Climate Change Drives the Adaptive Distribution and Habitat Fragmentation of Betula albosinensis Forests in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Identification of the Environmental Drivers
2.3. Calculation of Shrinkage and Expansion of B. albosinensis Forests
2.4. Calculation of Habitat Fragmentation in Highly Suitable Habitats
3. Results
3.1. Drivers of B. albosinensis Forests’ Distribution
3.2. Climate-Change-Driven Shrinkage, Expansion, and Migration of B. albosinensis Forests
3.3. Climate-Change-Driven Fragmentation of B. albosinensis Habitat
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cao, D.; Zhang, J.H.; Xun, L.; Yang, S.S.; Wang, J.W.; Yao, F.M. Spatiotemporal variations of global terrestrial vegetation climate potential productivity under climate change. Sci. Total Environ. 2021, 770, 145320. [Google Scholar] [CrossRef] [PubMed]
- Aitken, S.N.; Yeaman, S.; Holliday, J.A.; Wang, T.; Curtis-McLane, S. Adaptation, migration or extirpation: Climate change outcomes for tree populations. Evol. Appl. 2008, 1, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Shi, N.; Naudiyal, N.; Wang, J.N.; Gaire, N.P.; Wu, Y.; Wei, Y.Q.; He, J.L.; Wang, C.Y. Assessing the Impact of Climate Change on Potential Distribution of Meconopsis punicea and Its Influence on Ecosystem Services Supply in the Southeastern Margin of Qinghai-Tibet Plateau. Front. Plant Sci. 2022, 12, 830119. [Google Scholar] [CrossRef] [PubMed]
- Dobrowski, S.Z.; Parks, S.A. Climate change velocity underestimates climate change exposure in mountainous regions. Nat. Commun. 2016, 7, 12349. [Google Scholar] [CrossRef]
- Palombo, C.; Marchetti, M.; Tognetti, R. Mountain vegetation at risk: Current perspectives and research reeds. Plant Biosyst. 2014, 148, 35–41. [Google Scholar] [CrossRef]
- Rajczak, J.; Pall, P.; Schär, C. Projections of extreme precipitation events in regional climate simulations for Europe and the Alpine Region. J. Geophys. Res.-Atmos. 2013, 118, 3610–3626. [Google Scholar] [CrossRef]
- Kotlarski, S.; Gobiet, A.; Morin, S.; Olefs, M.; Rajczak, J.; Samacoiets, R. 21st Century alpine climate change. Clim. Dyn. 2023, 60, 65–86. [Google Scholar] [CrossRef]
- Wang, Y.S.; Sun, W.J.; Huai, B.J.; Wang, Y.Z.; Ji, K.C.; Yang, X.H.; Du, W.T.; Qin, X.; Wang, L. Comparison and evaluation of the performance of reanalysis datasets for compound extreme temperature and precipitation events in the Qilian Mountains. Atmos. Res. 2024, 304, 107375. [Google Scholar] [CrossRef]
- He, Y.L.; Xiong, Q.L.; Yu, L.; Yan, W.B.; Qu, X.X. Impact of Climate Change on Potential Distribution Patterns of Alpine Vegetation in the Hengduan Mountains Region, China. Mt. Res. Dev. 2020, 40, R48–R54. [Google Scholar] [CrossRef]
- Qian, D.W.; Cao, G.M.; Du, Y.G.; Li, Q.; Guo, X.W. Impacts of climate change and human factors on land cover change in inland mountain protected areas: A case study of the Qilian Mountain National Nature Reserve in China. Environ. Monit. Assess. 2019, 191, 486. [Google Scholar] [CrossRef]
- Yan, X.; Li, Q.; Deng, Y.; Gao, L.; Gou, X. Warming-induced radial growth reduction in Betula albosinensis, eastern Qilian Mountains, China. Ecol. Indic. 2021, 120, 106956. [Google Scholar] [CrossRef]
- Gradel, A.; Haensch, C.; Ganbaatar, B.; Dovdondemberel, B.; Nadaldorj, O.; Guenther, B. Response of white birch (Betula platyphylla Sukaczev) to temperature and precipitation in the mountain forest steppe and taiga of northern Mongolia. Dendrochronologia 2017, 41, 24–33. [Google Scholar] [CrossRef]
