Effects of Seasonal Rainfall Changes on N, P, and K Stoichiometric Characteristics in Leaves and Soil of Tropical Coastal Shelterbelt Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Site Selection and Setup
2.3. Sample Collection and Testing
2.4. Data Analysis
3. Results and Analysis
3.1. N, P, and K Stoichiometric Characteristics in Leaves of the Three Shelterbelt Forests
3.1.1. N, P, and K Contents
3.1.2. Stoichiometric Ratios of N, P, and K
3.2. N, P, and K Stoichiometric Characteristics in Soil of the Three Shelterbelt Forests
3.2.1. N, P, and K Contents
3.2.2. Stoichiometric Ratios of N, P, and K
3.3. N:P:K Stoichiometric Ratio in Leaves and Soil of the Three Shelterbelt Forests
3.4. N:P:K Stoichiometric Homeostasis of Leaves of the Three Shelterbelt Forests
4. Discussion
4.1. N, P, and K Stoichiometric Characteristics of Leaves in the Three Shelterbelt Forests
4.2. N, P, and K Stoichiometric Characteristics of Soil in the Three Shelterbelt Forests
4.3. Correlation Analysis of N:P:K Stoichiometric Ratio of Leaves and Soil in the Three Shelterbelt Forests
4.4. N:P:K Stoichiometric Homeostasis in Leaves and Soil of the Three Shelterbelt Forests
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Elser, J.J.; Hamilton, A. Stoichiometry and the new biology: The future is now. PLoS Biol. 2007, 5, e181. [Google Scholar] [CrossRef]
- Sterner, R.W.; Elser, J.J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere; Princeton University Press: Princeton, NJ, USA, 2017. [Google Scholar]
- Han, W.X.; Fang, J.Y.; Guo, D.L.; Zhang, Y. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol. 2005, 168, 377–385. [Google Scholar] [CrossRef]
- Sardans, J.; Janssens, I.A.; Ciais, P.; Obersteiner, M.; Peñuelas, J. Recent advances and future research in ecological stoichiometry. Perspect. Plant Ecol. Evol. Syst. 2021, 50, 125611. [Google Scholar] [CrossRef]
- Chu, C.C.; Wang, Y.; Wang, E.T. Research status and prospect of efficient utilization of nitrogen, phosphorus and potassium in plants. Sci. China (Ser. C) 2021, 51, 1415–1423. [Google Scholar] [CrossRef]
- Leff, J.W.; Bardgett, R.D.; Wilkinson, A.; Jackson, B.G.; Pritchard, W.J.; De Long, J.R.; Oakley, S.; Mason, K.E.; Ostle, N.J.; Johnson, D.; et al. Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits. ISME J. 2018, 12, 1794–1805. [Google Scholar] [CrossRef]
- Sanaei, A.; Yuan, Z.Q.; Ali, A.; Loreau, M.; Mori, A.S.; Reich, P.B.; Jucker, T.; Lin, F.; Ye, J.; Fang, S.; et al. Tree species diversity enhances plant-soil interactions in a temperate forest in northeast China. For. Ecol. Manag. 2021, 491, 119160. [Google Scholar] [CrossRef]
- Wang, L.; Arif, M.; Zheng, J.; Li, C.X. Patterns and drivers of plant carbon, nitrogen, and phosphorus stoichiometry in a novel riparian ecosystem. Front. Plant Sci. 2024, 15, 1354222. [Google Scholar] [CrossRef]
- Freschet, G.T.; Roumet, C.; Comas, L.H.; Weemstra, M.; Bengough, A.G.; Rewald, B.; Bardgett, R.D.; De Deyn, G.B.; Johnson, D.; Klimešová, J.; et al. Root traits as drivers of plant and ecosystem functioning: Current understanding, pitfalls and future research needs. New Phytol. 2021, 232, 1123–1158. [Google Scholar] [CrossRef]
