Forest Fragmentation and Forest Mortality—An In-Depth Systematic Review
Abstract
:1. Introduction
- Negative effects: this relationship indicates that, as the degree of fragmentation increases, so does forest mortality, leading to adverse ecological consequences.
- Positive effects: this relationship indicates that, as the degree of fragmentation increases, forest mortality decreases.
- Neutral effects: neutral effects of forest fragmentation on forest mortality refer to scenarios where changes in fragmentation levels do not result in a measurable increase or decrease in mortality.
- o What is the geographical distribution of research and are there hotspots of research on forest fragmentation and forest mortality?
- o What ecological, geographical, and temporal contexts have been used to study forest fragmentation and forest mortality?
- o What data sources have been used in these studies?
- o What approaches to the definitions of forest fragmentation and the determination of forest mortality have been adopted in these studies?
- o What are the publishing trends over time related to the research topics?
- o What effects of forest fragmentation were reported and how were they linked with forest mortality?
- o How is international cooperation within this research area developing?
- o What are the publication trends in this area?
2. Methods
2.1. Study Design
2.2. Data Collection and Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deal, R.L.; White, R. Integrating forest products with ecosystem services: A global perspective. For. Policy Econ. 2012, 17, 1–2. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, Y.; Zhao, Z.; Zhang, Q.; Su, S. Socioeconomic drivers of forest loss and fragmentation: A comparison between different land use planning schemes and policy implications. Land Use Policy 2016, 54, 58–68. [Google Scholar] [CrossRef]
- Mengist, W.; Soromessa, T.; Feyisa, G.L. Estimating the total ecosystem services value of Eastern Afromontane Biodiversity Hotspots in response to landscape dynamics. Environ. Sustain. Indic. 2022, 14, 100178. [Google Scholar] [CrossRef]
- Vaz, A.S.; Kueffer, C.; Kull, C.A.; Richardson, D.M.; Vicente, J.R.; Kühn, I.; Schröter, M.; Hauck, J.; Bonn, A.; Honrado, J.P.; et al. Integrating ecosystem services and disservices: Insights from plant invasions. Ecosyst. Serv. 2017, 23, 94–107. [Google Scholar] [CrossRef]
- Davison, C.W.; Rahbek, C.; Morueta-Holme, N. Land-use change and biodiversity: Challenges for assembling evidence on the greatest threat to nature. Glob. Change Biol. 2021, 27, 5414–5429. [Google Scholar] [CrossRef]
- Fahrig, L. Effects of Habitat Fragmentation on Biodiversity. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 487–515. [Google Scholar] [CrossRef]
- Echeverría, C.; Newton, A.C.; Lara, A.; Benayas, J.M.R.; Coomes, D.A. Impacts of forest fragmentation on species composition and forest structure in the temperate landscape of southern Chile. Glob. Ecol. Biogeogr. 2007, 16, 426–439. [Google Scholar] [CrossRef]
- Laurance, W.F.; Williamson, G.B. Positive Feedbacks among Forest Fragmentation, Drought, and Climate Change in the Amazon. Conserv. Biol. 2001, 15, 1529–1535. [Google Scholar] [CrossRef]
- Bierregaard, R.; Laurance, W.F.; Gascon, C.; Benitez-Malvido, J. Principles of forest fragmentation and conservation in the Amazon. In Lessons from Amazonia: The Ecology and Conservation of a Fragmented Forest; Yale University Press: New Haven, CT, USA, 2001; pp. 371–385. [Google Scholar]
- Tabarelli, M.; da Silva, J.M.C.; Gascon, C. Forest fragmentation, synergisms and the impoverishment of neotropical forests. Biodivers. Conserv. 2004, 13, 1419–1425. [Google Scholar] [CrossRef]
- Brando, P.M.; Balch, J.K.; Nepstad, D.C.; Morton, D.C.; Putz, F.E.; Coe, M.T.; Silvério, D.; Macedo, M.N.; Davidson, E.A.; Nóbrega, C.C.; et al. Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proc. Natl. Acad. Sci. USA 2014, 111, 6347–6352. [Google Scholar] [CrossRef]
- Davies-Colley, R.; Payne, G.W.; Elswijk, M. Microclimate gradients across a forest edge. N. Z. J. Ecol. 2000, 24, 111–121. [Google Scholar]
- Matlack, G.R. Microenvironment variation within and among forest edge sites in the eastern United States. Biol. Conserv. 1993, 66, 185–194. [Google Scholar] [CrossRef]
- Schwartz, N.B.; Uriarte, M.; DeFries, R.; Bedka, K.M.; Fernandes, K.; Gutiérrez-Vélez, V.; Pinedo-Vasquez, M.A. Fragmentation increases wind disturbance impacts on forest structure and carbon stocks in a western Amazonian landscape. Ecol. Appl. 2017, 27, 1901–1915. [Google Scholar] [CrossRef] [PubMed]
- Meeussen, C.; Govaert, S.; Vanneste, T.; Haesen, S.; Van Meerbeek, K.; Bollmann, K.; Brunet, J.; Calders, K.; Cousins, S.A.; Diekmann, M.; et al. Drivers of carbon stocks in forest edges across Europe. Sci. Total Environ. 2021, 759, 143497. [Google Scholar] [CrossRef]
- Chen, J.; Franklin, J.F.; Spies, T.A. Vegetation Responses to Edge Environments in Old-Growth Douglas-Fir Forests. Ecol. Appl. 1992, 2, 387–396. [Google Scholar] [CrossRef]
- Laurance, W.F.; Gascon, C. How to Creatively Fragment a Landscape. Conserv. Biol. 1997, 11, 577. [Google Scholar] [CrossRef]
- Laurance, W.F.; Yensen, E. Predicting the impacts of edge effects in fragmented habitats. Biol. Conserv. 1991, 55, 77–92. [Google Scholar] [CrossRef]
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef]
- Laurance, W.F.; Sayer, J.; Cassman, K.G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 2014, 29, 107–116. [Google Scholar] [CrossRef]
- Briber, B.M.; Hutyra, L.R.; Reinmann, A.B.; Raciti, S.M.; Dearborn, V.K.; Holden, C.E.; Dunn, A.L. Tree Productivity Enhanced with Conversion from Forest to Urban Land Covers. PLoS ONE 2015, 10, e0136237. [Google Scholar] [CrossRef]
- Morreale, L.L.; Thompson, J.R.; Tang, X.; Reinmann, A.B.; Hutyra, L.R. Elevated growth and biomass along temperate forest edges. Nat. Commun. 2021, 12, 7181. [Google Scholar] [CrossRef] [PubMed]
- Meeussen, C.; Govaert, S.; Vanneste, T.; Calders, K.; Bollmann, K.; Brunet, J.; Cousins, S.A.; Diekmann, M.; Graae, B.J.; Hedwall, P.-O.; et al. Structural variation of forest edges across Europe. For. Ecol. Manag. 2020, 462, 117929. [Google Scholar] [CrossRef]
- Ma, J.; Li, J.; Wu, W.; Liu, J. Global forest fragmentation change from 2000 to 2020. Nat. Commun. 2023, 14, 3752. [Google Scholar] [CrossRef] [PubMed]
- Tchebakova, N.M. Potential change in forest types and stand heights in central Siberia in a warming climate. Env. Res. Lett. 2016, 11, 035016. [Google Scholar]
- Barlow, J.; Lennox, G.D.; Ferreira, J.; Berenguer, E.; Lees, A.C.; Mac Nally, R.; Thomson, J.R.; Ferraz, S.F.D.B.; Louzada, J.; Oliveira, V.H.F.; et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 2016, 535, 7610. [Google Scholar] [CrossRef]
- Tyukavina, A.; Hansen, M.C.; Potapov, P.V.; Stehman, S.V.; Smith-Rodriguez, K.; Okpa, C.; Aguilar, R. Types and rates of forest disturbance in Brazilian Legal Amazon, 2000–2013. Sci. Adv. 2017, 3, e1601047. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. PLoS Med. 2021, 18, e1003583. [Google Scholar] [CrossRef]
- AHA. Roy Rosenzweig Center for History and New Media Remote Teaching Resources. Available online: https://www.historians.org/research-and-publications/remote-teaching-resources/roy-rosenzweig-center-for-history-and-new-media (accessed on 21 January 2025).
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’Amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- MapChart. World Map—Simple. Available online: https://www.mapchart.net/world.html (accessed on 21 January 2025).
- Netzel, P.; Tyminska, L.; Feleha, D.D.; Socha, J. New approach to assess forest fragmentation based on multiscale similarity index. Ecol. Indic. 2024, 158, 111530. [Google Scholar] [CrossRef]
- May, F.; Rosenbaum, B.; Schurr, F.M.; Chase, J.M. The geometry of habitat fragmentation: Effects of species distribution patterns on extinction risk due to habitat conversion. Ecol. Evol. 2019, 9, 2775–2790. [Google Scholar] [CrossRef]
- McGarigal, K.; Marks, B.J. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure; General Technical Report; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1995; Volume 351, 122p. [Google Scholar] [CrossRef]
- Ngo, K.M.; Davies, S.; Hassan, N.F.N.; Lum, S. Resilience of a forest fragment exposed to long-term isolation in Singapore. Plant Ecol. Divers. 2016, 9, 397–407. [Google Scholar] [CrossRef]
- Turner, M.G. Landscape Ecology in North America: Past, Present, and Future. Ecology 2005, 86, 1967–1974. [Google Scholar] [CrossRef]
- Wang, X.; Blanchet, F.G.; Koper, N. Measuring habitat fragmentation: An evaluation of landscape pattern metrics. Methods Ecol. Evol. 2014, 5, 634–646. [Google Scholar] [CrossRef]
- Andronache, I.; Marin, M.; Fischer, R.; Ahammer, H.; Radulovic, M.; Ciobotaru, A.-M.; Jelinek, H.F.; Di Ieva, A.; Pintilii, R.-D.; Drăghici, C.-C.; et al. Dynamics of Forest Fragmentation and Connectivity Using Particle and Fractal Analysis. Sci. Rep. 2019, 9, 12228. [Google Scholar] [CrossRef]
- Campbell, M.J.; Edwards, W.; Magrach, A.; Alamgir, M.; Porolak, G.; Mohandass, D.; Laurance, W.F. Edge disturbance drives liana abundance increase and alteration of liana–host tree interactions in tropical forest fragments. Ecol. Evol. 2018, 8, 4237–4251. [Google Scholar] [CrossRef]
- Kim, E.; Song, W.; Lee, D. A multi-scale metrics approach to forest fragmentation for Strategic Environmental Impact Assessment. Environ. Impact Assess. Rev. 2013, 42, 31–38. [Google Scholar] [CrossRef]
- Zambrano, J.; Cordeiro, N.J.; Garzon-Lopez, C.; Yeager, L.; Fortunel, C.; Ndangalasi, H.J.; Beckman, N.G. Investigating the direct and indirect effects of forest fragmentation on plant functional diversity. PLoS ONE 2020, 15, e0235210. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef]
- Schwartz, N.B.; Budsock, A.M.; Uriarte, M. Fragmentation, forest structure, and topography modulate impacts of drought in a tropical forest landscape. Ecology 2019, 100, e02677. [Google Scholar] [CrossRef]
- Slattery, Z.; Fenner, R. Spatial Analysis of the Drivers, Characteristics, and Effects of Forest Fragmentation. Sustainability 2021, 13, 3246. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Longo, M.; Keller, M.; Dos-Santos, M.N.; Leitold, V.; Pinagé, E.R.; Baccini, A.; Saatchi, S.; Nogueira, E.M.; Batistella, M.; Morton, D.C. Aboveground biomass variability across intact and degraded forests in the Brazilian Amazon. Glob. Biogeochem. Cycles 2016, 30, 1639–1660. [Google Scholar] [CrossRef]
- Ghosh, A.; Joshi, P.K. A comparison of selected classification algorithms for mapping bamboo patches in lower.Gangetic plains using very high resolution World View 2 imagery. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 298–311. [Google Scholar] [CrossRef]