- Guo, Y.; Li, G.; Hu, Y.; Kang, D.; Wang, D.; Yang, G. Regeneration of Betula albosinensis in Strip Clearcut and Uncut Forests of the Qinling Mountains in China. PLoS ONE 2013, 8, e59375. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.Y.; Palmroth, S.; Pang, X.Y.; Tang, B.; Liu, Q.; Oren, R. Differential responses of Picea asperata and Betula albosinensis to nitrogen supply imposed by water availability. Tree Physiol. 2018, 38, 1694–1705. [Google Scholar] [CrossRef]
- Qin, M.; Gao, X.; Feng, M.; Jin, N.; Wang, C.; Cheng, W. Modeling of the potential geographical distribution of naked oat under climate change. Front. Plant Sci. 2023, 13, 1009577. [Google Scholar] [CrossRef]
- Cheng, X.L.; Nizamani, M.M.; Jim, C.Y.; Balfour, K.; Da, L.J.; Qureshi, S.; Zhu, Z.X.; Wang, H.F. Using SPOT Data and FRAGSTAS to Analyze the Relationship between Plant Diversity and Green Space Landscape Patterns in the Tropical Coastal City of Zhanjiang, China. Remote Sens. 2020, 12, 3477. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Xiao, N.W.; Shen, M.; Li, J.S. Comparison between optimized MaxEnt and random forest modeling in predicting potential distribution: A case study with Quasipaa boulengeri in China. Sci. Total Environ. 2022, 842, 156867. [Google Scholar] [CrossRef]
- Cutler, D.R.; Edwards, T.C.; Beard, K.H.; Cutler, A.; Hess, K.T. Random forests for classification in ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef]
- Romero-Sanchez, M.E.; Velasco-Garcia, M.V.; Perez-Miranda, R.; Velasco-Bautista, E.; Gonzalez-Hernandez, A. Different Modelling Approaches to Determine Suitable Areas for Conserving Egg-Cone Pine (Pinus oocarpa Schiede) Plus Trees in the Central Part of Mexico. Forests 2022, 13, 2112. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, H.; Zhao, Z.; Liu, J.; Zhang, Q.; Zhang, X.; Gu, W. The Global Potential Distribution of Invasive Plants: Anredera cordifolia under Climate Change and Human Activity Based on Random Forest Models. Sustainability 2020, 12, 1491. [Google Scholar] [CrossRef]
- Yao, Y.; Cheng, T.; Sun, Z.H.; Li, L.L.; Chen, D.S.; Chen, Z.H.; Wei, J.L.; Guan, Q.F. VecLI: A framework for calculating vector landscape indices considering landscape fragmentation. Environ. Model. Softw. 2022, 149, 105325. [Google Scholar] [CrossRef]
- Kupfer, J.A. Landscape ecology and biogeography: Rethinking landscape metrics in a post-FRAGSTATS landscape. Prog. Phys. Geogr.-Earth Environ. 2012, 36, 400–420. [Google Scholar] [CrossRef]
- Wang, X.H.; Sun, Y.M.; Jia, W.W.; Wang, H.Z.; Zhu, W.C. Coupling of Forest Carbon Densities with Landscape Patterns and Climate Change in the Lesser Khingan Mountains, Northeast China. Sustainability 2023, 15, 14981. [Google Scholar] [CrossRef]
- Roy, P.S.; Murthy, M.S.R.; Roy, A.; Kushwaha, S.P.S.; Singh, S.; Jha, C.S.; Behera, M.D.; Joshi, P.K.; Jagannathan, C.; Karnatak, H.C.; et al. Forest fragmentation in India. Curr. Sci. 2013, 105, 774–780. [Google Scholar]
- Hou, X.Y. Vegetation Atlas of China. Chinese Academy of Science, the Editorial Board of Vegetation Map of China; Scientific Press: Beijing, China, 2001. [Google Scholar]
