Tree Species Classification Based on Point Cloud Completion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. True-Color Point Cloud Data Acquisition
2.3. Methods
2.3.1. Data Pre-Processing and Single Tree Segmentation
2.3.2. Point Cloud Completion
Traditional Point Cloud Completion Method
- (1)
- When distinct trunk points are present in the individual tree point cloud, the trunk is used as both the central and symmetry axis. Then, the existing crown point cloud is rotated and replicated around the trunk to approximate the completion of the missing crown.
- (2)
- When distinct trunk points are absent in the individual tree point cloud, the crown is completed based on the morphological structure of conifer and broadleaf trees, as shown in Figure 3. The colored regions represent the existing crown, while the dashed areas simulate the missing crown, and the combination of the two forms is the complete crown. In the given conifer (broadleaf) tree model, P1 is the highest point in the missing crown point cloud, P2 is the vertex of the complete crown, h is the vertical distance between P1 and P2, and H is the crown height of the missing crown. The Hough transform is used to fit the edge points of the crown to extract the center point O of the tree and the radius D of the fitted circle. Based on the coordinates of point P1 (x1, y1), the distance d between the tree center O and the point P1 in the xoy plane is calculated. Finally, the following calculations can be derived using the theory of similar triangles and the ellipse equation:
Point Cloud Completion Method Based on Deep Leaning
2.3.3. Feature Extraction
2.3.4. Classification Methods
- (1)
- Random Forest
- (2)
- Support Vector Machine
- (3)
- Back Propagation Neural Network
- (4)
- Quadratic Discriminant Analysis
- (5)
- K-Nearest Neighbors
3. Results
3.1. Completion Results of Tree Crown Point Cloud
3.2. Comparison of Classification Results by Different Models
3.3. Feature Importance Evaluation
4. Discussion
4.1. Analysis of Point Cloud Completion Algorithm
4.2. Comparison of Classification Methods
4.3. Impact of Features on Classification
4.4. Limitations and Future Research
5. Conclusions
- (1)
- The GAN-based method of point cloud completion was proposed and introduce hybrid pooling module and AFE module to improve the network structure. This method finally achieved a good completion effect (avgCD = 6.14; avgF1 = 0.85). By comparing the classification accuracy of incomplete and completed trees, we demonstrated that the completion of missing point clouds was necessary. This method makes it possible to extract features from more detected single trees and lays a foundation for subsequent tree species classification.
- (2)
- In the classification of completed trees, the RF classifier showed the best performance with a limited number of training samples (OA = 87.41%) compared with the classification model constructed by other machine learning algorithms. The classification accuracy of coniferous trees including Pinus koraiensis and Larix gmelinii was higher, with the classification accuracy of more than 90%. Among the broad-leaved trees, the classification accuracy of Fraxinus mandshurica and Juglans mandshurica was poorer, with an average classification accuracy of about 80%.
- (3)
- The overall importance of RGB features was slightly greater than that of LiDAR point cloud features. The vegetation indices including VDVI, RGBRI, RGRI, NGRDI, and NGBDI and the intensity mean and skewness of LiDAR-derived data together with the tree structure features including crown area, crown width mean, and crown height, had a greater contribution to the tree species classification, which proved that the LiDAR point cloud can be used as an important data support for tree species classification. In addition, different feature indicators had different classification effects on different tree species. Both the vegetation indices and the tree structure parameters performed better for the identification of Pinus koraiensis, while the intensity features were more discriminative for Betula platyphyll.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, R.N.; Ou, G.L.; Dai, Q.L.; Xu, W.H.; Wang, L.G. Forest Types Classification of Shangri-La based on Google Earth Engine and Landsat Time-series Data. J. Southwest For. Univ. (Nat. Sci.) 2020, 40, 115–125. [Google Scholar]
- Cardinale, B.J.; Duffy, J.E.; Gonzalez, A.; Hooper, D.U.; Perrings, C.; Venail, P.; Narwani, A.; Mace, G.M.; Tilman, D.; Wardle, D.A.; et al. Biodiversity Loss and Its Impact on Humanity. Nature 2012, 486, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Fassnacht, F.E.; Latifi, H.; Stereńczak, K.; Modzelewska, A.; Lefsky, M.; Waser, L.T.; Straub, C.; Ghosh, A. Review of Studies on Tree Species Classification from Remotely Sensed Data. Remote Sens. Environ. 2016, 186, 64–87. [Google Scholar] [CrossRef]
- Yang, H.B.; Zhao, J.; Lan, Y.B.; Lu, L.Q.; Li, Z.M. Fraction Vegetation Cover Extraction of Winter Wheat based on RGB Image Obtained by UAV. Int. J. Precis. Agric. Aviat. 2019, 2, 54–61. [Google Scholar] [CrossRef]
- Du, X.Y.; Wan, L.; Cen, H.Y.; Chen, S.B.; Zhu, J.P.; Wang, H.Y.; He, Y. Multi-temporal Monitoring of Leaf Area Index of Rice under Different Nitrogen Treatments Using UAV Images. Int. J. Precis. Agric. Aviat. 2020, 3, 7–12. [Google Scholar] [CrossRef]
- Zhou, X.C.; Zheng, L.; Huang, H.Y. Classification of Forest Stand based on Multi-feature Optimization of UAV Visible Light Remote Sensing. Sci. Silvae Sin. 2021, 57, 24–36. [Google Scholar]
- Cao, K.L.; Zhang, X.L. An Improved Res-UNet Model for Tree Species Classification Using Airborne High-resolution Images. Remote Sens. 2020, 12, 1128. [Google Scholar] [CrossRef]
- Cao, J.J.; Leng, W.C.; Liu, K.; Liu, L.; He, Z.; Zhu, Y.H. Object-based Mangrove Species Classification Using Unmanned Aerial Vehicle Hyperspectral Images and Digital Surface Models. Remote Sens. 2018, 10, 89. [Google Scholar] [CrossRef]
- Dalponte, M.; Bruzzone, L.; Gianelle, D. Fusion of Hyperspectral and LIDAR Remote Sensing Data for Classification Forest Areas. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1416–1427. [Google Scholar] [CrossRef]
- Jones, T.G.; Coops, N.C.; Sharma, T. Assessing the Utility of Airborne Hyperspectral and LiDAR Data for Species Distribution Mapping in the Coastal Pacific Northwest, Canada. Remote Sens. Environ. 2010, 114, 2841–2852. [Google Scholar] [CrossRef]
- Wan, H.M.; Tang, Y.W.; Jing, L.H.; Li, H.; Qiu, F.; Wu, W.J. Tree Species Classification of Forest Stands Using Multisource Remote Sensing Data. Remote Sens. 2021, 13, 144. [Google Scholar] [CrossRef]
- Zhao, Q.H.; Jia, S.H.; Li, Y. Hyperspectral Remote Sensing Image Classification based on Tighter Random Projection with Minimal Intra-class Variance Algorithm. Pattern Recognit. 2021, 111, 107635. [Google Scholar] [CrossRef]
- Wallace, L.; Lucieer, A.; Watson, C.; Turner, D. Development of a UAV-LiDAR System with Application to Forest Inventory. Remote Sens. 2012, 4, 1519–1543. [Google Scholar] [CrossRef]
- Wallace, L.; Musk, R.; Lucieer, A. An Assessment of the Repeatability of Automatic Forest Inventory Metrics Derived from UAV-borne Laser Scanning Data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7160–7169. [Google Scholar] [CrossRef]
- Liu, Q.W.; Li, S.M.; Li, Z.Y.; Fu, L.Y.; Hu, K.L. Review on the Applications of UAV-based LiDAR and Photogrammetry in Forestry. Sci. Silvae Sin. 2017, 53, 134–148. [Google Scholar]
- Li, J.; Li, M.Z.; Quan, Y.; Wang, B.; Mo, Z.K. Tree Species Classification Using UAV-LiDAR with Hyperspectral Data. J. Northeast For. Univ. 2022, 50, 63–69. [Google Scholar]
- Wang, Y.T.; Wang, J.; Chang, S.P.; Sun, L.; An, L.K.; Chen, Y.H.; Xu, J.Q. Classification of Street Tree Species Using UAV Tilt Photogrammetry. Remote Sens. 2021, 13, 216–222. [Google Scholar] [CrossRef]
- Liu, H.R.; Fan, W.W.; Xu, Y.S.; Lin, W.S. Research Progress in Forest Information Extraction based on Multi-source Data Collaboration Operation. World For. Res. 2020, 33, 33–37. [Google Scholar]
