More than Just Chilling and Forcing: Deconstructing the Climate Windows and Drivers of Leaf Emergence and Fall in Woody Plant Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Leaf Phenology Data
2.2. Climate Data
2.3. Statistical Analyses
3. Results
4. Discussion
4.1. Absolute or Relative Climate Windows
4.2. Not Only Forcing Is Important
4.3. Defining Climate Windows for Each Climate Variable
4.4. Nonlinear Climate Effects on Leaf Phenology
4.5. Extension of the Leaf Phenological Season
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, J.; Körner, C.; Muraoka, H.; Piao, S.; Shen, M.; Thackeray, S.J.; Yang, X. Emerging Opportunities and Challenges in Phenology: A Review. Ecosphere 2016, 7, e01436. [Google Scholar] [CrossRef]
- Piao, S.; Liu, Q.; Chen, A.; Janssens, I.A.; Fu, Y.; Dai, J.; Liu, L.; Lian, X.; Shen, M.; Zhu, X. Plant Phenology and Global Climate Change: Current Progresses and Challenges. Glob. Change Biol. 2019, 25, 1922–1940. [Google Scholar] [CrossRef]
- Walther, G.R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.C.; Fromentin, J.M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological Responses to Recent Climate Change. Nat. 2002 4166879 2002, 416, 389–395. [Google Scholar] [CrossRef]
- Menzel, A.; Sparks, T.H.; Estrella, N.; Koch, E.; Aasa, A.; Ahas, R.; Alm-Kübler, K.; Bissolli, P.; Braslavská, O.; Briede, A.; et al. European Phenological Response to Climate Change Matches the Warming Pattern. Glob. Change Biol. 2006, 12, 1969–1976. [Google Scholar] [CrossRef]
- Piao, S.; Tan, J.; Chen, A.; Fu, Y.H.; Ciais, P.; Liu, Q.; Janssens, I.A.; Vicca, S.; Zeng, Z.; Jeong, S.J.; et al. Leaf Onset in the Northern Hemisphere Triggered by Daytime Temperature. Nat. Commun. 2015 61 2015, 6, 6911. [Google Scholar] [CrossRef]
- Marchand, L.J.; Dox, I.; Gričar, J.; Prislan, P.; Leys, S.; Van den Bulcke, J.; Fonti, P.; Lange, H.; Matthysen, E.; Peñuelas, J.; et al. Inter-Individual Variability in Spring Phenology of Temperate Deciduous Trees Depends on Species, Tree Size and Previous Year Autumn Phenology. Agric. For. Meteorol. 2020, 290, 108031. [Google Scholar] [CrossRef]
- Dox, I.; Gričar, J.; Marchand, L.J.; Leys, S.; Zuccarini, P.; Geron, C.; Prislan, P.; Mariën, B.; Fonti, P.; Lange, H.; et al. Timeline of Autumn Phenology in Temperate Deciduous Trees. Tree Physiol. 2020, 40, 1001–1013. [Google Scholar] [CrossRef] [PubMed]
- Zohner, C.M.; Mirzagholi, L.; Renner, S.S.; Mo, L.; Rebindaine, D.; Bucher, R.; Palouš, D.; Vitasse, Y.; Fu, Y.H.; Stocker, B.D.; et al. Effect of Climate Warming on the Timing of Autumn Leaf Senescence Reverses after the Summer Solstice. Science 2023, 381, eadf5098. [Google Scholar] [CrossRef] [PubMed]
- Vitasse, Y.; François, C.; Delpierre, N.; Dufrêne, E.; Kremer, A.; Chuine, I.; Delzon, S. Assessing the Effects of Climate Change on the Phenology of European Temperate Trees. Agric. For. Meteorol. 2011, 151, 969–980. [Google Scholar] [CrossRef]
