Extension of Cut-to-Length Logging Trails on Salvage Logging Operations: An Overview of the Northeastern Italian Alps
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Software
2.3. Timber Logging Area Estimation
2.4. Logging Trail Photo Interpretations
2.5. Characterization of the Logging Trails
2.6. Depth-to-Water Map
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- MCPFE. State of Europe’s Forests 2015; MCPFE: Zvolen, Slovakia, 2015; Volume 1. [Google Scholar]
- Williams, J.W.; Burke, K.D. Past abrupt changes in climate and terrestrial ecosystems. In Biodiversity and Climate Change: Transforming the Biosphere; Yale University Press: New Haven, CT, USA, 2019. [Google Scholar] [CrossRef]
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström, M.; et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- Udali, A.; Andrighetto, N.; Grigolato, S.; Gatto, P. Economic impacts of forest storms—Taking stock of after-vaia situation of local roundwood markets in northeastern italy. Forests 2021, 12, 414. [Google Scholar] [CrossRef]
- Romagnoli, F.; Masiero, M.; Secco, L. Windstorm Impacts on Forest-Related Socio-Ecological Systems: An Analysis from a Socio-Economic and Institutional Perspective. Forests 2022, 13, 939. [Google Scholar] [CrossRef]
- Motta, R.; Ascoli, D.; Corona, P.; Marchetti, M.; Vacchiano, G. Selvicoltura e schianti da vento. Il caso della “tempesta Vaia”. Forest@ 2018, 15, 94–98. [Google Scholar] [CrossRef]
- Bussotti, F.; Papitto, G.; Di Martino, D.; Cocciufa, C.; Cindolo, C.; Cenni, E.; Bettini, D.; Iacopetti, G.; Pollastrini, M. Are the conditions of the Italian forests worsening due to extreme climatic events? Evidence from the national monitoring networks ICP Forests—CON. ECO.FOR. Forest@—Riv. Di Selvic. Ed Ecol. For. 2022, 19, 74–81. [Google Scholar] [CrossRef]
- Forzieri, G.; Girardello, M.; Ceccherini, G.; Spinoni, J.; Feyen, L.; Hartmann, H.; Beck, P.S.A.; Camps-Valls, G.; Chirici, G.; Mauri, A.; et al. Emergent vulnerability to climate-driven disturbances in European forests. Nat. Commun. 2021, 12, 1081. [Google Scholar] [CrossRef]
- Romagnoli, F.; Cadei, A.; Costa, M.; Marangon, D.; Pellegrini, G.; Nardi, D.; Masiero, M.; Secco, L.; Grigolato, S.; Lingua, E.; et al. Windstorm impacts on European forest-related systems: An interdisciplinary perspective. For. Ecol. Manag. 2023, 541, 121048. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022—Impacts, Adaptation and Vulnerability; IPCC: Geneva, Switzerland, 2023. [Google Scholar] [CrossRef]
- Sommerfeld, A.; Senf, C.; Buma, B.; D’Amato, A.W.; Després, T.; Díaz-Hormazábal, I.; Fraver, S.; Frelich, L.E.; Gutiérrez, Á.G.; Hart, S.J.; et al. Patterns and drivers of recent disturbances across the temperate forest biome. Nat. Commun. 2018, 9, 4355. [Google Scholar] [CrossRef] [PubMed]
- Senf, C.; Seidl, R. Mapping the forest disturbance regimes of Europe. Nat. Sustain. 2021, 4, 63–70. [Google Scholar] [CrossRef]
- Senf, C.; Seidl, R. Storm and fire disturbances in Europe: Distribution and trends. Glob. Change Biol. 2021, 27, 3605–3619. [Google Scholar] [CrossRef]
- Kotlarski, S.; Gobiet, A.; Morin, S.; Olefs, M.; Rajczak, J.; Samacoïts, R. 21st Century alpine climate change. Clim. Dyn. 2023, 60, 65–86. [Google Scholar] [CrossRef]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest disturbances under climate change. Nat. Clim. Change 2017, 7, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Grilli, G.; Jonkisz, J.; Ciolli, M.; Lesinski, J. Mixed forests and ecosystem services: Investigating stakeholders’ perceptions in a case study in the Polish Carpathians. For. Policy Econ. 2016, 66, 11–17. [Google Scholar] [CrossRef]
- Schmiegelow, F.K.A.; Stepnisky, D.P.; Stambaugh, C.A.; Koivula, M. Reconciling salvage logging of boreal forests with a natural-disturbance management model. Conserv. Biol. 2006, 20, 971–983. [Google Scholar] [CrossRef]
- Marangon, D.; Betetto, C.; Wohlgemuth, T.; Cadez, L.; Alberti, G.; Tomelleri, E.; Lingua, E. Impact of salvage logging on short-term natural regeneration in montane forests of the Alps after large windthrow events. For. Ecol. Manag. 2024, 567, 122085. [Google Scholar] [CrossRef]
- Piazza, N.; Bebi, P.; Vacchiano, G.; Rigling, A.; Wohlgemuth, T.; Bottero, A. Post-windthrow forest development in spruce-dominated mountain forests in Central Europe. For. Ecol. Manag. 2024, 561, 121884. [Google Scholar] [CrossRef]
- Li, J.; Morimoto, J.; Hotta, W.; Suzuki, S.N.; Owari, T.; Toyoshima, M.; Nakamura, F. The 30-year impact of post-windthrow management on the forest regeneration process in northern Japan. Landsc. Ecol. Eng. 2023, 19, 227–242. [Google Scholar] [CrossRef]
- Thorn, S.; Bässler, C.; Brandl, R.; Burton, P.J.; Cahall, R.; Campbell, J.L.; Castro, J.; Choi, C.Y.; Cobb, T.; Donato, D.C.; et al. Impacts of salvage logging on biodiversity: A meta-analysis. J. Appl. Ecol. 2018, 55, 279–289. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Noss, R.F. Salvage logging, ecosystem processes, and biodiversity conservation. Conserv. Biol. 2006, 20, 949–958. [Google Scholar] [CrossRef]
- Bozzini, A.; Francini, S.; Chirici, G.; Battisti, A.; Faccoli, M. Spruce Bark Beetle Outbreak Prediction through Automatic Classification of Sentinel-2 Imagery. Forests 2023, 14, 1116. [Google Scholar] [CrossRef]
- Mezei, P.; Grodzki, W.; Blaženec, M.; Škvarenina, J.; Brandysova, V.; Jakuš, R. Host and site factors affecting tree mortality caused by the spruce bark beetle (Ips typographus) in mountainous conditions. For. Ecol. Manag. 2014, 331, 196–207. [Google Scholar] [CrossRef]
- Udali, A.; Garollo, L.; Lingua, E.; Cavalli, R.; Grigolato, S. Logging Residue Assessment in Salvage Logging Areas: A Case Study in the North-Eastern Italian Alps. South-East. Eur. For. 2023, 14, 69–81. [Google Scholar] [CrossRef]
- Stare, D.; Grošelj, P.; Pezdevšek Malovrh, Š. Decision Support Framework for Evaluating The Barriers To Salvage Logging: A Case Study on Private Forest Management in Slovenia. Environ. Manag. 2023, 71, 718–729. [Google Scholar] [CrossRef] [PubMed]
- Riguelle, S.; Hébert, J.; Jourez, B. Integrated and systemic management of storm damage by the forest-based sector and public authorities. Ann. For. Sci. 2016, 73, 585–600. [Google Scholar] [CrossRef]
- Petucco, C.; Andrés-Domenech, P.; Duband, L. