Spatiotemporal Dynamics of Fine Root Biomass in Chinese Fir (Cunninghamia lanceolata) Stumps and Their Impacts on Soil Chemical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design
2.2.1. Fine Root Sample Collection
2.2.2. Soil Sample Collection
2.2.3. Fine Root Biomass
2.2.4. Calculation of the Fine Root Loss Coefficient
2.2.5. Determination of the Soil Chemical Properties of Chinese Fir Stumps
2.3. Data Analysis
3. Results
3.1. Spatial Distribution Characteristics of Fine Root Biomass in Chinese Fir Stumps
3.1.1. Vertical Distribution
3.1.2. Horizontal Distribution
3.2. Fine Root Biomass Loss Coefficient and Loss Period of Chinese Fir Stumps
3.3. Trends in Soil Chemical Properties Around Chinese Fir Stumps
4. Discussion
4.1. The Variation in Living Fine Root Biomass of Chinese Fir Stumps over Time
4.2. Spatial Variability in Living Fine Root Biomass in Chinese Fir Stumps
4.3. The Impact of Stump Fine Root Loss on Soil Chemical Properties
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, S.; Yang, Y.; Wang, H. Development strategy and management countermeasures of planted forests in China: Transforming from timber-centered single objective management towards multi-purpose management for enhancing quality and benefits of ecosystem services. Acta Ecol. Sin. 2018, 3, 1–10. [Google Scholar]
- Gominho, J.; Costa, R.; Lourenço, A.; Neiva, D.M.; Pereira, H. The effect of different pre-treatments to improve delignification of eucalypt stumps in a biorefinery context. Bioresour. Technol. Rep. 2019, 6, 89–95. [Google Scholar] [CrossRef]
- Schumacher, M.V.; Witschoreck, R.; Calil, F.N.; Lopes, V.G. Manejo da biomassa e sustentabilidade nutricional em povoamentos de Eucalyptus spp. em pequenas propriedades rurais. Ciênc. Florest. 2019, 29, 144–156. [Google Scholar] [CrossRef]
- Yuan, J.; Hou, L.; Wei, X.; Shang, Z.; Cheng, F.; Zhang, S. Decay and nutrient dynamics of coarse woody debris in the Qinling Mountains, China. PLoS ONE 2017, 12, e0175203. [Google Scholar] [CrossRef]
- Krankina, O.N.; Harmon, M.E. Dynamics of the dead wood carbon pool in northwestern Russian boreal forests. Water Air Soil Pollut. 1995, 82, 227–238. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, W.Q.; Wu, F.Z.; Zhang, J.; Tan, B.; Zhang, X.T. Characteristics of stump stock and decomposition in Pinus massoniana plantation. Chin. J. Plant Ecol. 2016, 40, 458–468. [Google Scholar]
- Deng, X.; Liang, X.; Shen, L.; Liu, H.; Yang, M.; Zeng, M.; Liang, M.; Cheng, F. Decomposition and nutrient dynamics of stumps and coarse roots of Eucalyptus plantations in southern China. Ann. For. Sci. 2023, 80, 30. [Google Scholar] [CrossRef]
- Magnússon, R.Í.; Tietema, A.; Cornelissen, J.H.; Hefting, M.M.; Kalbitz, K. Tamm Review: Sequestration of carbon from coarse woody debris in forest soils. For. Ecol. Manag. 2016, 377, 1–15. [Google Scholar] [CrossRef]
- McCormack, M.L.; Dickie, I.A.; Eissenstat, D.M.; Fahey, T.J.; Fernandez, C.W.; Guo, D.; Helmisaari, H.S.; Hobbie, E.A.; Iversen, C.M.; Jackson, R.B.; et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytol. 2015, 207, 505–518. [Google Scholar] [CrossRef]
- Song, X.; Li, Q.; Gu, H. Effect of nitrogen deposition and management practices on fine root decomposition in Moso bamboo plantations. Plant Soil 2017, 410, 207–215. [Google Scholar] [CrossRef]
- Luo, Y.; Zhou, J.; Yue, X.; Ding, J. Effect of precipitation frequency on litter decomposition of three annual species (Setaria viridis, Artemisia sacrorum, and Chenopodium acuminatum) in a semi-arid sandy grassland of northeastern China. Arid Land Res. Manag. 2021, 35, 397–413. [Google Scholar] [CrossRef]
- Lin, C.F.; Yang, Y.S.; Chen, G.S.; Guo, J.F.; Han, Z.G. Decomposition of fine roots, nutrient release, and chemical composition changes in Chinese fir plantations. J. Subtrop. Resour. Environ. 2008, 3, 15–23. [Google Scholar]