- Delpierre, N.; Vitasse, Y.; Chuine, I.; Guillemot, J.; Bazot, S.; Rutishauser, T.; Rathgeber, C.B.K. Temperate and Boreal Forest Tree Phenology: From Organ-Scale Processes to Terrestrial Ecosystem Models. Ann. For. Sci. 2016, 73, 5–25. [Google Scholar] [CrossRef]
- Gray, R.E.J.; Ewers, R.M. Monitoring Forest Phenology in a Changing World. Forests 2021, 12, 297. [Google Scholar] [CrossRef]
- Peñuelas, J.; Rutishauser, T.; Filella, I. Phenology Feedbacks on Climate Change. Science 2009, 324, 887–888. [Google Scholar] [CrossRef] [PubMed]
- Richardson, A.D.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M. Climate Change, Phenology, and Phenological Control of Vegetation Feedbacks to the Climate System. Agric. For. Meteorol. 2013, 169, 156–173. [Google Scholar] [CrossRef]
- Fadón, E.; Fernandez, E.; Behn, H.; Luedeling, E. A Conceptual Framework for Winter Dormancy in Deciduous Trees. Agronomy 2020, 10, 241. [Google Scholar] [CrossRef]
- Harrington, C.A.; Gould, P.J.; St.Clair, J.B. Modeling the Effects of Winter Environment on Dormancy Release of Douglas-Fir. For. Ecol. Manage. 2010, 259, 798–808. [Google Scholar] [CrossRef]
- Pope, K.S.; Da Silva, D.; Brown, P.H.; DeJong, T.M. A Biologically Based Approach to Modeling Spring Phenology in Temperate Deciduous Trees. Agric. For. Meteorol. 2014, 198–199, 15–23. [Google Scholar] [CrossRef]
- Wang, X.; Xu, H.; Ma, Q.; Luo, Y.; He, D.; Smith, N.G.; Rossi, S.; Chen, L. Chilling and Forcing Proceed in Parallel to Regulate Spring Leaf Unfolding in Temperate Trees. Glob. Ecol. Biogeogr. 2023, 32, 1914–1927. [Google Scholar] [CrossRef]
- Plos, C.; Hensen, I.; Korell, L.; Auge, H.; Römermann, C. Plant Species Phenology Differs between Climate and Land-Use Scenarios and Relates to Plant Functional Traits. Ecol. Evol. 2024, 14, e11441. [Google Scholar] [CrossRef] [PubMed]
- Luedeling, E.; Gebauer, J.; Buerkert, A. Climate Change Effects on Winter Chill for Tree Crops with Chilling Requirements on the Arabian Peninsula. Clim. Chang. 2009, 96, 219–237. [Google Scholar] [CrossRef]
- Richardson, A.D.; Anderson, R.S.; Arain, M.A.; Barr, A.G.; Bohrer, G.; Chen, G.; Chen, J.M.; Ciais, P.; Davis, K.J.; Desai, A.R.; et al. Terrestrial Biosphere Models Need Better Representation of Vegetation Phenology: Results from the North American Carbon Program Site Synthesis. Glob. Change Biol. 2012, 18, 566–584. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Development Core Team: Vienna, Austria, 2024. [Google Scholar]
- Bailey, L.D.; van de Pol, M. Climwin: An R Toolbox for Climate Window Analysis. PLoS ONE 2016, 11, e0167980. [Google Scholar] [CrossRef] [PubMed]
- van de Pol, M.; Bailey, L.D.; McLean, N.; Rijsdijk, L.; Lawson, C.R.; Brouwer, L. Identifying the Best Climatic Predictors in Ecology and Evolution. Methods Ecol. Evol. 2016, 7, 1246–1257. [Google Scholar] [CrossRef]