- Longo, M.; Saatchi, S.; Keller, M.; Bowman, K.; Ferraz, A.; Moorcroft, P.R.; Morton, D.C.; Bonal, D.; Brando, P.; Burban, B.; et al. Impacts of Degradation on Water, Energy, and Carbon Cycling of the Amazon Tropical Forests. J. Geophys. Res. Biogeosci. 2020, 125, e2020JG005677. [Google Scholar] [CrossRef]
- Taccoen, A.; Piedallu, C.; Seynave, I.; Gégout-Petit, A.; Gégout, J.-C. Climate change-induced background tree mortality is exacerbated towards the warm limits of the species ranges. Ann. For. Sci. 2022, 79, 23. [Google Scholar] [CrossRef]
- Riitters, K.; Wickham, J.; O′Neill, R.; Jones, K.B.; Smith, E. Global-Scale Patterns of Forest Fragmentation. Conserv. Ecol. 2000, 4, 3. [Google Scholar] [CrossRef]
- Lambin, E.F.; Geist, H.J.; Lepers, E. Dynamics of land use and cover change in tropical and subtropicalregions. Annu. Rev. Env. Resour. 2003, 28, 205–241. [Google Scholar] [CrossRef]
- Laurance, W.F.; Lovejoy, T.E.; Vasconcelos, H.L.; Bruna, E.M.; Didham, R.K.; Stouffer, P.C.; Gascon, C.; Bierregaard, R.O.; Laurance, S.G.; Sampaio, E. Ecosystem Decay of Amazonian Forest Fragments: A 22-Year Investigation. 2002. Available online: http://repository.si.edu/xmlui/handle/10088/1639 (accessed on 9 May 2023).
- Trejo, I.; Dirzo, R. Deforestation of seasonally dry tropical forest. Biol. Conserv. 2000, 94, 133–142. [Google Scholar] [CrossRef]
- Brudvig, L.A.; Damschen, E.I.; Haddad, N.M.; Levey, D.J.; Tewksbury, J.J. The influence of habitat fragmentation on multiple plant-animal interactions and plant reproduction. Ecology 2015, 96, 2669–2678. [Google Scholar] [CrossRef]
- Teixido, A.L.; Gonçalves, S.R.; Fernández-Arellano, G.J.; Dáttilo, W.; Izzo, T.J.; Layme, V.M.; Moreira, L.F.; Quintanilla, L.G. Major biases and knowledge gaps on fragmentation research in Brazil: Implications for conservation. Biol. Conserv. 2020, 251, 108749. [Google Scholar] [CrossRef]
- Thom, D.; Seidl, R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol. Rev. 2016, 91, 760–781. [Google Scholar] [CrossRef] [PubMed]
- Bone, C.; White, J.; Wulder, M.; Robertson, C.; Nelson, T. Impact of Forest Fragmentation on Patterns of Mountain Pine Beetle-Caused Tree Mortality. Forests 2013, 4, 279–295. [Google Scholar] [CrossRef]
- Ziter, C.; Bennett, E.M.; Gonzalez, A. Temperate forest fragments maintain aboveground carbon stocks out to the forest edge despite changes in community composition. Oecologia 2014, 176, 893–902. [Google Scholar] [CrossRef]
- Ruckstuhl, K.E.; Johnson, E.A.; Miyanishi, K. Introduction. The boreal forest and global change. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 2245–2249. [Google Scholar] [CrossRef] [PubMed]
- Masek, J.G.; Wulder, M.A.; Markham, B.; McCorkel, J.; Crawford, C.J.; Storey, J.; Jenstrom, D.T. Landsat 9: Empowering open science and applications through continuity. Remote Sens. Environ. 2020, 248, 111968. [Google Scholar] [CrossRef]
- Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Collins, C.D.; et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 2015, 1, e1500052. [Google Scholar] [CrossRef]
- Riitters, K.H.; Wickham, J.D.; O′Neill, R.V.; Jones, K.B.; Smith, E.R.; Coulston, J.W.; Wade, T.G.; Smith, J.H. Fragmentation of Continental United States Forests. Ecosystems 2002, 5, 0815–0822. [Google Scholar] [CrossRef]
