust Wood During Heat Treatment. Forests 2022, 14, 73. [Google Scholar] [CrossRef]
- Herrera-Builes, J.F.; Sepúlveda-Villarroel, V.; Osorio, J.A.; Salvo-Sepulveda, L.; Ananias, R.A. Effect of Thermal Modification Treatment on Some Physical and Mechanical Properties of Pinus oocarpa Wood. Forests 2021, 12, 249. [Google Scholar] [CrossRef]
- Yang, T.-H.; Chang, F.-R.; Lin, C.-J.; Chang, F.-C. Effects of Temperature and Duration of Heat Treatment on the Physical, Surface, and Mechanical Properties of Japanese Cedar Wood. BioResources 2016, 11, 3947–3963. [Google Scholar] [CrossRef]
- Srinivas, K.; Pandey, K.K. Effect of Heat Treatment on Color Changes, Dimensional Stability, and Mechanical Properties of Wood. J. Wood Chem. Technol. 2012, 32, 304–316. [Google Scholar] [CrossRef]
- Priadi, T.; Sholihah, M.; Karlinasari, L. Water Absorption and Dimensional Stability of Heat-Treated Fast-Growing Hardwoods. J. Korean Wood Sci. Technol. 2019, 47, 567–578. [Google Scholar] [CrossRef]
- Fu, Z.; Zhou, Y.; Gao, X.; Liu, H.; Zhou, F. Changes of Water Related Properties in Radiata Pine Wood Due to Heat Treatment. Constr. Build. Mater. 2019, 227, 116692. [Google Scholar] [CrossRef]
- Metsä-Kortelainen, S.; Antikainen, T.; Viitaniemi, P. The Water Absorption of Sapwood and Heartwood of Scots Pine and Norway Spruce Heat-Treated at 170 C, 190 C, 210 C and 230 C. Eur. J. Wood Wood Prod. 2006, 64, 192–197. [Google Scholar] [CrossRef]
- Watanabe, K.; Kobayashi, I.; Kuroda, N.; Harada, M.; Noshiro, S. Predicting Oven-Dry Density of Sugi (Cryptomeria japonica) Using near Infrared (NIR) Spectroscopy and Its Effect on Performance of Wood Moisture Meter. J. Wood Sci. 2012, 58, 383–390. [Google Scholar] [CrossRef]
- Kubojima, Y.; Okano, T.; Ohta, M. Bending Strength and Toughness of Heat-Treated Wood. J. Wood Sci. 2000, 46, 8–15. [Google Scholar] [CrossRef]
- Kim, G.-H.; Yun, K.-E.; Kim, J.-J. Effect of Heat Treatment on the Decay Resistance and the Bending Properties of Radiata Pine Sapwood. Mater. Und Org. 1998, 32, 101–108. [Google Scholar]
- Phuong, L.X.; Shida, S.; Saito, Y. Effects of Heat Treatment on Brittleness of Styrax Tonkinensis Wood. J. Wood Sci. 2007, 53, 181–186. [Google Scholar] [CrossRef]
- Yue, K.; Qian, J.; Wu, P.; Jiao, X.; Lu, D.; Song, X. Experimental Analysis of Thermally-Treated Chinese Poplar Wood with Focus on Structural Application. Ind. Crops Prod. 2023, 197, 116612. [Google Scholar] [CrossRef]
- Esteves, B.; Ayata, U.; Gurleyen, L. Effect of Heat Treatment on the Colour and Glossiness of Black Locust, Wild Pear, Linden, Alder and Willow Wood. Drewno 2019, 62, 39–52. [Google Scholar] [CrossRef]
- Torniainen, P.; Popescu, C.-M.; Jones, D.; Scharf, A.; Sandberg, D. Correlation of Studies between Colour, Structure and Mechanical Properties of Commercially Produced ThermoWood® Treated Norway Spruce and Scots Pine. Forests 2021, 12, 1165. [Google Scholar] [CrossRef]
- EN 117 (2012); Wood Preservatives—Determination of Toxic Values Against Reticulitermes Species (European Termites) (Laboratory Method). CEN: Brussels, Belgium, 2012.