- Zhu, Q.; Wang, F.; Yi, Q.; Zhang, X.; Chen, S.; Zheng, J.; Li, J.; Xu, T.; Peng, D. Modeling soybean cultivation suitability in China and its future trends in climate change scenarios. J. Environ. Manag. 2023, 345, 118934. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Harvey, B.J.; Cook, P.; Shaffrey, L.C.; Schiemann, R. The Response of the Northern Hemisphere Storm Tracks and Jet Streams to Climate Change in the CMIP3, CMIP5, and CMIP6 Climate Models. J. Geophys. Res.-Atmos. 2020, 125, e2020JD032701. [Google Scholar] [CrossRef]
- Tokarska, K.B.; Stolpe, M.B.; Sippel, S.; Fischer, E.M.; Smith, C.J.; Lehner, F.; Knutti, R. Past warming trend constrains future warming in CMIP6 models. Sci. Adv. 2020, 6, eaaz9549. [Google Scholar] [CrossRef]
- Wu, T.W.; Lu, Y.X.; Fang, Y.J.; Xin, X.G.; Li, L.; Li, W.P.; Jie, W.H.; Zhang, J.; Liu, Y.M.; Zhang, L.; et al. The Beijing Climate Center Climate System Model (BCC-CSM): The main progress from CMIP5 to CMIP6. Geosci. Model Dev. 2019, 12, 1573–1600. [Google Scholar] [CrossRef]
- Jin, H.M.; Qiao, L.; Wang, S.C.; Kong, L.W.; Zhang, J. Performance evaluation of surface air temperature simulated by the Beijing Climate Central Climate Model based on the climate complexity. Clim. Dyn. 2024, 62, 4331–4342. [Google Scholar] [CrossRef]
- Rawat, N.; Purohit, S.; Painuly, V.; Negi, G.S.; Bisht, M.P.S. Habitat distribution modeling of endangered medicinal plant Picrorhiza kurroa (Royle ex Benth) under climate change scenarios in Uttarakhand Himalaya, India. Ecol. Inform. 2022, 68, 101550. [Google Scholar] [CrossRef]
- Sun, C.; Zuo, J.; Shi, X.; Liu, X.; Liu, H. Diverse Inter-Annual Variations of Winter Siberian High and Link with Eurasian Snow in Observation and BCC-CSM2-MR Coupled Model Simulation. Front. Earth Sci. 2021, 9, 761311. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Zou, H.; Wang, Z.; Zhu, X.; Zhang, Y.; Liu, Z. Distribution Pattern of Suitable Areas and Corridor Identification of Endangered Ephedra Species in China. Plants 2024, 13, 890. [Google Scholar] [CrossRef] [PubMed]
- Thuiller, W.; Lafourcade, B.; Engler, R.; Araujo, M.B. BIOMOD—A platform for ensemble forecasting of species distributions. Ecography 2009, 32, 369–373. [Google Scholar] [CrossRef]
- Rathore, P.; Roy, A.; Karnatak, H. Modelling the vulnerability of Taxus wallichiana to climate change scenarios in South East Asia. Ecol. Indic. 2019, 102, 199–207. [Google Scholar] [CrossRef]
- Wu, S.J.; Zhu, T.H.; Qiao, T.M.; Li, S.J.; Shan, H. Prediction of the Potential Distribution of Dendrolimus houi Lajonquiere in Sichuan of China Based on the Species Distribution Model. Appl. Ecol. Environ. Res. 2021, 19, 2227–2240. [Google Scholar] [CrossRef]
- Shi, X.; Wang, J.; Zhang, L.; Chen, S.; Zhao, A.; Ning, X.; Fan, G.; Wu, N.; Zhang, L.; Wang, Z. Prediction of the potentially suitable areas of Litsea cubeba in China based on future climate change using the optimized MaxEnt model. Ecol. Indic. 2023, 148, 110093. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, P.; Zou, H.; Ji, X.; Wang, Z.; Liu, Z. Adaptive Distribution and Vulnerability Assessment of Endangered Maple Species on the Tibetan Plateau. Forests 2024, 15, 491. [Google Scholar] [CrossRef]
- Saranya, K.R.L.; Lakshmi, T.V.; Reddy, C.S. Predicting the potential sites of Chromolaena odorata and Lantana camara in forest landscape of Eastern Ghats using habitat suitability models. Ecol. Inform. 2021, 66, 101455. [Google Scholar] [CrossRef]