- Qie, L.; Lewis, S.L.; Sullivan, M.J.P.; Lopez-Gonzalez, G.; Pickavance, G.C.; Sunderland, T.; Ashton, P.; Hubau, W.; Abu Salim, K.; Aiba, S.-I.; et al. Long-term carbon sink in Borneo’s forests halted by drought and vulnerable to edge effects. Nat. Commun. 2017, 8, 1966. [Google Scholar] [CrossRef]
- Rutishauser, E.; Barthélémy, D.; Blanc, L.; Eric-André, N. Crown fragmentation assessment in tropical trees: Method, insights and perspectives. For. Ecol. Manag. 2011, 261, 400–407. [Google Scholar] [CrossRef]
- Shen, C.; Shi, N.; Fu, S.; Ye, W.; Ma, L.; Guan, D. Decline in Aboveground Biomass Due to Fragmentation in Subtropical Forests of China. Forests 2021, 12, 617. [Google Scholar] [CrossRef]
- Saravia, L.A.; Doyle, S.R.; Bond-Lamberty, B. Power laws and critical fragmentation in global forests. Sci. Rep. 2018, 8, 17766. [Google Scholar] [CrossRef]
- Ewers, R.M.; Didham, R.K.; Fahrig, L.; Ferraz, G.; Hector, A.; Holt, R.D.; Kapos, V.; Reynolds, G.; Sinun, W.; Snaddon, J.L.; et al. A large-scale forest fragmentation experiment: The Stability of Altered Forest Ecosystems Project. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 3292–3302. [Google Scholar] [CrossRef]
- Fynn, I.E.M.; Campbell, J. Forest Fragmentation Analysis from Multiple Imaging Formats. J. Landsc. Ecol. 2019, 12, 1–15. [Google Scholar] [CrossRef]
- Blumenthal, E.; Mehta, P. Geometry of ecological coexistence and niche differentiation. Phys. Rev. E 2023, 108, 044409. [Google Scholar] [CrossRef]
- Jones, I.L.; Peres, C.A.; Benchimol, M.; Bunnefeld, L.; Dent, D.H. Woody lianas increase in dominance and maintain compositional integrity across an Amazonian dam-induced fragmented landscape. PLoS ONE 2017, 12, e0185527. [Google Scholar] [CrossRef]
- Menezes, G.S.C.; Cazetta, E.; Dodonov, P. Vegetation structure across fire edges in a Neotropical rain forest. For. Ecol. Manag. 2019, 453, 117587. [Google Scholar] [CrossRef]
- Shorohova, E.; Kapitsa, E. Mineralization and fragmentation rates of bark attached to logs in a northern boreal forest. For. Ecol. Manag. 2014, 315, 185–190. [Google Scholar] [CrossRef]
- Bogaert, J.; Barima, Y.S.S.; Iyongo, L.; Mongo, W.; Bamba, I.; Mama, A.; Toyi, M.; Lafortezza, R. Forest Fragmentation: Causes, Ecological Impacts and Implications for Landscape Management. In Landscape Ecology in Forest Management and Conservation: Challenges and Solutions for Global Change; Li, C., Lafortezza, R., Chen, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 273–296. [Google Scholar] [CrossRef]
- McGarigal, K.; Cushman, S.A. Comparative Evaluation of Experimental Approaches to the Study of Habitat Fragmentation Effects. Ecol. Appl. 2002, 12, 335–345. [Google Scholar] [CrossRef]
- Shirk, A.J.; Cushman, S.A.; Waring, K.M.; Wehenkel, C.A.; Leal-Sáenz, A.; Toney, C.; Lopez-Sanchez, C.A. Southwestern white pine (Pinus strobiformis) species distribution models project a large range shift and contraction due to regional climatic changes. For. Ecol. Manag. 2018, 411, 176–186. [Google Scholar] [CrossRef]
- Rémy, S.; Veira, A.; Paugam, R.; Sofiev, M.; Kaiser, J.W.; Marenco, F.; Burton, S.P.; Benedetti, A.; Engelen, R.J.; Ferrare, R.; et al. Two global data sets of daily fire emission injection heights since 2003. Atmos. Chem. Phys. 2017, 17, 2921–2942. [Google Scholar] [CrossRef]