- Chen, L.; Huang, J.G.; Ma, Q.; Hänninen, H.; Tremblay, F.; Bergeron, Y. Long-Term Changes in the Impacts of Global Warming on Leaf Phenology of Four Temperate Tree Species. Glob. Change Biol. 2019, 25, 997–1004. [Google Scholar] [CrossRef] [PubMed]
- Gordo, O.; Sanz, J.J. Phenology and Climate Change: A Long-Term Study in a Mediterranean Locality. Oecologia 2005, 146, 484–495. [Google Scholar] [CrossRef] [PubMed]
- Camarero, J.J.; Campelo, F.; Colangelo, M.; Valeriano, C.; Knorre, A.; Solé, G.; Rubio-Cuadrado, Á. Decoupled Leaf-Wood Phenology in Two Pine Species from Contrasting Climates: Longer Growing Seasons Do Not Mean More Radial Growth. Agric. For. Meteorol. 2022, 327, 109223. [Google Scholar] [CrossRef]
- Peñuelas, J.; Filella, I.; Comas, P. Changed Plant and Animal Life Cycles from 1952 to 2000 in the Mediterranean Region. Glob. Change Biol. 2002, 8, 531–544. [Google Scholar] [CrossRef]
- Herrera, S.; Gutiérrez, J.M.; Ancell, R.; Pons, M.R.; Frías, M.D.; Fernández, J. Development and Analysis of a 50-Year High-Resolution Daily Gridded Precipitation Dataset over Spain (Spain02). Int. J. Climatol. 2012, 32, 74–85. [Google Scholar] [CrossRef]
- Herrera, S.; Fernández, J.; Gutiérrez, J.M. Update of the Spain02 Gridded Observational Dataset for EURO-CORDEX Evaluation: Assessing the Effect of the Interpolation Methodology. Int. J. Climatol. 2016, 36, 900–908. [Google Scholar] [CrossRef]
- Cornes, R.C.; van der Schrier, G.; van den Besselaar, E.J.M.; Jones, P.D. An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets. J. Geophys. Res. Atmos. 2018, 123, 9391–9409. [Google Scholar] [CrossRef]
- Fu, Y.H.; Zhao, H.; Piao, S.; Peaucelle, M.; Peng, S.; Zhou, G.; Ciais, P.; Huang, M.; Menzel, A.; Peñuelas, J.; et al. Declining Global Warming Effects on the Phenology of Spring Leaf Unfolding. Nature 2015, 526, 104–107. [Google Scholar] [CrossRef] [PubMed]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach; Springer: New York, NY, USA, 2004; ISBN 978-0-387-95364-9. [Google Scholar]
- Power, M.L.; Ransome, R.D.; Riquier, S.; Romaine, L.; Jones, G.; Teeling, E.C. Hibernation Telomere Dynamics in a Shifting Climate: Insights from Wild Greater Horseshoe Bats. Proc. R. Soc. B Biol. Sci. 2023, 290, 20231589. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.H.; Campioli, M.; Deckmyn, G.; Janssens, I.A. The Impact of Winter and Spring Temperatures on Temperate Tree Budburst Dates: Results from an Experimental Climate Manipulation. PLoS ONE 2012, 7, e47324. [Google Scholar] [CrossRef]
- Chuine, I.; Morin, X.; Bugmann, H. Warming, Photoperiods, and Tree Phenology. Science 2010, 329, 277–278. [Google Scholar] [CrossRef] [PubMed]
- Cesaraccio, C.; Spano, D.; Snyder, R.L.; Duce, P. Chilling and Forcing Model to Predict Bud-Burst of Crop and Forest Species. Agric. For. Meteorol. 2004, 126, 1–13. [Google Scholar] [CrossRef]