- Mohapatra, J.; Singh, C.P.; Hamid, M.; Verma, A.; Semwal, S.C.; Gajmer, B.; Khuroo, A.A.; Kumar, A.; Nautiyal, M.C.; Sharma, N.; et al. Modelling Betula utilis distribution in response to climate-warming scenarios in Hindu-Kush Himalaya using random forest. Biodivers. Conserv. 2019, 28, 2295–2317. [Google Scholar] [CrossRef]
- Guo, Y.; Wei, H.; Lu, C.; Gao, B.; Gu, W. Predictions of potential geographical distribution and quality of Schisandra sphenanthera under climate change. PeerJ 2016, 4, e2554. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wei, Y.; Yue, J.; Wang, Z.; Zou, H.; Ji, X.; Zhang, S.; Liu, Z. Prediction of Potential Suitable Areas and Priority Protection for Cupressus gigantea on the Tibetan Plateau. Plants 2024, 13, 896. [Google Scholar] [CrossRef] [PubMed]
- Webb, G.I.; Ting, K.M. On the application of ROC analysis to predict classification performance under varying class distributions. Mach. Learn. 2005, 58, 25–32. [Google Scholar] [CrossRef]
- Kwon, Y.-S.; Bae, M.-J.; Hwang, S.-J.; Kim, S.-H.; Park, Y.-S. Predicting potential impacts of climate change on freshwater fish in Korea. Ecol. Inform. 2015, 29, 156–165. [Google Scholar] [CrossRef]
- Mouton, A.M.; De Baets, B.; Goethals, P.L.M. Ecological relevance of performance criteria for species distribution models. Ecol. Model. 2010, 221, 1995–2002. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, H.; Zhang, X.; Liu, J.; Zhang, Q.; Gu, W. Non-Pessimistic Predictions of the Distributions and Suitability of Metasequoia glyptostroboides under Climate Change Using a Random Forest Model. Forests 2020, 11, 62. [Google Scholar] [CrossRef]
- Ma, J.; Li, J.; Wu, W.; Liu, J. Global forest fragmentation change from 2000 to 2020. Nat. Commun. 2023, 14, 3752. [Google Scholar] [CrossRef]
- Bao, R.; Li, X.L.; Zheng, J.H. Feature tuning improves MAXENT predictions of the potential distribution of Pedicularis longiflora Rudolph and its variant. PeerJ 2022, 10, 13337. [Google Scholar] [CrossRef]
- Swets, J.A. Measuring the Accuracy of Diagnostic Systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef]
- Zhang, P.; Kong, X.; Bakker, E.S.; Xu, J.; Zhang, M. Temperature affects carbon and nitrogen stable isotopic signatures of aquatic plants. Aquat. Sci. 2021, 83, 39. [Google Scholar] [CrossRef]
- Wang, C.J.; Liu, C.Z.; Wan, J.Z.; Zhang, Z.X. Climate change may threaten habitat suitability of threatened plant species within Chinese nature reserves. PeerJ 2016, 4, e2091. [Google Scholar] [CrossRef] [PubMed]
- Pugnaire, F.I.; Morillo, J.A.; Peñuelas, J.; Reich, P.B.; Bardgett, R.D.; Gaxiola, A.; Wardle, D.A.; van der Putten, W.H. Climate change effects on plant-soil feedbacks and consequences for biodiversity and functioning of terrestrial ecosystems. Sci. Adv. 2019, 5, eaaz1834. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.T.; Chen, J.Y.; Sun, W.B. Distributional responses to climate change of two maple species in southern China. Ecol. Evol. 2023, 13, e10490. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhao, P.; Yue, M. Canopy disturbance and gap partitioning promote the persistence of a pioneer tree population in a near-climax temperate forest of the Qinling Mountains, China. Ecol. Evol. 2019, 9, 7676–7687. [Google Scholar] [CrossRef]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef]
- Deng, C.; Ma, X.; Xie, M.; Bai, H. Effect of Altitude and Topography on Vegetation Phenological Changes in the Niubeiliang Nature Reserve of Qinling Mountains, China. Forests 2022, 13, 1229. [Google Scholar] [CrossRef]