- Chen, G.S.; He, Z.M.; Xie, J.S.; Yang, Y.S.; Jiang, Z.K. Comparison of fine root productivity, distribution, and turnover between Fujian cypress and Chinese fir plantations. Sci. Silvae Sin. 2004, 4, 15–21. [Google Scholar]
- Ma, J.; Kang, F.; Cheng, X.; Han, H. Moderate thinning increases soil organic carbon in Larix principis-rupprechtii (Pinaceae) plantations. Geoderma 2018, 329, 118–128. [Google Scholar] [CrossRef]
- Lucas, M.; Schlüter, S.; Vogel, H.J.; Vetterlein, D. Roots compact the surrounding soil depending on the structures they encounter. Sci. Rep. 2019, 9, 16236. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Men, X.; Sun, Z.; Chen, X. Exploring the role of stumps in soil ecology: A study of microsite organic carbon and enzyme activities in a Larix olgensis Henry plantation. Forests 2023, 14, 1027. [Google Scholar] [CrossRef]
- Walmsley, J.D.; Godbold, D.L. Stump harvesting for bioenergy–a review of the environmental impacts. Forestry 2010, 83, 17–38. [Google Scholar] [CrossRef]
- Modi, D.; Simard, S.; Bérubé, J.; Lavkulich, L.; Hamelin, R.; Grayston, S.J. Long-term effects of stump removal and tree species composition on the diversity and structure of soil fungal communities. FEMS Microbiol. Ecol. 2020, 96, fiaa061. [Google Scholar] [CrossRef]
- Cleary, M.R.; Arhipova, N.; Morrison, D.J.; Thomsen, I.M.; Sturrock, R.N.; Vasaitis, R.; Gaitnieks, T.; Stenlid, J. Stump removal to control root disease in Canada and Scandinavia: A synthesis of results from long-term trials. For. Ecol. Manag. 2013, 290, 5–14. [Google Scholar] [CrossRef]
- Karlsson, K.; Tamminen, P. Long-term effects of stump harvesting on soil properties and tree growth in Scots pine and Norway spruce stands. Scand. J. For. Res. 2013, 28, 550–558. [Google Scholar] [CrossRef]
- Kaarakka, L.; Hyvönen, R.; Strömgren, M.; Palviainen, M.; Persson, T.; Olsson, B.A.; Launonen, E.; Vegerfors, B.; Helmisaari, H.S. Carbon and nitrogen pools and mineralization rates in boreal forest soil after stump harvesting. For. Ecol. Manag. 2016, 377, 61–70. [Google Scholar] [CrossRef]
- Hess, L.; De Kroon, H. Effects of rooting volume and nutrient availability as an alternative explanation for root self/non-self discrimination. J. Ecol. 2007, 95, 241–251. [Google Scholar] [CrossRef]
- Huang, C.H.; Zhou, G.Y.; Zhao, H.B.; Zhou, Z.P.; Qiu, Z.J. Determination of root system biomass of matured Cunninghamia lanceolata plantation in Tianjingshan Forest Farm, Guangdong province. J. Cent. South Univ. For. Technol. 2013, 33, 80–86. [Google Scholar]
- Zheng, G.; Su, X.; Chen, X.; Hu, M.; Ju, W.; Zou, B.; Wang, S.; Wang, Z.; Hui, D.; Guo, J.; et al. Variations in fine root biomass, morphology, and vertical distribution in both trees and understory vegetation among Chinese fir plantations. For. Ecol. Manag. 2024, 557, 121748. [Google Scholar] [CrossRef]
- Zhang, F.; Li, M.; Zhang, S.; Liu, J.; Ren, Y.; Cao, Y.; Li, F. China’s National Reserve Forest Project contribution to carbon neutrality and path to profitability. For. Policy Econ. 2024, 160, 103146. [Google Scholar] [CrossRef]
- Yang, Y.S.; Chen, G.S.; Lin, P.; Xie, J.S.; Guo, J.F. Fine root distribution, seasonal pattern and production in four plantations compared with a natural forest in subtropical China. Ann. For. Sci. 2004, 61, 617–627. [Google Scholar] [CrossRef]
- McClaugherty, C.; Aber, J.D.; Melillo, J.M. The role of fine roots in the organicmatter and nitrogen budgets of two forested ecosystems. Ecology 1982, 63, 1481–1490. [Google Scholar] [CrossRef]
- Liao, Y.; Fan, H.; Wei, X.; Wu, J.; Duan, H.; Fu, X.; Liu, W.; Wang, H.; Zhan, X.; Tang, P.; et al. Competition increased fine root biomass in Chinese fir (Cunninghamia lanceolata) plantations in Subtropical China. For. Ecol. Manag. 2019, 435, 151–157. [Google Scholar] [CrossRef]
- Olson, J.S. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 1963, 44, 322–331. [Google Scholar] [CrossRef]
- LY/T 1237-1999; Method for Determination of Soil Organic Matter. China Academy of Forestry Research Institute of Forestry Forest Soil: Beijing, China, 1999.