- Deng, S.; Katoh, M.; Yu, X.; Hyyppä, J.; Gao, T. Comparison of Tree Species Classifications at the Individual Tree Level by Combining ALS Data and RGB Images Using Different Algorithms. Remote Sens. 2016, 8, 1034. [Google Scholar] [CrossRef]
- Xu, Z.Y.; Chen, Q.; Chen, Y.F. Tree Species Recognition based on Unmanned Aerial Vehicle Image with LiDAR Individual Tree Segmentation Aided. Trans. Chin. Soc. Agric. Mach. 2022, 53, 197–205. [Google Scholar]
- Li, H.Y.; Zhang, C.; Chen, Q.; Wang, J.; Peng, X.; Xu, Z.Y.; Liu, H.D.; Bai, M.X.; Chen, Y.F. Single Tree Species Identification based on Visible Light and LiDAR Data of UAV. J. Southwest For. Univ. (Nat. Sci. ) 2021, 41, 105–113. [Google Scholar]
- Matsuki, T.; Yokoya, N.; Iwasaki, A. Hyperspectral Tree Species Classification of Japanese Complex Mixed Forest with the Aid of LiDAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2177–2187. [Google Scholar] [CrossRef]
- Alonzo, M.; Bookhagen, B.; Roberts, D.A. Urban Tree Species Mapping Using Hyperspectral and Lidar Data Fusion. Remote Sens. Environ. 2014, 148, 70–83. [Google Scholar] [CrossRef]
- Dalponte, M.; Frizzera, L.; Gianelle, D. Individual Tree Crown Delineation and Tree Species Classification with Hyperspectral and LiDAR Data. PeerJ 2019, 6, e6227. [Google Scholar] [CrossRef]
- You, L.; Sun, Y.A.; Chang, X.S.; Du, L.M. Tree Point Cloud Completion Network based on Attention Mechanism. J. Comput.-Aided Des. Comput. Graph. 2024, 5, 1–10. [Google Scholar]
- Pauly, M.; Mitra, N.J.; Wallner, J.; Pottmann, H.; Guibas, L.J. Discovering Structural Regularity in 3D Geometry. ACM Trans. Graph. 2008, 27, 43. [Google Scholar] [CrossRef]
- Zheng, Q.; Sharf, A.; Wan, G.; Li, Y.; Mitra, N.J.; Cohen-Or, D.; Chen, B. Non-local Scan Consolidation for 3D Urban Scenes. ACM Trans. Graph. 2010, 29, 1–9. [Google Scholar]
- Chen, J.W.; Zhao, L.L.; Ren, L.C.; Sun, Z.Q.; Zhang, X.F.; Ma, S.W. Deep Learning-based Quality Enhancement for 3D Point Clouds: A survey. J. Image Graph. 2023, 28, 3295–3319. [Google Scholar]
- Yuan, W.; Khot, T.; Held, D.; Mertz, C.; Hebert, M. PCN: Point Completion Network. In Proceedings of the 2018 International Conference on 3D Vision (3DV), Verona, Italy, 5–8 September 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 728–737. [Google Scholar]
- Huang, Z.; Yu, Y.; Xu, J.; Ni, F.; Le, X. PF-net: Point Fractal Network for 3D Point Cloud Completion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 7662–7670. [Google Scholar]
- Wang, X.; Ang, M.H.; Lee, G.H. Cascaded Refinement Network for Point Cloud Completion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 790–799. [Google Scholar]
- Kim, S.; Hinckley, T.; Briggs, D. Classifying Individual Tree Genera Using Stepwise Cluster Analysis based on Height and Intensity Metrics Derived from Airborne Laser Scanner Data. Remote Sens. Environ. 2011, 115, 3329–3342. [Google Scholar] [CrossRef]
- Marrs, J.; Ni-Meister, W. Machine Learning Techniques for Tree Species Classification Using Co-Registered LiDAR and Hyperspectral Data. Remote Sens. 2019, 11, 819. [Google Scholar] [CrossRef]
- Jiang, Y.F.; Qi, J.G.; Chen, B.W.; Yan, M.; Huang, L.J.; Zhang, L. Classification of Mangrove Species with UAV Hyperspectral Imagery and Machine Learning Methods. Remote Sens. Technol. Appl. 2021, 36, 1416–1424. [Google Scholar]
- Huang, C.; Davis, L.S.; Townshend, J.R.G. An Assessment of Support Vector Machines for Land Cover Classification. Int. J. Remote Sens. 2002, 23, 725–749. [Google Scholar] [CrossRef]
- Duro, D.C.; Franklin, S.E.; Dubé, M.G. A Comparison of Pixel-based and Object-based Image Analysis with Selected Machine Learning Algorithms for the Classification of Agricultural Landscapes Using Spot-5 HRG Imagery. Remote Sens. Environ. 2012, 118, 259–272. [Google Scholar] [CrossRef]