- Vitasse, Y.; Signarbieux, C.; Fu, Y.H. Global Warming Leads to More Uniform Spring Phenology across Elevations. Proc. Natl. Acad. Sci. USA 2018, 115, 1004–1008. [Google Scholar] [CrossRef] [PubMed]
- Lenz, A.; Hoch, G.; Vitasse, Y.; Körner, C. European Deciduous Trees Exhibit Similar Safety Margins against Damage by Spring Freeze Events along Elevational Gradients. New Phytol. 2013, 200, 1166–1175. [Google Scholar] [CrossRef] [PubMed]
- López-Bernal, Á.; García-Tejera, O.; Testi, L.; Orgaz, F.; Villalobos, F.J. Studying and Modelling Winter Dormancy in Olive Trees. Agric. For. Meteorol. 2020, 280, 107776. [Google Scholar] [CrossRef]
- Zhou, H.; Min, X.; Chen, J.; Lu, C.; Huang, Y.; Zhang, Z.; Liu, H. Climate Warming Interacts with Other Global Change Drivers to Influence Plant Phenology: A Meta-Analysis of Experimental Studies. Ecol. Lett. 2023, 26, 1370–1381. [Google Scholar] [CrossRef] [PubMed]
- Spafford, L.; MacDougall, A.; Steenberg, J. Climate-Driven Shifts in Leaf Senescence Are Greater for Boreal Species than Temperate Species in the Acadian Forest Region in Contrast to Leaf Emergence Shifts. Ecol. Evol. 2023, 13, e10362. [Google Scholar] [CrossRef] [PubMed]
- Keenan, T.F.; Richardson, A.D. The Timing of Autumn Senescence Is Affected by the Timing of Spring Phenology: Implications for Predictive Models. Glob. Change Biol. 2015, 21, 2634–2641. [Google Scholar] [CrossRef]
- Reich, P.B.; Walters, M.B.; Ellsworth, D.S. Leaf Life-Span in Relation to Leaf, Plant, and Stand Characteristics among Diverse Ecosystems. Ecol. Monogr. 1992, 62, 365–392. [Google Scholar] [CrossRef]
- Lam, E. Controlled Cell Death, Plant Survival and Development. Nat. Rev. Mol. Cell Biol. 2004, 5, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.S.H.; Campioli, M.; Vitasse, Y.; De Boeck, H.J.; Van Den Berge, J.; AbdElgawad, H.; Asard, H.; Piao, S.; Deckmyn, G.; Janssens, I.A. Variation in Leaf Flushing Date Influences Autumnal Senescence and next Year’s Flushing Date in Two Temperate Tree Species. Proc. Natl. Acad. Sci. USA 2014, 111, 7355–7360. [Google Scholar] [CrossRef] [PubMed]
- Salminen, H.; Jalkanen, R.; Lindholm, M. Summer Temperature Affects the Ratio of Radial and Height Growth of Scots Pine in Northern Finland. Ann. For. Sci. 2009, 66, 810. [Google Scholar] [CrossRef]
- Hover, A.; Buissart, F.; Caraglio, Y.; Heinz, C.; Pailler, F.; Ramel, M.; Vennetier, M.; Prévosto, B.; Sabatier, S. Growth Phenology in Pinus Halepensis Mill.: Apical Shoot Bud Content and Shoot Elongation. Ann. For. Sci. 2017, 74, 39. [Google Scholar] [CrossRef]
- Hänninen, H. Boreal and Temperate Trees in a Changing Climate: Modelling the Ecophysiology of Seasonality; Springer: Dordrecht, The Netherlands, 2016; ISBN 978-94-017-7549-6. [Google Scholar]
- Fu, Y.H.; Zhang, X.; Piao, S.; Hao, F.; Geng, X.; Vitasse, Y.; Zohner, C.; Peñuelas, J.; Janssens, I.A. Daylength Helps Temperate Deciduous Trees to Leaf-out at the Optimal Time. Glob. Change Biol. 2019, 25, 2410–2418. [Google Scholar] [CrossRef] [PubMed]