- Cardone, L.; Castronuovo, D.; Perniola, M.; Scrano, L.; Cicco, N.; Candido, V. The influence of soil physical and chemical properties on saffron (Crocus sativus L.) growth, yield and quality. Agronomy 2020, 10, 1154. [Google Scholar] [CrossRef]
- Moe, S.J.; Stelzer, R.S.; Forman, M.R.; Harpole, W.S.; Daufresne, T.; Yoshida, T. Recent advances in ecological stoichiometry: Insights for population and community ecology. Oikos 2005, 109, 29–39. [Google Scholar] [CrossRef]
- Li, Y.Y.; Wang, J.X.; Wang, L.Q. Seasonal variations in C/N/P/K stoichiometric characteristics in different plant organs in the various forest types of Sygera Mountain. Front. Plant Sci. 2024, 15, 1293934. [Google Scholar] [CrossRef]
- Zhang, J.H.; Zhao, N.; Liu, C.C.; Yang, H.; Li, M.L.; Yu, G.R.; Wilcox, K.; Yu, Q.; He, N.P. stoichiometry in China’s forests: From organs to ecosystems. Funct. Ecol. 2018, 32, 50–60. [Google Scholar] [CrossRef]
- Tian, D.; Yan, Z.B.; Niklas, K.J.; Han, W.X.; Kattge, J.; Reich, P.B.; Luo, Y.K.; Chen, Y.H.; Tang, Z.Y.; Hu, H.F.; et al. Global leaf nitrogen and phosphorus stoichiometry and their scaling exponent. Natl. Sci. Rev. 2018, 5, 728–739. [Google Scholar] [CrossRef]
- Li, Y.Y.; Fu, F.W.; Li, J.R.; Chen, W.S.; Ding, H.H.; Xiao, S.Y. Stoichiometric characteristics of Abies georgei var. smithii plants in southeast Tibet. Sustainability 2023, 15, 8458. [Google Scholar] [CrossRef]
- Zechmeister-Boltenstern, S.; Keiblinger, K.M.; Mooshammer, M.; Peñuelas, J.; Richter, A.; Sardans, J.; Wanek, W. The application of ecological stoichiometry to plant–microbial–soil organic matter transformations. Ecol. Monogr. 2015, 85, 133–155. [Google Scholar] [CrossRef]
- Di Palo, F.; Fornara, D.A. Plant and soil nutrient stoichiometry along primary ecological successions: Is there any link? PLoS ONE 2017, 12, e0182569. [Google Scholar] [CrossRef]
- Luo, Y.; Lian, C.M.; Gong, L.; Mo, C.N. Leaf stoichiometry of halophyte shrubs and its relationship with soil factors in the Xinjiang Desert. Forests 2022, 13, 2121. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Li, T.; Sun, J.K.; Liu, J.H.; Fu, Z.Y. Study on ecological stoichiometry homeostasis characteristics of different halophytes in the Yellow River Delta. Land Degrad. Dev. 2024, 35, 784–797. [Google Scholar] [CrossRef]
- Julian, P.; Gerber, S.; Bhomia, R.K.; King, J.; Osborne, T.Z.; Wright, A.L. Understanding stoichiometric mechanisms of nutrient retention in wetland macrophytes: Stoichiometric homeostasis along a nutrient gradient in a subtropical wetland. Oecologia 2020, 193, 969–980. [Google Scholar] [CrossRef]
- Chen, Z.F.; Zhou, J.J.; Lai, S.B.; Jian, C.X.; Chen, Y.; Luo, Y.; Xu, B.C. Species differences in stoichiometric homeostasis affect grassland community stability under N and P addition. Environ. Sci. Pollut. Res. 2023, 30, 61913–61926. [Google Scholar] [CrossRef]