- Ba, A.; Laslier, M.; Dufour, S.; Hubert-Moy, L. Riparian Trees Genera Identification based on Leaf-on/leaf-off Airborne Laser Scanner Data and Machine Learning Classifiers in Northern France. Int. J. Remote Sens. 2020, 41, 1645–1667. [Google Scholar] [CrossRef]
- Franklin, S.E.; Ahmed, O.S. Deciduous Tree Species Classification Using Object-based Analysis and Machine Learning with Unmanned Aerial Vehicle Multispectral Data. Int. J. Remote Sens. 2018, 39, 5236–5245. [Google Scholar] [CrossRef]
- Plaza, A.; Benediktsson, J.A.; Boardman, J.W.; Brazile, J.; Bruzzone, L.; Camps-Valls, G.; Chanussot, J.; Fauvel, M.; Gamba, P.; Gualtieri, A.; et al. Recent Advances in Techniques for Hyperspectral Image Processing. Remote Sens. Environ. 2009, 113, S110–S122. [Google Scholar] [CrossRef]
- Dalponte, M.; Bruzzone, L.; Vescovo, L.; Gianelle, D. The Role of Spectral Resolution and Classifier Complexity in the Analysis of Hyperspectral Images of Forest Areas. Remote Sens. Environ. 2009, 113, 2345–2355. [Google Scholar] [CrossRef]
- Dalponte, M.; Ørka, H.O.; Gobakken, T.; Gianelle, D.; Næsset, E. Tree Species Classification in Boreal Forests with Hyperspectral Data. IEEE Trans. Geosci. Remote Sens. 2012, 51, 2632–2645. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Zhang, D.L.; Zhen, Z. Individual Tree Species Classification based on Nonparametric Classification Algorithms and Multi-source Remote Sensing Data. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2019, 43, 103–112. [Google Scholar]
- Shi, Y.; Skidmore, A.K.; Wang, T.; Holzwarth, S.; Heiden, U.; Pinnel, N.; Zhu, X.; Heurich, M. Tree Species Classification Using Plant Functional Traits from LiDAR and Hyperspectral Data. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 207–219. [Google Scholar] [CrossRef]
- Sun, Y.X.; Liu, Z.G.; Dong, L.B. Spatial Point Patterns and Their Association Dynamics of Forest Landscapes in Maoershan region Northeast China between 1983 and 2016. Chin. J. Appl. Ecol. 2018, 29, 2601–2614. [Google Scholar]
- Wei, H.Y.; Zhang, Y.F.; Dong, L.B.; Liu, Z.G.; Chen, Y. Comprehensive Evaluation of Spatial Structure State for the Main Forest Types in Maoershan Mountain. J. Cent. South Univ. For. Technol. 2021, 41, 131–139. [Google Scholar]
- Angiulli, F.; Basta, S.; Pizzuti, C. Distance-based Detection and Prediction of Outliers. IEEE Trans. Knowl. Data Eng. 2005, 18, 145–160. [Google Scholar] [CrossRef]
- Angiulli, F.; Basta, S.; Lodi, S.; Sartori, C. Distributed Strategies for Mining Outliers in Large Data Sets. IEEE Trans. Knowl. Data Eng. 2012, 25, 1520–1532. [Google Scholar] [CrossRef]
- Wu, J. Research on Feature Extraction of Single Wood from Laser Point Cloud for Tending and Harvesting in Forest. Doctoral Dissertation, Beijing Forestry University, Beijing, China, 2021. [Google Scholar]
- Pu, Y.; Xu, D.; Wang, H.; Li, X.; Xu, X. A New Strategy for Individual Tree Detection and Segmentation from Leaf-on and Leaf-off UAV-LiDAR Point Clouds based on Automatic Detection of Seed Points. Remote Sens. 2023, 15, 1619. [Google Scholar] [CrossRef]
- Li, D.; Zhang, J.J.; Zhao, M.X. Extraction of Stand Factors in UAV Image based on FCM and Watershed Algorithm. Sci. Silvae Sin. 2019, 55, 180–187. [Google Scholar]
- Wang, S.T.; Geng, J.; Tu, L.L.; Yin, G.F. Influences of Semiellipsoid-shaped Crown on Gap Fraction and Clumping Index. Natl. Remote Sens. Bull. 2021, 25, 2103–2115. [Google Scholar] [CrossRef]
- Power, H.; Lemay, V.; Berninger, F.; Sattler, D.; Kneeshaw, D. Differences in Crown Characteristics Between Black (Picea mariana) and White Spruce (Picea glauca). Can. J. For. Res. 2012, 42, 1733–1743. [Google Scholar] [CrossRef]
- Cabo, C.; Ordóñez, C.; López-Sánchez, C.A.; Armesto, J. Automatic Dendrometry: Tree Detection, Tree Height and Diameter Estimation Using Terrestrial Laser Scanning. Int. J. Appl. Earth Obs. Geoinf. 2018, 69, 164–174. [Google Scholar] [CrossRef]
- Huang, Z.X. Extraction of DBH and Height Based on Backpack LiDAR Point Cloud Data. Ph.D. Thesis, Northeast Forestry University, Harbin, China, 2021. [Google Scholar]