- LY/T 1228-1999; Method for the Determination of Soil Total Nitrogen (Semi-Micro Kjeldahl Method). China Academy of Forestry Research Institute of Forestry Forest Soil: Beijing, China, 1999.
- LY/T 1232-2015; Soil-Determination of Total Phosphorus by Alkali Fusion-Mo-Sb Anti Spectrophotometric Method. National Forestry Anministration: Beijing, China, 2015.
- Vogt, K.A.; Grier, C.C.; Vogt, D.J. Production, turnover, and nutrient dynamics of aboveground and belowground detritus of world forests. Adv. Ecol. Res. 1986, 15, 303–377. [Google Scholar]
- Pries, C.E.H.; Sulman, B.N.; West, C.; O’Neill, C.; Poppleton, E.; Porras, R.C.; Castanha, C.; Zhu, B.; Wiedemeier, D.B.; Torn, M.S. Root litter decomposition slows with soil depth. Soil Biol. Biochem. 2018, 125, 103–114. [Google Scholar] [CrossRef]
- Finér, L.; Ohashi, M.; Noguchi, K.; Hirano, Y. Factors causing variation in fine root biomass in forest ecosystems. For. Ecol. Manag. 2011, 261, 265–277. [Google Scholar] [CrossRef]
- Eissenstat, D.M.; Kucharski, J.M.; Zadworny, M.; Adams, T.S.; Koide, R.T. Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest. New Phytol. 2015, 208, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Huang, L.; Khoso, M.A.; Wu, H.; Han, D.; Ma, X.; Poudel, T.R.; Li, B.; Zhu, M.; Lan, Q.; et al. Fine root decomposition in forest ecosystems: An ecological perspective. Front. Plant Sci. 2023, 14, 1277510. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.M.D.; Zheng, D.Y.; Wang, X.; Zhao, H.B.; Li, Z.J.; Li, D.R.; Chen, Y.H.; Zhou, G.Y.; Pi, Z.H.; Guo, H. Changes of activity, non-structural carbon content, and carbon, nitrogen, and phosphorus stoichiometry in live fine roots of Chinese fir stumps. Chin. J. Appl. Environ. Biol. 2024, 30, 904–910. [Google Scholar]
- Ruffel, S.; Krouk, G.; Ristova, D.; Shasha, D.; Birnbaum, K.D.; Coruzzi, G.M. Nitrogen economics of root foraging: Transitive closure of the nitrate–cytokinin relay and distinct systemic signaling for N supply vs. demand. Proc. Natl. Acad. Sci. USA 2011, 108, 18524–18529. [Google Scholar] [CrossRef]
- Qin, J.; Lu, J.; Peng, Y.; Guo, X.; Yang, L.; Martin, A.R. Thinning-induced decrease in fine root biomass, but not other fine root traits in global forests. J. Environ. Manag. 2024, 370, 122938. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef]
- Li, A.; Fahey, T.J.; Pawlowska, T.E.; Fisk, M.C.; Burtis, J. Fine root decomposition, nutrient mobilization and fungal communities in a pine forest ecosystem. Soil Biol. Biochem. 2015, 83, 76–83. [Google Scholar] [CrossRef]
- Bai, W.; Wan, S.; Niu, S.; Liu, W.; Chen, Q.; Wang, Q.; Zhang, W.; Han, X.; Li, L. Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: Implications for ecosystem C cycling. Glob. Change Biol. 2010, 16, 1306–1316. [Google Scholar] [CrossRef]
- Carvalho, J.I.; Carayugan, M.B.; Tran, L.T.N.; Hernandez, J.O.; Youn, W.B.; An, J.Y.; Park, B.B. Variation in Root Biomass and Distribution Based on the Topography, Soil Properties, and Tree Influence Index: The Case of Mt. Duryun in Republic of Korea. Plants 2024, 13, 1340. [Google Scholar] [CrossRef] [PubMed]