- Patil, R.H.; Laegdsmand, M.; Olesen, J.; Porter, J.R. Effect of soil warming and rainfall patterns on soil N cycling in Northern Europe. Agric. Ecosyst. Environ. 2010, 139, 195–205. [Google Scholar] [CrossRef]
- Wang, X.X.; Wang, R.; Gao, J. Precipitation and soil nutrients determine the spatial variability of grassland productivity at large scales in China. Front. Plant Sci. 2022, 13, 996313. [Google Scholar] [CrossRef]
- Bai, L.; Wang, J.; Wang, Z.W.; Li, Z.G.; Ren, H.Y.; Wang, H.M.; Zhang, G.G.; Han, G.D. Effects of simulated precipitation gradients on nutrient resorption in the desert steppe of northern China. Front. Plant Sci. 2023, 14, 1211182. [Google Scholar] [CrossRef]
- Luo, Y.; Peng, Q.W.; Li, K.H.; Gong, Y.M.; Liu, Y.Y.; Han, W.X. Patterns of nitrogen and phosphorus stoichiometry among leaf, stem and root of desert plants and responses to climate and soil factors in Xinjiang, China. Catena 2021, 199, 105100. [Google Scholar] [CrossRef]
- Gong, H.; Chen, S.L.; Zhong, X.J.; Chen, Q.; Hu, J.; Cheng, W.F. Complex response of beach erosion and restoration to successive typhoons in northeastern Hainan Island. Acta Oceanol. Sin. 2017, 39, 68–77. [Google Scholar]
- Yang, Q.Q.; Yang, Z.Y.; Xue, Y.; Chen, X.H.; Yu, X.B.; Cui, X.B.; Li, R.; Gao, L. Associated Analysis Between Forest Understory Vegetation Diversity and Soft Factors in Hainan Wenchang Coastal Platform. J. Trop. Crops 2015, 36, 2238–2244. [Google Scholar] [CrossRef]
- Yang, Q.Q.; Yang, Z.Y.; Chen, X.H.; Yu, X.B.; Xue, Y.; Wang, X.Y. Interspecific associations of dominant plant populations in secondary forest of Syzygium odoratum in tropical coast. Sci. Silv. Sin. 2017, 53, 105–113. [Google Scholar] [CrossRef]
- Bao, S. Soil and Agricultural Chemistry Analysis; China Agricultural Press: Beijing, China, 2000. [Google Scholar]
- Persson, J.; Fink, P.; Goto, A.; Hood, J.M.; Jonas, J.; Kato, S. To be or not to be what you eat: Regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos 2010, 119, 741–751. [Google Scholar] [CrossRef]
- Liu, H.R.; Lu, X.H. Leaf–Soil C: N: P stoichiometry and homeostasis characteristics of plantations in the Yellow River floodplain in western Shandong, China. Forests 2024, 15, 1433. [Google Scholar] [CrossRef]
- Elser, J.J.; Fagan, W.F.; Denno, R.F.; Dobberfuhl, D.R.; Folarin, A.; Huberty, A.; Interlandi, S.; Kilham, S.S.; McCauley, E.; Schulz, K.L.; et al. Nutritional constraints in terrestrial and freshwater food webs. Nature 2000, 408, 578–580. [Google Scholar] [CrossRef]
- Qin, H.; Li, J.X.; Gao, S.P.; Li, C.; Li, R.; Shen, X.H. Characteristics of leaf element contents for eight nutrients across 660 terrestrial plant species in China. Acta Ecol. Sin. 2010, 30, 1247–1257. [Google Scholar]
- Xue, Y.; Chen, Y.Q.; Liu, X.Z.; Wang, X.Y.; Lin, Z.P. Comparisons of soil chemical properties under four typical forest stands in northeast Hainan. Ecol. Sci. 2014, 33, 1142–1146. [Google Scholar] [CrossRef]
- Ge, L.L.; Meng, Q.Q.; Lin, Y.; He, Z.M. Coupling relationship between nitrogen and phosphorus reabsorption and biological nitrogen fixation in leaves of different nitrogen-fixing tree species in coastal sandy land. J. Soil Water Conserv. 2019, 33, 134–138,144. [Google Scholar] [CrossRef]