- Thomas, C.D.; Cameron, A.; Green, R.E.; Bakkenes, M.; Beaumont, L.J.; Collingham, Y.C.; Erasmus, B.F.N.; de Siqueira, M.F.; Grainger, A.; Hannah, L.; et al. Extinction risk from climate change. Nature 2004, 427, 145–148. [Google Scholar] [CrossRef]
- Wang, W.J.; Thompson, F.R., III; He, H.S.; Fraser, J.S.; Dijak, W.D.; Jones-Farrand, T. Climate change and tree harvest interact to affect future tree species distribution changes. J. Ecol. 2019, 107, 1901–1917. [Google Scholar] [CrossRef]
- Román-Palacios, C.; Wiens, J.J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl. Acad. Sci. USA 2020, 117, 4211–4217. [Google Scholar] [CrossRef]
- Braunisch, V.; Coppes, J.; Arlettaz, R.; Suchant, R.; Zellweger, F.; Bollmann, K. Temperate Mountain Forest Biodiversity under Climate Change: Compensating Negative Effects by Increasing Structural Complexity. PLoS ONE 2014, 9, e97718. [Google Scholar] [CrossRef]
- Engler, R.; Randin, C.F.; Thuiller, W.; Dullinger, S.; Zimmermann, N.E.; Araújo, M.B.; Pearman, P.B.; Le Lay, G.; Piedallu, C.; Albert, C.H.; et al. 21st century climate change threatens mountain flora unequally across Europe. Glob. Change Biol. 2011, 17, 2330–2341. [Google Scholar] [CrossRef]
- Song, M.H.; Zhou, C.P.; Ouyang, H. Distributions of dominant tree species on the Tibetan Plateau under current and future climate scenarios. Mt. Res. Dev. 2004, 24, 166–173. [Google Scholar] [CrossRef]
- He, X.; Burgess, K.S.; Yang, X.-F.; Ahrends, A.; Gao, L.-M.; Li, D.-Z. Upward elevation and northwest range shifts for alpine Meconopsis species in the Himalaya-Hengduan Mountains region. Ecol. Evol. 2019, 9, 4055–4064. [Google Scholar] [CrossRef]
- Zhang, F.X.; Yang, L.H.; Wang, C.J.; Zhang, C.H.; Wan, J.Z. Distribution and Conservation of Plants in the Northeastern Qinghai-Tibet Plateau under Climate Change. Diversity 2022, 14, 956. [Google Scholar] [CrossRef]
- Ni, J. Impacts of climate change on Chinese ecosystems: Key vulnerable regions and potential thresholds. Reg. Environ. Change 2011, 11, S49–S64. [Google Scholar] [CrossRef]
- Takahashi, K.; Okuhara, I. Forecasting the effects of global warming on radial growth of subalpine trees at the upper and lower distribution limits in central Japan. Clim. Change 2013, 117, 273–287. [Google Scholar] [CrossRef]
- Wilson, M.C.; Chen, X.Y.; Corlett, R.T.; Didham, R.K.; Ding, P.; Holt, R.D.; Holyoak, M.; Hu, G.; Hughes, A.C.; Jiang, L.; et al. Habitat fragmentation and biodiversity conservation: Key findings and future challenges. Landsc. Ecol. 2016, 31, 219–227. [Google Scholar] [CrossRef]
- Bruna, E.M.; Fiske, I.J.; Trager, M.D. Habitat fragmentation and plant populations: Is what we know demographically irrelevant? J. Veg. Sci. 2009, 20, 569–576. [Google Scholar] [CrossRef]
- Lemordant, L.; Gentine, P. Vegetation Response to Rising CO2 Impacts Extreme Temperatures. Geophys. Res. Lett. 2019, 46, 1383–1392. [Google Scholar] [CrossRef]
- Masuda, K.; Setoguchi, H.; Nagasawa, K.; Ishihara, M.I.; Sawa, K.; Horie, K.; Tsuboi, H.; Fukumoto, S.; Tango, T.; Sakaguchi, S. Rear-edge daylily populations show legacies of habitat fragmentation due to the Holocene climate warming. J. Biogeogr. 2023, 50, 551–563. [Google Scholar] [CrossRef]
- Yu, X.D.; Luo, T.H.; Zhou, H.Z. Distribution of carabid beetles among 40-year-old regenerating plantations and 100-year-old naturally regenerated forests in Southwestern China. For. Ecol. Manag. 2008, 255, 2617–2625. [Google Scholar] [CrossRef]