- Basler, D.; Körner, C. Photoperiod Sensitivity of Bud Burst in 14 Temperate Forest Tree Species. Agric. For. Meteorol. 2012, 165, 73–81. [Google Scholar] [CrossRef]
- Harrington, C.A.; Gould, P.J. Tradeoffs between Chilling and Forcing in Satisfying Dormancy Requirements for Pacific Northwest Tree Species. Front. Plant Sci. 2015, 6, 117539. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wu, Z.; Gong, Y.; Nie, Y.; Liu, Z.; Chen, Y.; De Boeck, H.J.; Fu, Y. Larger Responses of Trees’ Leaf Senescence to Cooling than Warming: Results from a Climate Manipulation Experiment. Agric. For. Meteorol. 2023, 339, 109568. [Google Scholar] [CrossRef]
- Gao, C.; Wang, H.; Ge, Q. Interpretable Machine Learning Algorithms to Predict Leaf Senescence Date of Deciduous Trees. Agric. For. Meteorol. 2023, 340, 109623. [Google Scholar] [CrossRef]
- Rohde, A.; Bhalerao, R.P. Plant Dormancy in the Perennial Context. Trends Plant Sci. 2007, 12, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Heide, O.M. High Autumn Temperature Delays Spring Bud Burst in Boreal Trees, Counterbalancing the Effect of Climatic Warming. Tree Physiol. 2003, 23, 931–936. [Google Scholar] [CrossRef] [PubMed]
- Wolkovich, E.M.; Auerbach, J.; Chamberlain, C.J.; Buonaiuto, D.M.; Ettinger, A.K.; Morales-Castilla, I.; Gelman, A. A Simple Explanation for Declining Temperature Sensitivity with Warming. Glob. Change Biol. 2021, 27, 4947–4949. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Liu, Z.; Wang, T.; Peng, S.; Ciais, P.; Huang, M.; Ahlstrom, A.; Burkhart, J.F.; Chevallier, F.; Janssens, I.A.; et al. Weakening Temperature Control on the Interannual Variations of Spring Carbon Uptake across Northern Lands. Nat. Clim. Chang. 2017, 7, 359–363. [Google Scholar] [CrossRef]
- Iler, A.M.; Høye, T.T.; Inouye, D.W.; Schmidt, N.M. Nonlinear Flowering Responses to Climate: Are Species Approaching Their Limits of Phenological Change? Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20120489. [Google Scholar] [CrossRef] [PubMed]
- Estiarte, M.; Peñuelas, J. Alteration of the Phenology of Leaf Senescence and Fall in Winter Deciduous Species by Climate Change: Effects on Nutrient Proficiency. Glob. Change Biol. 2015, 21, 1005–1017. [Google Scholar] [CrossRef] [PubMed]
- Mariën, B.; Dox, I.; De Boeck, H.J.; Willems, P.; Leys, S.; Papadimitriou, D.; Campioli, M. Does Drought Advance the Onset of Autumn Leaf Senescence in Temperate Deciduous Forest Trees? Biogeosciences 2021, 18, 3309–3330. [Google Scholar] [CrossRef]
- Steltzer, H.; Post, E. Seasons and Life Cycles. Science 2009, 324, 886–887. [Google Scholar] [CrossRef] [PubMed]
- Jentsch, A.; Kreyling, J.; Boettcher-Treschkow, J.; Beierkuhnlein, C. Beyond Gradual Warming: Extreme Weather Events Alter Flower Phenology of European Grassland and Heath Species. Glob. Change Biol. 2009, 15, 837–849. [Google Scholar] [CrossRef]