- Zhu, S.Y.; Yan, L.B.; Pi, F.J.; Yu, L.F.; Yuan, C.J.; Shu, L.X. Stoichiometric characteristics and seasonal variation of soils and dominant plant leaves in secondary forest in karst area. J. South. Agric. 2019, 50, 90–96. [Google Scholar] [CrossRef]
- Zhao, L.Q.; Fu, D.G.; Wu, X.N.; Zhu, A.Q.; Xu, Z.X. Changes of soil nutrients and stoichiometric characteristics under different vegetation communities in central Yunnan province. Soils 2020, 52, 1248–1255. [Google Scholar] [CrossRef]
- Ye, G.F.; Gao, W.; Yin, L.; Wang, H.; Huang, S.D. Dynamic of transpiration and water use efficiency of Casuarina eguisetfolia in coastline forest. Sci. Soil Water Conserv. 2012, 10, 104–109. [Google Scholar] [CrossRef]
- Tian, D.; Yan, Z.B.; Fang, J.Y. Review on characteristics and main hypotheses of plant ecological stoichiometry. Chin. J. Plant Ecol. 2021, 45, 682–713. [Google Scholar] [CrossRef]
- Tessier, J.T.; Raynal, D.J. Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. J. Appl. Ecol. 2003, 40, 523–534. [Google Scholar] [CrossRef]
- Olde Venterink, H.; Wassen, M.J.; Verkroost, A.; De Ruiter, P. Species richness–productivity patterns differ between N-, P-, and K-limited wetlands. Ecology 2003, 84, 2191–2199. [Google Scholar] [CrossRef]
- Liu, J.G.; Gou, X.H.; Wang, F.; Liu, J.; Zhang, F. Seasonal patterns in the leaf C: N: P stoichiometry of four conifers on the northeastern Tibetan Plateau. Global Ecol. Conserv. 2023, 47, e02632. [Google Scholar] [CrossRef]
- National Soil Census Office. Soil Census Techniques in China; Agricultural Publishing House: Beijing, China, 1992. [Google Scholar]
- Berg, B. Litter decomposition and organic matter turnover in northern forest soils. For. Ecol. Manage. 2000, 133, 13–22. [Google Scholar] [CrossRef]
- Yue, X.J.; Ye, G.F.; Gao, W.; Chen, Z.Y.; Chen, M.Y.; Li, D. Characteristics of litter decomposition and ecological stoichiometry of different forests on coastal sandy land in Fujian province. Res. Soil Water Conserv. 2021, 28, 77–83. [Google Scholar] [CrossRef]
- Xia, Y.F.; Zhao, Z.H.; Wang, X.P.; Jin, Z.G.; Zhu, J.J. Spatial distribution of soil physical and chemical properties and influencing factors in Changli Gold Coast National Nature Reserve. Guangdong Agric. Sci. 2024, 51, 125–135. [Google Scholar] [CrossRef]
- Ren, Q.S.; Song, H.; Yuan, Z.X.; Ni, X.L.; Li, C.X. Changes in soil enzyme activities and microbial biomass after revegetation in the Three Gorges Reservoir, China. Forests 2018, 9, 249. [Google Scholar] [CrossRef]
- Hu, H.T.; Qiu, L.J.; Ge, L.L.; Meng, Q.Q.; Lin, Y.; He, Z.M.; Wang, K.Y.; Dong, Q. Stoichometry of fine roots and topsoil of five plantations in coastal sandy. J. Sichuan Agric. Univ. 2018, 36, 444–449. [Google Scholar] [CrossRef]
- Tian, H.Q.; Chen, G.S.; Zhang, C.; Melillo, J.M.; Hall, C.A.S. Pattern and variation of C: N: P ratios in China’s soils: A synthesis of observational data. Biogeochemistry 2010, 98, 139–151. [Google Scholar] [CrossRef]