- Zhao, Y.H.; Yang, H.C.; Zhen, Z. Tree Height Estimations for Different Forest Canopies in Natural Secondary Forests based on ULS, TLS and Ultrasonic Altimeter Systems. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2021, 45, 23–32. [Google Scholar]
- Torres-Sanchez, J.; Pena, J.M.; de Castro, A.I.; Lopez-Granados, F. Multi-temporal Mapping of the Vegetation Fraction in Early-Season Wheat Fields Using Images from UAV. Comput. Electron. Agric. 2014, 103, 104–113. [Google Scholar] [CrossRef]
- Du, M.M.; Noguchi, N. Monitoring of Wheat Growth Status and Mapping of Wheat Yield’s Within-field Spatial Variations Using Color Images Acquired from UAV-camera System. Remote Sens. 2017, 9, 289. [Google Scholar] [CrossRef]
- Wan, L.; Li, Y.J.; Cen, H.Y.; Zhu, J.P.; Yin, W.X.; Wu, W.K.; Zhu, H.Y.; Sun, D.W.; Zhou, W.J.; He, Y. Combining UAV-based Vegetation Indices and Image Classification to Estimate Flower Number in Oilseed Rape. Remote Sens. 2018, 10, 1484. [Google Scholar] [CrossRef]
- Calderon, R.; Navas-Cortes, J.A.; Lucena, C.; Zarco-Tejada, P.J. High-resolution Airborne Hyperspectral and Thermal Imagery for Early, Detection of Verticillium Wilt of Olive Using Fluorescence, Temperature and Narrow-band Spectral Indices. Remote Sens. Environ. 2013, 139, 231–245. [Google Scholar] [CrossRef]
- Woebbecke, D.M.; Meyer, G.E.; Vonbargen, K.; Mortensen, D.A. Color Indexes for Weed Identification Under Various Soil, Residue, and Lighting Conditions. Trans. ASAE 1995, 38, 259–269. [Google Scholar] [CrossRef]
- Xie, B.; Yang, W.N.; Wang, F. A New Estimate Method for Fractional Vegetation Cover based on UAV Visual Light Spectrum. Sci. Surv. Mapp. 2020, 45, 72–77. [Google Scholar]
- Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-based Plant Height from Crop Surface Models, Visible, and Near Infrared Vegetation Indices for Biomass Monitoring in Barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Riaño, D.; Chuvieco, E.; Condés, S.; González-Matesanz, J.; Ustin, S.L. Generation of Crown Bulk Density for Pinus sylvestris L. from LiDAR. Remote Sens. Environ. 2004, 92, 345–352. [Google Scholar] [CrossRef]
- Coops, N.C.; Hilker, T.; Wulder, M.A.; St-Onge, B.; Newnham, G.; Siggins, A.; Trofymow, J.A. Estimating Canopy Structure of Doulgas-fir Forest Stands from Discrete-return LiDAR. Trees 2007, 21, 295–310. [Google Scholar] [CrossRef]
- Zhou, R.; Yang, C.; Li, E.; Cai, X.; Yang, J.; Xia, Y. Object-based Wetland Vegetation Classification Using Multi-feature Selection of Unoccupied Aerial Vehicle RGB Imagery. Remote Sens. 2021, 13, 4910. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăgu, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Pu, R.L.; Landry, S.; Yu, Q.Y. Assessing the Potential of Multi-seasonal High Resolution Pleiades Satellite Imagery for Mapping Urban Tree Species. Int. J. Appl. Earth Obs. Geoinf. 2018, 71, 144–158. [Google Scholar]
- Genuer, R.; Poggi, J.M.; Tuleau-Malot, C. Variable Selection Using Random Forests. Pattern Recognit. Lett. 2010, 31, 2225–2236. [Google Scholar] [CrossRef]
- Torabzadeh, H.; Leiterer, R.; Hueni, A.; Schaepman, M.E.; Morsdorf, F. Tree Species Classification in a Temperate Mixed Forest Using a Combination of Imaging Spectroscopy and Airborne Laser Scanning. Agric. For. Meteorol. 2019, 279, 107744. [Google Scholar] [CrossRef]
- Colgan, M.S.; Baldeck, C.A.; Féret, J.B.; Asner, G.P. Mapping Savanna Tree Species at Ecosystem Scales Using Support Vector Machine Classification and BRDF Correction on Airborne Hyperspectral and LiDAR Data. Remote Sens. 2012, 4, 3462–3480. [Google Scholar] [CrossRef]
- Michałowska, M.; Rapiński, J. A Review of Tree Species Classification based on Airborne LiDAR Data and Applied Classifiers. Remote Sens. 2021, 13, 353. [Google Scholar] [CrossRef]
- Li, B.; Jing, Q. Improved Convolutional Neural Network for Tree Species Recognition. For. Eng. 2021, 37, 75–81. [Google Scholar]
- Lu, Y.H. Plastic Classification Research by LIBS Combined with GA-BP-NN and GA-SVM. Laser Infrared 2022, 52, 273–279. [Google Scholar]