- Post, E.S.; Pedersen, C.; Wilmers, C.C.; Forchhammer, M.C. Phenological Sequences Reveal Aggregate Life History Response to Climatic Warming. Ecology 2008, 89, 363–370. [Google Scholar] [CrossRef]
- Jarrad, F.C.; Wahren, C.H.; Williams, R.J.; Burgman, M.A. Impacts of Experimental Warming and Fire on Phenology of Subalpine Open-Heath Species. Aust. J. Bot. 2008, 56, 617–629. [Google Scholar] [CrossRef]
- Sherry, R.A.; Zhou, X.; Gu, S.; Arnone, J.A.; Schimel, D.S.; Verburg, P.S.; Wallace, L.L.; Luo, Y. Divergence of Reproductive Phenology under Climate Warming. Proc. Natl. Acad. Sci. USA 2007, 104, 198–202. [Google Scholar] [CrossRef]
- Richards, A.E.; Forrester, D.I.; Bauhus, J.; Scherer-Lorenzen, M. The Influence of Mixed Tree Plantations on the Nutrition of Individual Species: A Review. Tree Physiol. 2010, 30, 1192–1208. [Google Scholar] [CrossRef] [PubMed]
- Peñuelas, J.; Filella, I. Phenology: Responses to a Warming World. Science 2001, 294, 793–795. [Google Scholar] [CrossRef] [PubMed]
No Interannual Variation | |||||||||
---|---|---|---|---|---|---|---|---|---|
Species | LH | RWO | RWC | Coef. | R2 | RWO | RWC | Coef. | R2 |
Acacia sp. | E | 229 | 117 | −0.53 | 0.80 | 240 | 147 | −0.57 | 1.00 |
Acer sp. | D | 220 | 108 | −0.49 | 0.74 | 259 | 87 | −0.79 | 1.00 |
Cedrus sp. | E | 238 | 121 | −0.59 | 0.88 | 250 | 157 | −0.57 | 1.00 |
Ceratonia siliqua | E | 295 | 201 | −0.67 | 0.96 | 96 | 43 | 0.68 | 1.00 |
Citrus × limon | E | 213 | 100 | −0.57 | 0.80 | 282 | 63 | −1.13 | 1.00 |
Citrus × sinensis | E | 220 | 103 | −0.49 | 0.66 | 287 | 84 | −1.01 | 1.00 |
Erica ciliaris | E | 236 | 133 | −0.55 | 0.90 | 296 | 85 | −1.07 | 1.00 |
Eriobotrya japonica | E | 207 | 98 | −0.47 | 0.66 | 248 | 80 | −0.76 | 1.00 |
Ficus carica | D | 229 | 100 | −0.57 | 0.86 | 290 | 67 | −1.16 | 1.00 |
Genista cinerea | E | 219 | 131 | −0.48 | 0.94 | 270 | 60 | −1.06 | 1.00 |
Genista scorpius | E | 236 | 121 | −0.50 | 0.83 | 237 | 144 | −0.57 | 1.00 |
Hedera sp. | E | 209 | 104 | −0.45 | 0.69 | 257 | 83 | −0.80 | 1.00 |
Juglans regia | D | 246 | 130 | −0.49 | 0.86 | 278 | 100 | −0.82 | 1.00 |
Malus domestica | D | 223 | 96 | −0.61 | 0.81 | 238 | 145 | −0.57 | 1.00 |
Morus alba | D | 222 | 106 | −0.55 | 0.83 | 233 | 140 | −0.57 | 1.00 |
Musa × paradisiaca | D | 240 | 107 | −0.53 | 0.81 | 232 | 139 | −0.57 | 1.00 |
Prunus avium | D | 242 | 120 | −0.57 | 0.87 | 253 | 160 | −0.57 | 1.00 |
Pinus pinea | E | 233 | 126 | −0.36 | 0.58 | 279 | 110 | −0.77 | 1.00 |
Pinus sylvestris | E | 250 | 130 | −0.51 | 0.86 | 263 | 169 | −0.57 | 1.00 |
Populus sp. | D | 240 | 115 | −0.55 | 0.87 | 237 | 144 | −0.57 | 1.00 |
Prunus armeniaca | D | 212 | 95 | −0.55 | 0.79 | 223 | 130 | −0.57 | 1.00 |
Prunus dulcis | D | 194 | 102 | −0.49 | 0.92 | 193 | 100 | −0.57 | 1.00 |
Prunus persica | D | 219 | 110 | −0.51 | 0.79 | 260 | 87 | −0.79 | 1.00 |
Salix sp. | D | 229 | 113 | −0.47 | 0.82 | 260 | 80 | −0.84 | 1.00 |