- Poorter, H.; Niklas, K.J.; Reich, P.B.; Oleksyn, J.; Poot, P.; Mommer, L. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytol. 2012, 193, 30–50. [Google Scholar] [CrossRef] [PubMed]
- Messier, J.; Becker-Scarpitta, A.; Li, Y.; Violle, C.; Vellend, M. Root and biomass allocation traits predict changes in plant species and communities over four decades of global change. Ecology 2024, 105, e4389. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Bai, Y.; Du, H.; Hu, Y.; Rao, Y.; Chen, C.; Cai, Y. The spatial and seasonal variation characteristics of fine roots in different plant configuration modes in new reclamation saline soil of humid climate in China. Ecol. Eng. 2016, 86, 231–238. [Google Scholar] [CrossRef]
- Yang, X.Y.; Han, Y.Z.; Zhang, Y.X. Effects of horizontal distance on fine root biomass and seasonal dynamics in larix principis-rupprechtii plantation. Chin. J. Plant Ecol. 2008, 32, 1277–1284. [Google Scholar]
- Zhang, T.; Yan, Q.; Wang, G.G.; Zhu, J. The effects of stump size and within-gap position on sprout non-structural carbohydrates concentrations and regeneration in forest gaps vary among species with different shade tolerances. Ecol. Process. 2021, 10, 25. [Google Scholar] [CrossRef]
- Ibrahim, F.; Adu-Bredu, S.; Addo-Danso, S.D.; Duah-Gyamfi, A.; Manu, E.A.; Malhi, Y. Patterns and controls on fine-root dynamics along a rainfall gradient in Ghana. Trees 2020, 34, 917–929. [Google Scholar] [CrossRef]
- Vengavasi, K.; Pandey, R.; Soumya, P.R.; Hawkesford, M.J.; Siddique, K.H. Below-ground physiological processes enhancing phosphorus acquisition in plants. Plant Physiol. Rep. 2021, 26, 600–613. [Google Scholar] [CrossRef]
- Fang, J.; Lutz, J.A.; Shugart, H.H.; Liu, F.; Yan, X. Predicting soil mineralized nitrogen dynamics with fine root growth and microbial processes in temperate forests. Biogeochemistry 2022, 158, 21–37. [Google Scholar] [CrossRef]
- Yang, X.; Wang, B.; Fakher, A.; An, S.; Kuzyakov, Y. Contribution of roots to soil organic carbon: From growth to decomposition experiment. Catena 2023, 231, 107317. [Google Scholar] [CrossRef]
- Jia, S.X.; Wu, C.J.; Liu, X.F.; Guo, J.F. Effects of harvest residue treatments on soil phosphorus fractions and availability in a young Chinese fir plantation. J. Appl. Ecol. 2019, 30, 3662–3670. [Google Scholar]
- Shabtai, I.A.; Hafner, B.D.; Schweizer, S.A.; Höschen, C.; Possinger, A.; Lehmann, J.; Bauerle, T. Root exudates simultaneously form and disrupt soil organo-mineral associations. Commun. Earth Environ. 2024, 5, 699. [Google Scholar] [CrossRef]
- Helfenstein, J.; Ringeval, B.; Tamburini, F.; Mulder, V.L.; Goll, D.S.; He, X.; Alblas, E.; Wang, Y.; Mollier, A.; Frossard, E. Understanding soil phosphorus cycling for sustainable development: A review. One Earth 2024, 7, 1727–1740. [Google Scholar] [CrossRef]
- Khashi u Rahman, M.; Wang, X.; Gao, D.; Zhou, X.; Wu, F. Root exudates increase phosphorus availability in the tomato/potato onion intercroping system. Plant Soil 2021, 464, 45–62. [Google Scholar] [CrossRef]