- Liu, C.; Ding, W.; Li, Z.; Yang, C. Prediction of High-speed Grinding Temperature of Titanium Matrix Composites Using BP Neural Network based on PSO Algorithm. Int. J. Adv. Manuf. Technol. 2017, 89, 2277–2285. [Google Scholar] [CrossRef]
- Dong, Z.; Xu, W.; Xu, J.; Zhuang, H. Application of Adam-BP Neural Network in Leveling Fitting. IOP Conf. Ser. Earth Environ. Sci. 2019, 310, 022036. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, X.; Chen, L.; Sun, L.; Zhan, W. Optimized Neural Network for Binocular Camera Calibration Using Improved Genetic Algorithm. China Mech. Eng. 2021, 32, 1423–1431. [Google Scholar]
- Tharwat, A. Linear vs. Quadratic Discriminant Analysis Classifier: A Tutorial. Int. J. Appl. Pattern Recognit. 2016, 3, 145–180. [Google Scholar] [CrossRef]
- Qin, Y. A Review of Quadratic Discriminant Analysis for High-dimensional Data. Wiley Interdiscip. Rev. Comput. Stat. 2018, 10, e1434. [Google Scholar] [CrossRef]
- Nevalainen, O.; Honkavaara, E.; Tuominen, S.; Viljanen, N.; Hakala, T.; Yu, X.; Hyyppä, J.; Saari, H.; Pölönen, I.; Imai, N.N.; et al. Individual Tree Detection and Classification with UAV-Based Photogrammetric Point Clouds and Hyperspectral Imaging. Remote Sens. 2017, 9, 185. [Google Scholar] [CrossRef]
- Jiang, F.; Smith, A.R.; Kutia, M.; Wang, G.; Liu, H.; Sun, H. A Modified KNN Method for Mapping the Leaf Area Index in Arid and Semi-Arid Areas of China. Remote Sens. 2020, 12, 1884. [Google Scholar] [CrossRef]
- Pacheco, A.d.P.; Junior, J.A.d.S.; Ruiz-Armenteros, A.M.; Henriques, R.F.F. Assessment of k-Nearest Neighbor and Random Forest Classifiers for Mapping Forest Fire Areas in Central Portugal Using Landsat-8, Sentinel-2, and Terra Imagery. Remote Sens. 2021, 13, 1345. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, X.; Cai, Z.; Pan, L.; Zhao, H.; Yi, S.; Yeo, C.K.; Dai, B.; Loy, C.C. Unsupervised 3D Shape Completion Through GAN Inversion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 1768–1777. [Google Scholar]
- Sarmad, M.; Lee, H.J.; Kim, Y.M. RL-GAN-Net: A Reinforcement Learning Agent Controlled GAN Network for Real-time Point Cloud Shape Completion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 5898–5907. [Google Scholar]
- Jin, S.C. Research on Image Inpainting and Point Cloud Completion Based on Generative Adversarial Network. Master’s Thesis, Dalian Jiaotong University, Dalian, China, 2024. [Google Scholar]
- Karlson, M.; Ostwald, M.; Reese, H.; Bazié, H.R.; Tankoano, B. Assessing the Potential of Multi-Seasonal WorldView-2 imagery for Mapping West African Agroforestry Tree Species. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 80–88. [Google Scholar] [CrossRef]
- Ghosh, A.; Fassnacht, F.E.; Joshi, P.K.; Koch, B. A Framework for Mapping Tree Species Combining Hyperspectral and LiDAR Data: Role of selected classifiers and sensor across three spatial scales. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 49–63. [Google Scholar] [CrossRef]
- Li, M.; Im, J.; Beier, C. Machine Learning Approaches for Forest Classification and Change Analysis Using Multi-temporal Landsat TM Images Over Huntington Wildlife Forest. GIScience Remote Sens. 2013, 50, 361–384. [Google Scholar] [CrossRef]
- Li, Z.; Ding, J.; Zhang, H.; Feng, Y.M. Classifying Individual Shrub Species in UAV Images-a Case Study of the Gobi Region of Northwest China. Remote Sens. 2021, 13, 4995. [Google Scholar] [CrossRef]
- Zhong, H.; Lin, W.; Liu, H.; Ma, N.; Liu, K.; Cao, R.; Wang, T.; Ren, Z. Identification of Tree Species based on the Fusion of UAV Hyperspectral Image and LiDAR Data in a Coniferous and Broad-leaved Mixed Forest in Northeast China. Front. Plant Sci. 2022, 13, 964769. [Google Scholar] [CrossRef]
- Quan, Y. Mapping Tree Species and Forest Types in a Typical Natural Secondary Forest by Fusing UAV-borne LiDAR and Hyperspectral features. Ph.D. Thesis, Northeast Forestry University, Harbin, China, 2023. [Google Scholar]