Tilia platyphyllos | D | 254 | 131 | −0.51 | 0.76 | 283 | 112 | −0.78 | 1.00 |
Ulmus sp. | D | 246 | 142 | −0.52 | 0.86 | 285 | 100 | −0.87 | 1.00 |
Species | First Predictor | Second Predictor | R2 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | Function | Upper | Lower | R2SM | Variable | Function | Upper | Lower | ||
Acacia sp. | Tmax | Linear | 10 | - | 0.48 | Tmax | Quadratic | 20 | - | 0.63 |
Acer sp. | Temp | Linear | 10 | - | 0.46 | Tmin | Cubic | - | 5 | 0.59 |
Cedrus sp. | Tmax | Cubic | 20 | - | 0.49 | Rad | Linear | - | - | 0.62 |
Ceratonia siliqua | Prec | Cubic | - | - | 0.65 | Tmax | Linear | - | 15 | 0.77 |
Citrus × limon | Prec | Cubic | - | - | 0.41 | Tmin | Cubic | 10 | - | 0.62 |
Citrus × sinensis | Tmax | Linear | 15 | - | 0.17 | Prec | Quadratic | - | - | 0.57 |
Erica ciliaris | Prec | Cubic | - | - | 0.40 | Temp | Cubic | - | 10 | 0.70 |
Eriobotrya japonica | Prec | Cubic | - | - | 0.39 | Tmax | Cubic | - | - | 0.62 |
Ficus carica | Temp | Quadratic | 10 | - | 0.51 | - | - | - | - | 0.51 |
Genista cinerea | Rad | Linear | - | - | 0.29 | - | - | - | - | 0.29 |
Genista scorpius | Tmax | Cubic | 10 | - | 0.45 | Tmin | Linear | 5 | - | 0.66 |
Hedera sp. | Temp | Cubic | 15 | - | 0.26 | Tmin | Quadratic | - | 15 | 0.48 |
Juglans regia | Temp | Cubic | 10 | - | 0.55 | - | - | - | - | 0.55 |
Malus domestica | Temp | Cubic | - | 10 | 0.51 | Prec | Quadratic | - | - | 0.66 |
Morus alba | Tmin | Cubic | - | - | 0.38 | - | - | - | - | 0.38 |
Musa × paradisiaca | Tmax | Quadratic | - | - | 0.61 | Temp | Linear | - | 10 | 0.69 |
Pinus pinea | Rad | Cubic | - | - | 0.31 | - | - | - | - | 0.31 |
Pinus sylvestris | Tmin | Cubic | - | 5 | 0.55 | Tmin | Linear | - | - | 0.64 |
Populus sp. | Tmax | Linear | 10 | - | 0.42 | Tmax | Linear | - | - | 0.63 |
Prunus armeniaca | Prec | Quadratic | - | - | 0.27 | Tmin | Quadratic | - | 5 | 0.48 |
Prunus avium | Temp | Quadratic | - | - | 0.46 | Rad | Quadratic | - | - | 0.57 |
Prunus dulcis | Tmin | Quadratic | - | 5 | 0.28 | Tmin | Quadratic | 5 | - | 0.42 |
Prunus persica | Tmax | Cubic | - | 15 | 0.56 | - | - | - | - | 0.56 |
Salix sp. | Tmax | Linear | 20 | - | 0.37 | Prec | Quadratic | - | - | 0.68 |
Tilia platyphyllos | Temp | Linear | 10 | - | 0.37 | Tmax | Quadratic | 15 | - | 0.46 |
Ulmus sp. | Rad | Cubic | - | - | 0.53 | Tmax | Linear | 10 | - | 0.71 |
Species | First Predictor | Second Predictor | R2 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | Function | Upper | Lower | R2SM | Variable | Function | Upper | Lower | ||
Acacia sp. | Tmax | Linear | 20 | - | 0.26 | Temp | Quadratic | 15 | - | 0.62 |
Acer sp. | Rad | Linear | - | - | 0.26 | Rad | Logarithmic | - | - | 0.57 |
Ceratonia siliqua | Tmax | Linear | 20 | - | 0.45 | - | - | - | - | 0.45 |
Citrus × sinensis | Tmax | Cubic | 30 | - | 0.46 | Prec | Logarithmic | - | - | 0.61 |
Ficus carica | Temp | Quadratic | 10 | - | 0.37 | Rad | Linear | - | - | 0.53 |