- Cleveland, C.C.; Liptzin, D. C: N: P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 2007, 85, 235–252. [Google Scholar] [CrossRef]
- Ordoñez, J.C.; Van Bodegom, P.M.; Witte, J.P.M.; Wright, I.J.; Reich, P.B.; Aerts, R. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecol. Biogeogr. 2009, 18, 137–149. [Google Scholar] [CrossRef]
- Ballantyne Iv, F.; Menge, D.N.L.; Ostling, A.; Hosseini, P. Nutrient recycling affects autotroph and ecosystem stoichiometry. Am. Nat. 2008, 171, 511–523. [Google Scholar] [CrossRef]
- Sardans, J.; Rivas-Ubach, A.; Peñuelas, J. The C: N: P stoichiometry of organisms and ecosystems in a changing world: A review and perspectives. Perspect. Plant Ecol. Evol. Syst. 2012, 14, 33–47. [Google Scholar] [CrossRef]
- Hu, Q.J.; Sheng, M.Y.; Bai, Y.X.; Jie, Y.; Xiao, H.L. Response of C, N, and P stoichiometry characteristics of Broussonetia papyrifera to altitude gradients and soil nutrients in the karst rocky ecosystem, SW China. Plant Soil 2022, 475, 123–136. [Google Scholar] [CrossRef]
- Wang, L.; Chen, F.; Wan, K.Y. Progress and expectation of the research on plant K efficiency and its evaluation. Soils 2010, 42, 164–170. [Google Scholar] [CrossRef]
- Li, S.P.; Wang, K.L. Seasonal distribution of soil nutrients and their response to the plant diversity of karst mountain grassland. J. Soil Water Conserv. 2016, 30, 199–205. [Google Scholar] [CrossRef]
- Zhou, S.X.; Wu, D.X.; Zhang, L.; Shi, H.Q. Effect of rainfall pattern change on Stipa grandis seedlings in Inner Mongolia. Chin. J. Plant Ecol. 2010, 34, 1155–1164. [Google Scholar]
- Tian, Y.Q.; Gao, Q.; Zhang, Z.C.; Zhang, Y.; Zhu, K. The advances in study on plant photosynthesis and soil respiration of alpine grasslands on the Tibetan Plateau. Ecol. Environ. Sci. 2009, 18, 711–721. [Google Scholar] [CrossRef]
- Zuo, Q.Q.; Wang, S.J. Regulation mechanism of biotic and abiotic factors on the nitrogen mineralization of forest soil. J. Zhejiang A&F Univ. 2021, 38, 613–623. [Google Scholar] [CrossRef]
Index | Forest | ||
---|---|---|---|
Ca | Co | Pi | |
Longitude | 110°58′53″ E | 110°51′32″ E | 110°54′52″ E |
Latitude | 19°43′59″ N | 19°34′51″ N | 19°41′32″ N |
Soil type | Sandy loam | Sandy loam | Sandy loam |
Tree height (m) | 9.51 ± 0.47 | 11.54 ± 2.13 | 10.67 ± 0.96 |
Diameter at breast height (cm) | 17.84 ± 1.44 | 23.72 ± 2.76 | 18.65 ± 1.61 |
Soil capacity (g/cm3) | 1.46 ± 0.03 | 1.47 ± 0.02 | 1.62 ± 0.04 |
Soil moisture content (%) | 5.90 ± 0.06 | 6.03 ± 0.08 | 8.56 ± 0.06 |
Understory vegetation cover (%) | 10.23 ± 3.56 | 12.1 ± 4.47 | 21.32 ± 3.81 |
Forest | Season | Index | 1/H | H | R2 | P | Level |
---|---|---|---|---|---|---|---|
Ca | Wet season | N | 0.63 | 1.59 | 0.783 | 0.019 | Weakly sensitive |
P | 0.08 | 12.71 | 0.007 | 0.872 | Absolute homeostasis | ||
K | −0.35 | 2.90 | 0.548 | 0.093 | Weak homeostasis | ||
N:P | −0.03 | 35.56 | 0.002 | 0.953 | Absolute homeostasis | ||
N:K | 0.02 | 49.36 | 0.007 | 0.879 | Absolute homeostasis | ||