- Pálsson, S.; Wasowicz, P.; Heiomarsson, S.; Magnússon, K.P. Population structure and genetic variation of fragmented mountain birch forests in Iceland. J. Hered. 2023, 114, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Chhetri, P.K.; Gaddis, K.D.; Cairns, D.M. Predicting the Suitable Habitat of Treeline Species in the Nepalese Himalayas Under Climate Change. Mt. Res. Dev. 2018, 38, 153–163. [Google Scholar] [CrossRef]
- Liu, J.J.; Wilson, M.; Hu, G.; Liu, J.L.; Wu, J.G.; Yu, M.J. How does habitat fragmentation affect the biodiversity and ecosystem functioning relationship? Landsc. Ecol. 2018, 33, 341–352. [Google Scholar] [CrossRef]
- Rawat, B.; Gairola, S.; Tewari, L.M.; Rawal, R.S. Long-term forest vegetation dynamics in Nanda Devi Biosphere Reserve, Indian west Himalaya: Evidence from repeat studies on compositional patterns. Environ. Monit. Assess. 2021, 193, 459. [Google Scholar] [CrossRef] [PubMed]
- Praticò, S.; Solano, F.; Di Fazio, S.; Modica, G. Machine Learning Classification of Mediterranean Forest Habitats in Google Earth Engine Based on Seasonal Sentinel-2 Time-Series and Input Image Composition Optimisation. Remote Sens. 2021, 13, 586. [Google Scholar] [CrossRef]
- Zheng, J.P.; Yuan, S.; Wu, W.Z.; Li, W.J.; Yu, L.; Fu, H.H.; Coomes, D. Surveying coconut trees using high-resolution satellite imagery in remote atolls of the Pacific Ocean. Remote Sens. Environ. 2023, 287, 113485. [Google Scholar] [CrossRef]
- Zhang, K.L.; Yao, L.J.; Meng, J.S.; Tao, J. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Sci. Total Environ. 2018, 634, 1326–1334. [Google Scholar] [CrossRef]
- Sandfort, R.; Uhlhorn, B.; Geissler, G.; Lyhne, I.; Jiricka-Pürrer, A. AI will change EA practice—But are we ready for it? A call for discussion based on developments in collecting and processing biodiversity data. Impact Assess. Proj. Apprais. 2024, 42, 200–208. [Google Scholar] [CrossRef]
Category | Abbreviations | Environmental Variables |
---|---|---|
Temperature | Bio1 | Annual mean temperature |
Bio2 | Mean temperature, diurnal range | |
Bio3 | Isothermality | |
Bio4 | Temperature seasonality | |
Precipitation | Bio12 | Annual precipitation |
Bio15 | Precipitation seasonality | |
Soil | T_pH_H2O | Topsoil pH |
T_CLAY | Percentage of the clay in the topsoil | |
T_REF_BULK | Topsoil reference bulk density | |
T_pH_H2O | Topsoil pH | |
Terrain | ALT | Elevation |
SLO | Slope |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Zhou, Y.; Ji, X.; Wang, Z.; Liu, Z. Climate Change Drives the Adaptive Distribution and Habitat Fragmentation of Betula albosinensis Forests in China. Forests 2025, 16, 184. https://doi.org/10.3390/f16010184
Zhang H, Zhou Y, Ji X, Wang Z, Liu Z. Climate Change Drives the Adaptive Distribution and Habitat Fragmentation of Betula albosinensis Forests in China. Forests. 2025; 16(1):184. https://doi.org/10.3390/f16010184
Chicago/Turabian StyleZhang, Huayong, Yue Zhou, Xiande Ji, Zhongyu Wang, and Zhao Liu. 2025. "Climate Change Drives the Adaptive Distribution and Habitat Fragmentation of Betula albosinensis Forests in China" Forests 16, no. 1: 184. https://doi.org/10.3390/f16010184
APA StyleZhang, H., Zhou, Y., Ji, X., Wang, Z., & Liu, Z. (2025). Climate Change Drives the Adaptive Distribution and Habitat Fragmentation of Betula albosinensis Forests in China. Forests, 16(1), 184. https://doi.org/10.3390/f16010184