Juglans regia | Rad | Linear | - | - | 0.33 | Prec | Linear | - | - | 0.48 |
Malus domestica | Prec | Quadratic | - | - | 0.43 | - | - | - | - | 0.43 |
Morus alba | Tmax | Cubic | 20 | - | 0.35 | Rad | Linear | - | - | 0.50 |
Musa × paradisiaca | Tmax | Cubic | 10 | - | 0.44 | Tmin | Quadratic | - | 15 | 0.69 |
Olea europaea | Tmax | Quadratic | - | 25 | 0.59 | - | - | - | - | 0.59 |
Pinus pinea | Tmin | Cubic | - | - | 0.40 | Rad | Quadratic | - | - | 0.66 |
Pinus sylvestris | Tmin | Cubic | - | - | 0.38 | Tmax | Cubic | - | - | 0.66 |
Populus sp. | Tmax | Linear | 30 | - | 0.32 | Prec | Cubic | - | - | 0.63 |
Prunus armeniaca | Temp | Cubic | - | 15 | 0.33 | Tmax | Linear | 20 | - | 0.51 |
Prunus avium | Tmax | Linear | 30 | - | 0.38 | Temp | Linear | - | 15 | 0.55 |
Prunus dulcis | Tmax | Linear | 30 | - | 0.26 | - | - | - | - | 0.26 |
Prunus persica | Temp | Cubic | - | - | 0.48 | - | - | - | - | 0.48 |
Salix sp. | Temp | Linear | - | 15 | 0.34 | Rad | Quadratic | - | - | 0.50 |
Tilia platyphyllos | Prec | Cubic | - | - | 0.42 | - | - | - | - | 0.42 |
Ulmus sp. | - | - | - | - | - | - | - | - | - | - |
Species | First Predictor | Second Predictor | R2 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | Function | Upper | Lower | R2SM | Variable | Function | Upper | Lower | ||
Aesculus hippocastanum | Temp | Linear | - | 10 | 0.56 | - | - | - | - | 0.56 |
Alnus glutinosa | Tmax | Cubic | - | - | 0.76 | Tmin | Cubic | 5 | - | 0.91 |
Corylus avellana | Temp | Quadratic | 5 | - | 0.57 | Prec | Logarithmic | - | - | 0.76 |
Fraxinus excelsior | Rad | Cubic | - | - | 0.74 | Prec | Quadratic | - | - | 0.92 |
Sorbus aucuparia | Tmax | Cubic | - | 15 | 0.88 | Rad | Quadratic | - | - | 0.95 |
Tilia cordata | Rad | Quadratic | - | - | 0.65 | Temp | Linear | - | - | 0.85 |
Vitis vinifera | Tmax | Quadratic | 10 | - | 0.70 | - | - | - | - | 0.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubio-Cuadrado, Á.; Camarero, J.J. More than Just Chilling and Forcing: Deconstructing the Climate Windows and Drivers of Leaf Emergence and Fall in Woody Plant Species. Forests 2025, 16, 175. https://doi.org/10.3390/f16010175
Rubio-Cuadrado Á, Camarero JJ. More than Just Chilling and Forcing: Deconstructing the Climate Windows and Drivers of Leaf Emergence and Fall in Woody Plant Species. Forests. 2025; 16(1):175. https://doi.org/10.3390/f16010175
Chicago/Turabian StyleRubio-Cuadrado, Álvaro, and J. Julio Camarero. 2025. "More than Just Chilling and Forcing: Deconstructing the Climate Windows and Drivers of Leaf Emergence and Fall in Woody Plant Species" Forests 16, no. 1: 175. https://doi.org/10.3390/f16010175
APA StyleRubio-Cuadrado, Á., & Camarero, J. J. (2025). More than Just Chilling and Forcing: Deconstructing the Climate Windows and Drivers of Leaf Emergence and Fall in Woody Plant Species. Forests, 16(1), 175. https://doi.org/10.3390/f16010175