K:P | −0.02 | 60.50 | 0.062 | 0.634 | Absolute homeostasis | ||
Dry season | N | 0.23 | 4.40 | 0.218 | 0.351 | Absolute homeostasis | |
P | −2.28 | 0.44 | 0.954 | 0.001 | Sensitive | ||
K | −0.02 | 47.37 | 0.005 | 0.890 | Absolute homeostasis | ||
N:P | 1.99 | 0.50 | 0.964 | 0.002 | Sensitive | ||
N:K | 0.19 | 5.26 | 0.856 | 0.008 | Homeostasis | ||
K:P | −0.37 | 2.73 | 0.975 | 0.003 | Weak homeostasis | ||
Co | Wet season | N | −0.05 | 21.20 | 0.069 | 0.615 | Absolute homeostasis |
P | −0.56 | 1.80 | 0.368 | 0.202 | Absolute homeostasis | ||
K | 0.66 | 1.51 | 0.482 | 0.126 | Absolute homeostasis | ||
N:P | −0.03 | 35.56 | 0.002 | 0.935 | Absolute homeostasis | ||
N:K | 0.19 | 5.24 | 0.191 | 0.386 | Absolute homeostasis | ||
K:P | 0.10 | 9.85 | 0.091 | 0.561 | Absolute homeostasis | ||
Dry season | N | 1.14 | 0.87 | 0.982 | 0.001 | Sensitive | |
P | −1.68 | 0.60 | 0.979 | 0.002 | Sensitive | ||
K | 0.07 | 14.11 | 0.959 | 0.001 | Homeostasis | ||
N:P | −8.26 | 0.12 | 0.800 | 0.016 | Sensitive | ||
N:K | 0.26 | 3.87 | 0.841 | 0.010 | Weak homeostasis | ||
K:P | −0.21 | 4.79 | 0.293 | 0.268 | Absolute homeostasis | ||
Pi | Wet season | N | −1.78 | 0.56 | 0.908 | 0.003 | Sensitive |
P | −0.38 | 2.65 | 0.290 | 0.270 | Absolute homeostasis | ||
K | 0.21 | 4.75 | 0.076 | 0.597 | Absolute homeostasis | ||
N:P | −0.17 | 5.98 | 0.401 | 0.177 | Absolute homeostasis | ||
N:K | 0.11 | 9.47 | 0.088 | 0.568 | Absolute homeostasis | ||
K:P | 0.15 | 6.72 | 0.270 | 0.290 | Absolute homeostasis | ||
Dry season | N | −0.09 | 11.70 | 0.018 | 0.801 | Absolute homeostasis | |
P | −0.96 | 1.04 | 0.568 | 0.083 | Sensitive | ||
K | 0.45 | 2.24 | 0.971 | 0.004 | Weak homeostasis | ||
N:P | 1.19 | 0.84 | 0.966 | 0.002 | Sensitive | ||
N:K | 0.19 | 5.20 | 0.485 | 0.124 | Absolute homeostasis | ||
K:P | 0.02 | 62.42 | 0.028 | 0.753 | Absolute homeostasis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nong, S.; Chen, H.; Chen, Z.; Lin, Z.; Su, S.; Lei, X.; Jia, J.; Chen, Y. Effects of Seasonal Rainfall Changes on N, P, and K Stoichiometric Characteristics in Leaves and Soil of Tropical Coastal Shelterbelt Forests. Forests 2025, 16, 600. https://doi.org/10.3390/f16040600
Nong S, Chen H, Chen Z, Lin Z, Su S, Lei X, Jia J, Chen Y. Effects of Seasonal Rainfall Changes on N, P, and K Stoichiometric Characteristics in Leaves and Soil of Tropical Coastal Shelterbelt Forests. Forests. 2025; 16(4):600. https://doi.org/10.3390/f16040600
Chicago/Turabian StyleNong, Shouqian, Haihui Chen, Zongzhu Chen, Zhipan Lin, Shaofeng Su, Xiangling Lei, Junting Jia, and Yiqing Chen. 2025. "Effects of Seasonal Rainfall Changes on N, P, and K Stoichiometric Characteristics in Leaves and Soil of Tropical Coastal Shelterbelt Forests" Forests 16, no. 4: 600. https://doi.org/10.3390/f16040600
APA StyleNong, S., Chen, H., Chen, Z., Lin, Z., Su, S., Lei, X., Jia, J., & Chen, Y. (2025). Effects of Seasonal Rainfall Changes on N, P, and K Stoichiometric Characteristics in Leaves and Soil of Tropical Coastal Shelterbelt Forests. Forests, 16(4), 600. https://doi.org/10.3390/f16040600