- Jing, H.; Wang, H.; Wang, G.; Liu, G.; Cheng, Y. The mechanism effects of root exudate on microbial community of rhizosphere soil of tree, shrub, and grass in forest ecosystem under N deposition. ISME Commun. 2023, 3, 120. [Google Scholar] [CrossRef]
- Shepherd, R.M.; Oliverio, A.M. Micronutrients modulate the structure and function of soil bacterial communities. Soil Biol. Biochem. 2024, 192, 109384. [Google Scholar] [CrossRef]
- Zabowski, D.; Chambreau, D.; Rotramel, N.; Thies, W.G. Long-term effects of stump removal to control root rot on forest soil bulk density, soil carbon and nitrogen content. For. Ecol. Manag. 2008, 255, 720–727. [Google Scholar] [CrossRef]
- Jiang, X.; Liu, W.; Yang, H.; Wang, H.; Li, Z. Study on Mechanical Characteristics of Living Stumps and Reinforcement Mechanisms of Slopes. Sustainability 2024, 16, 4294. [Google Scholar] [CrossRef]
Logging Year | Altitude (m) | Stump Diameter (cm) | Soil Bulk Density (g·cm−3) | Retention Time (Age) |
---|---|---|---|---|
2023 | 959.8 ± 10.71 | 19.6 ± 1.40 | 1.25 ± 0.05 | 0 |
2022 | 1061.7 ± 3.57 | 19.0 ± 0.45 | 0.85 ± 0.04 | 1 |
2021 | 1041.2 ± 1.66 | 20.8 ± 1.73 | 0.87 ± 0.04 | 2 |
2020 | 996.0 ± 4.50 | 16.5 ± 0.39 | 0.97 ± 0.10 | 3 |
2019 | 556.7 ± 0.54 | 17.3 ± 0.92 | 1.00 ± 0.05 | 4 |
2018 | 945.7 ± 3.78 | 15.1 ± 0.37 | 0.95 ± 0.06 | 5 |
2017 | 764.5 ± 3.47 | 16.4 ± 1.26 | 1.28 ± 0.09 | 6 |
2015 | 634.0 ± 0.40 | 18.2 ± 0.33 | 1.09 ± 0.05 | 8 |
2014 | 757.6 ± 6.62 | 18.8 ± 1.48 | 1.30 ± 0.04 | 9 |
Loss Coefficient k | T0.5 (yr) | T9.5 (yr) | ||
---|---|---|---|---|
Live fine roots in different soil layers | 0–20 cm | 0.198 | 3.5 | 15.1 |
20–40 cm | 0.199 | 3.5 | 15.1 | |
40–60 cm | 0.193 | 3.6 | 15.5 | |
Live fine roots at different distances | 30 cm | 0.218 | 3.2 | 13.7 |
60 cm | 0.194 | 3.6 | 15.4 | |
90 cm | 0.176 | 3.9 | 17.0 | |
Total live fine root | 0–60 cm | 0.197 | 3.5 | 15.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, Y.; Wang, X.; Guo, H.; Zhou, G.; Chen, Y. Spatiotemporal Dynamics of Fine Root Biomass in Chinese Fir (Cunninghamia lanceolata) Stumps and Their Impacts on Soil Chemical Properties. Forests 2025, 16, 203. https://doi.org/10.3390/f16020203
Bao Y, Wang X, Guo H, Zhou G, Chen Y. Spatiotemporal Dynamics of Fine Root Biomass in Chinese Fir (Cunninghamia lanceolata) Stumps and Their Impacts on Soil Chemical Properties. Forests. 2025; 16(2):203. https://doi.org/10.3390/f16020203
Chicago/Turabian StyleBao, Yinmanda, Xu Wang, Hao Guo, Guangyi Zhou, and Yuehua Chen. 2025. "Spatiotemporal Dynamics of Fine Root Biomass in Chinese Fir (Cunninghamia lanceolata) Stumps and Their Impacts on Soil Chemical Properties" Forests 16, no. 2: 203. https://doi.org/10.3390/f16020203
APA StyleBao, Y., Wang, X., Guo, H., Zhou, G., & Chen, Y. (2025). Spatiotemporal Dynamics of Fine Root Biomass in Chinese Fir (Cunninghamia lanceolata) Stumps and Their Impacts on Soil Chemical Properties. Forests, 16(2), 203. https://doi.org/10.3390/f16020203