- Sabat-Tomala, A.; Raczko, E.; Zagajewski, B. Comparison of Support Vector Machine and Random Forest Algorithms for Invasive and Expansive Species Classification Using Airborne Hyperspectral Data. Remote Sens. 2020, 12, 516. [Google Scholar] [CrossRef]
- Zagajewski, B.; Kluczek, M.; Raczko, E.; Njegovec, A.; Dabija, A.; Kycko, M. Comparison of Random Forest, Support vector machines, and Neural Networks for Post-disaster Forest Species Mapping of the Krkonoše/Karkonosze Transboundary Biosphere Reserve. Remote Sens. 2021, 13, 2581. [Google Scholar] [CrossRef]
Tree Species | Number | DBH/cm | Height/m | Height Under Branches/m | Crown Width/m |
---|---|---|---|---|---|
Pinus koraiensis | 188 | 18.2 | 15.8 | 4.4 | 5.3 |
Larix gmelinii | 167 | 19.5 | 17.4 | 7.8 | 3.8 |
Ulmus pumila | 173 | 30.2 | 18.2 | 10.2 | 12.8 |
Fraxinus mandshurica | 149 | 26.3 | 19.3 | 12.3 | 8.5 |
Juglans mandshurica | 132 | 25.4 | 18.8 | 11.6 | 9.4 |
Betula platyphylla | 154 | 19.6 | 18.1 | 11.2 | 4.6 |
Others | 48 | 12.7 | 11.6 | 4.5 | 4.1 |
Feature Name | Description | Feature Name | Description |
---|---|---|---|
RGB data | LiDAR point cloud | ||
R_Mean | Mean of the red-light band | Int_Mean | Mean of the intensity |
R_StdDev | Standard deviation of the red-light band | Int_StdDev | Standard deviation of intensity |
R_Ske | Skewness of red-light band | Int_Var | Intensity variance |
G_Mean | Mean of the green-light band | Int_Ske | Intensity skewness |
G_StdDev | Standard deviation of the green-light band | TH | Maximum height of single tree |
G_Ske | Skewness of green-light band | CH | Maximum crown height of single tree |
B_Mean | Mean of the blue-light band | CH_Per | Crown height to tree height ratio |
B_StdDev | Standard deviation of the blue-light band | CW_EW | Average crown width in east-west direction |
B_Ske | Skewness of the blue-light band | CW_SN | Average crown width in north-south direction |
NGRDI | Normalized green–red difference index [(G − R)/(G + R)] | CW_Mean | Mean of the crown width |
NGBDI | Normalized green–blue difference index [(G − B)/(G + B)] | CW_Dif | Difference in crown width in different directions |
VDVI | Visible-band difference vegetation index [(2G − R − B)/(2G + R + B)] | CA | Crown projection area of single tree |
RGRI | Red–green ratio index [(R/G)] | CV | Crown volume of single tree |
BGRI | Blue–green ratio index [(B/G)] | ||
WI | Woebbecke index [(G − B)/(R − G)] | ||
RGBRI | Red–green–blue ratio index [(R + B)/2G] | ||
RGBVI | Red–green–blue vegetation [(G2 − (R × B))/(G2 + (R × B)) |
Algorithms | Main Hyperparameters | Value |
---|---|---|
RF | max_depth | 20 |
n_leaf_nodes (m) | 4 | |
n_decision_trees (n) | 100 | |
SVM | Penalty coefficient (C) | 5.662 |
gamma (g) | 0.177 | |
degree | 2 | |
BPNN | Activation | sigmod |
Training algorithm | trainlm | |
n_input_nodes | 30 | |
n_hidden_layers | 1 | |
n_hidden_layers_nodes | 20 | |
n_output_nodes | 7 | |
epochs | 1000 | |
learn rate | 0.01 | |
error_goal | 1 × 10−5 | |
pop_num | 50 | |
num_iterations | 50 | |
Crossover probability | 0.5 | |
Variation probability | 0.01 | |
QDA | reg_param | 0.5 |
KNN | n_neighbors (K) | 9 |
Weights Distance parameter (p) | distance 1 |
Method | TM | DL | |||
---|---|---|---|---|---|
Tree Species | CD | F1 | CD | F1 | |
Pinus koraiensis | 9.89 | 0.70 | 5.41 | 0.90 | |
Larix gmelinii | 9.77 | 0.71 | 5.23 | 0.92 | |
Ulmus pumila | 12.31 | 0.51 | 6.97 | 0.78 | |
Fraxinus mandshurica | 11.26 | 0.55 | 6.65 | 0.80 | |
Juglans mandshurica | 10.82 | 0.62 | 6.46 | 0.82 | |
Betula platyphylla | 10.16 | 0.67 | 5.88 | 0.87 | |
Other species | 11.04 | 0.57 | 6.39 | 0.84 |
Model | avgCD | avgF1 |
---|---|---|
Model 1 | 6.71 | 0.80 |
Model 2 | 6.63 | 0.80 |
Model 3 | 6.37 | 0.83 |
Model 4 | 6.42 | 0.82 |
ours | 6.14 | 0.85 |
Methods | Pk/% | Lg/% | Up/% | Fm/% | Jm/% | Bp/% | Others/% | OA/% | Kappa |
---|---|---|---|---|---|---|---|---|---|
RF | 80.52 | 83.33 | 77.97 | 74.36 | 69.23 | 78.72 | 72.22 | 77.68 | 0.73 |