- Candelier, K.; Hannouz, S.; Thévenon, M.-F.; Guibal, D.; Gérardin, P.; Pétrissans, M.; Collet, R. Resistance of Thermally Modified Ash (Fraxinus Excelsior L.) Wood under Steam Pressure against Rot Fungi, Soil-Inhabiting Micro-Organisms and Termites. Eur. J. Wood Prod. 2017, 75, 249–262. [Google Scholar] [CrossRef]
- Surini, T.; Charrier, F.; Malvestio, J.; Charrier, B.; Moubarik, A.; Castéra, P.; Grelier, S. Physical Properties and Termite Durability of Maritime Pine Pinus Pinaster Ait., Heat-Treated under Vacuum Pressure. Wood Sci. Technol. 2012, 46, 487–501. [Google Scholar] [CrossRef]
Sample | Extractives (%) | |||
---|---|---|---|---|
Dichloromethane | Ethanol | Water | Total | |
Untreated | 0.60 ± 0.00 | 1.30 ± 0.43 | 0.99 ± 0.11 | 2.89 ± 0.44 |
Heat-treated | 0.55 ± 0.04 | 2.05 ± 0.13 | 0.99 ± 0.24 | 3.59 ± 0.27 |
Cycle | Treatment | Average | Std. Dev. |
---|---|---|---|
1st cycle | Untreated | 160.409 | 42.202 |
Heat-treated | 130.439 | 0.0768 | |
2nd cycle | Untreated | 160.685 | 31.031 |
Heat-treated | 113.143 | 22.605 | |
3rd cycle | Untreated | 157.167 | 20.274 |
Heat-treated | 125.148 | 17.336 |
Sample | MOE (MPa) | Bending Strength (MPa) | ||
---|---|---|---|---|
Average | Std. Dev. | Average | Std. Dev. | |
Untreated | 7268 | 1194 | 52.6 | 2.4 |
Heat-treated | 10,836 | 771 | 42.5 | 6.0 |
L* | a* | b* | ||||
---|---|---|---|---|---|---|
Average | Std. Dev. | Average | Std. Dev. | Average | Std. Dev. | ΔE |
67.5 | 1.2 | 13.6 | 0.5 | 24.5 | 0.4 | 31.6 |
46.6 | 0.8 | 1.4 | 0.3 | 4.2 | 0.2 |
Material | Survival Rate [%] | Mass Loss [%] | Attack Level |
---|---|---|---|
Untreated | 40.60 | 8.82 | 3.8 |
Heat-treated | 31.30 | 10.48 | 4.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esteves, B.; Nunes, L.; Lopes, R.; Cruz-Lopes, L. Enhanced Properties of Cryptomeria japonica (Thunb ex L.f.) D.Don from the Azores Through Heat-Treatment. Forests 2025, 16, 166. https://doi.org/10.3390/f16010166
Esteves B, Nunes L, Lopes R, Cruz-Lopes L. Enhanced Properties of Cryptomeria japonica (Thunb ex L.f.) D.Don from the Azores Through Heat-Treatment. Forests. 2025; 16(1):166. https://doi.org/10.3390/f16010166
Chicago/Turabian StyleEsteves, Bruno, Lina Nunes, Rogério Lopes, and Luísa Cruz-Lopes. 2025. "Enhanced Properties of Cryptomeria japonica (Thunb ex L.f.) D.Don from the Azores Through Heat-Treatment" Forests 16, no. 1: 166. https://doi.org/10.3390/f16010166
APA StyleEsteves, B., Nunes, L., Lopes, R., & Cruz-Lopes, L. (2025). Enhanced Properties of Cryptomeria japonica (Thunb ex L.f.) D.Don from the Azores Through Heat-Treatment. Forests, 16(1), 166. https://doi.org/10.3390/f16010166