- Reinmann, A.; Smith, I.; Thompson, J.; Hutyra, L. Urbanization and fragmentation mediate temperate forest carbon cycle response to climate. Environ. Res. Lett. 2020, 15, 114036. [Google Scholar] [CrossRef]
- Miehe, G.; Miehe, S.; Will, M.; Opgenoorth, L.; Duo, L.; Dorgeh, T.; Liu, J. An inventory of forest relicts in the pastures of Southern Tibet (Xizang, A.R., China). Plant Ecol. 2007, 194, 157–177. [Google Scholar] [CrossRef]
- Barros, H.S.; Fearnside, P.M. Soil carbon stock changes due to edge effects in central Amazon forest fragments. For. Ecol. Manag. 2016, 379, 30–36. [Google Scholar] [CrossRef]
- d’Albertas, F.; Costa, K.; Romitelli, I.; Barbosa, J.M.; Vieira, S.A.; Metzger, J.P. Lack of evidence of edge age and additive edge effects on carbon stocks in a tropical forest. For. Ecol. Manag. 2018, 407, 57–65. [Google Scholar] [CrossRef]
- Filicetti, A.T.; Nielsen, S.E. Fire and forest recovery on seismic lines in sandy upland jack pine (Pinus banksiana) forests. For. Ecol. Manag. 2018, 421, 32–39. [Google Scholar] [CrossRef]
- Hertzog, L.R.; Boonyarittichaikij, R.; Dekeukeleire, D.; de Groote, S.R.E.; Lantman, I.M.v.S.; Sercu, B.K.; Smith, H.K.; de la Peña, E.; Vandegehuchte, M.L.; Bonte, D. Forest fragmentation modulates effects of tree species richness and composition on ecosystemmultifunctionality. Ecology 2019, 100, e02653. [Google Scholar] [CrossRef]
Features | Types of Approach | |||
---|---|---|---|---|
Geometry Based | Remote Sensing Based | Ecology Based | Mixed | |
Metrics Used |
|
|
|
|
|
|
| ||
|
|
| ||
|
| |||
|
| |||
| ||||
Data Used |
|
|
|
|
|
|
|
|
Features | Types of Approach | |
---|---|---|
Quantitative | Qualitative | |
Metrics Used |
|
|
|
| |
|
| |
|
| |
Data Used |
|
|
|
|
Data | Outcome |
---|---|
Metrics and data used in forest fragmentation studies | Classification of approaches to measuring forest fragmentation |
Metrics and data used in forest mortality studies | Classification of approaches to measuring forest mortality |
Location of study area |
|
Information on data types used | Groups of data used (field data, combined data, and remote sensing data) |
Information on effect of forest fragmentation | Positive, negative, and neutral |
Publication Years, duration of study |
|
Bibliometric data |
|
Type of Approaches Used to Determine Forest Fragmentation | Total | (%) | Type of Approach Used to Determine Forest Mortality | Total | (%) |
---|---|---|---|---|---|
Geometry based (GBA) | 40 | 33.6 | Quantitative | 107 | 89.9 |
Ecology based (EBA) | 32 | 26.9 | Qualitative | 12 | 10.1 |
Remote sensing based (RBA) | 22 | 18.5 | |||
Mixed (MIX) | 25 | 21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feleha, D.D.; Tymińska-Czabańska, L.; Netzel, P. Forest Fragmentation and Forest Mortality—An In-Depth Systematic Review. Forests 2025, 16, 565. https://doi.org/10.3390/f16040565
Feleha DD, Tymińska-Czabańska L, Netzel P. Forest Fragmentation and Forest Mortality—An In-Depth Systematic Review. Forests. 2025; 16(4):565. https://doi.org/10.3390/f16040565
Chicago/Turabian StyleFeleha, Debebe Dana, Luiza Tymińska-Czabańska, and Paweł Netzel. 2025. "Forest Fragmentation and Forest Mortality—An In-Depth Systematic Review" Forests 16, no. 4: 565. https://doi.org/10.3390/f16040565
APA StyleFeleha, D. D., Tymińska-Czabańska, L., & Netzel, P. (2025). Forest Fragmentation and Forest Mortality—An In-Depth Systematic Review. Forests, 16(4), 565. https://doi.org/10.3390/f16040565