SVM | 79.22 | 81.25 | 72.88 | 69.23 | 64.10 | 76.59 | 61.11 | 74.01 | 0.70 |
BPNN | 77.92 | 75.00 | 67.79 | 61.54 | 58.97 | 72.34 | 50.00 | 63.34 | 0.68 |
QDA | 68.43 | 70.26 | 58.97 | 57.72 | 59.15 | 65.80 | 45.27 | 57.65 | 0.62 |
KNN | 78.87 | 77.54 | 68.35 | 56.73 | 55.06 | 73.71 | 41.32 | 60.72 | 0.65 |
Methods | Pk/% | Lg/% | Up/% | Fm/% | Jm/% | Bp/% | Others/% | OA/% | Kappa |
---|---|---|---|---|---|---|---|---|---|
RF | 93.75 | 92.21 | 84.74 | 84.62 | 82.05 | 89.36 | 72.22 | 87.41 | 0.85 |
SVM | 87.01 | 89.58 | 79.66 | 82.05 | 79.48 | 85.11 | 72.22 | 83.65 | 0.80 |
BPNN | 84.42 | 83.33 | 72.88 | 74.36 | 76.92 | 80.85 | 55.56 | 78.18 | 0.74 |
QDA | 74.07 | 75.35 | 64.47 | 62.91 | 64.52 | 70.64 | 53.74 | 62.06 | 0.66 |
KNN | 82.44 | 85.14 | 75.22 | 62.88 | 61.30 | 81.13 | 50.93 | 72.89 | 0.69 |
Feature | Species (Mean ± StdDev) | F | p | |||||
---|---|---|---|---|---|---|---|---|
Pk | Lg | Up | Fm | Jm | Bp | |||
NGBDI | 0.33 ± 0.04 | 0.18 ± 0.05 | 0.41 ± 0.05 | 0.26 ± 0.02 | 0.38 ± 0.04 | 0.32 ± 0.05 | 185.28 | 0.00 |
Int_Mean | 31.28 ± 9.30 | 31.79 ± 3.39 | 39.13 ± 4.46 | 32.84 ± 2.96 | 37.06 ± 4.36 | 41.90 ± 19.76 | 9.51 | 0.00 |
CW_dif | 0.70 ± 0.13 | 0.31 ± 0.05 | 1.24 ± 0.21 | 0.24 ± 0.03 | 1.01 ± 0.17 | 1.24 ± 0.29 | 34.09 | 0.00 |
BGRI | 0.50 ± 0.04 | 0.69 ± 0.06 | 0.42 ± 0.04 | 0.59 ± 0.03 | 0.45 ± 0.05 | 0.51 ± 0.05 | 201.38 | 0.00 |
NGRDI | 0.15 ± 0.02 | 0.13 ± 0.02 | 0.20 ± 0.02 | 0.14 ± 0.01 | 0.18 ± 0.02 | 0.16 ± 0.02 | 94.85 | 0.00 |
RGBRI | 0.62 ± 0.03 | 0.73 ± 0.04 | 0.55 ± 0.03 | 0.67 ± 0.02 | 0.57 ± 0.03 | 0.62 ± 0.03 | 192.99 | 0.00 |
CW_Mean | 4.98 ± 1.25 | 4.42 ± 1.22 | 9.20 ± 2.60 | 3.69 ± 1.17 | 9.04 ± 2.26 | 10.33 ± 2.76 | 124.42 | 0.00 |
RGRI | 0.74 ± 0.03 | 0.76 ± 0.03 | 0.67 ± 0.02 | 0.75 ± 0.01 | 0.69 ± 0.02 | 0.72 ± 0.02 | 93.28 | 0.00 |
CH_Per | 0.44 ± 0.05 | 0.54 ± 0.04 | 0.49 ± 0.04 | 0.53 ± 0.04 | 0.50 ± 0.03 | 0.48 ± 0.04 | 18.13 | 0.00 |
B_StdDev | 4768.40 ± 623.22 | 9068.40 ± 1624.74 | 5088.24 ± 411.37 | 7650.53 ± 1135.02 | 5292.49 ± 823.90 | 5083.06 ± 864.43 | 165.95 | 0.00 |
Tree Species | NGBDI | Int_Mean | CW_dif | BGRI | NGRDI | RGBRI | CW_Mean | RGRI | CH_Per | B_StdDev | |
---|---|---|---|---|---|---|---|---|---|---|---|
Pk | Lg | 0.00 | 0.81 | 0.00 | 0.00 | 0.00 | 0.00 | 0.12 | 0.00 | 0.00 | 0.00 |
Up | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.26 | |
Fm | 0.00 | 0.50 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | |
Jm | 0.00 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | |
Bp | 0.14 | 0.00 | 0.00 | 0.14 | 0.01 | 0.96 | 0.00 | 0.00 | 0.00 | 0.10 | |
Lg | Up | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Fm | 0.00 | 0.62 | 0.55 | 0.00 | 0.01 | 0.00 | 0.05 | 0.01 | 0.51 | 0.00 | |
Jm | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Bp | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Up | Fm | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 |
Jm | 0.02 | 0.52 | 0.14 | 0.05 | 0.04 | 0.01 | 0.77 | 0.01 | 0.68 | 0.49 | |
Bp | 0.01 | 0.32 | 0.99 | 0.04 | 0.00 | 0.01 | 0.02 | 0.00 | 0.43 | 0.98 | |
Fm | Jm | 0.00 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 |
Bp | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Jm | Bp | 0.00 | 0.04 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.13 | 0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Zhong, H.; Xie, G.; Zhang, P. Tree Species Classification Based on Point Cloud Completion. Forests 2025, 16, 280. https://doi.org/10.3390/f16020280
Liu H, Zhong H, Xie G, Zhang P. Tree Species Classification Based on Point Cloud Completion. Forests. 2025; 16(2):280. https://doi.org/10.3390/f16020280
Chicago/Turabian StyleLiu, Haoran, Hao Zhong, Guangqiang Xie, and Ping Zhang. 2025. "Tree Species Classification Based on Point Cloud Completion" Forests 16, no. 2: 280. https://doi.org/10.3390/f16020280
APA StyleLiu, H., Zhong, H., Xie, G., & Zhang, P. (2025). Tree Species Classification Based on Point Cloud Completion. Forests, 16(2), 280. https://doi.org/10.3390/f16020280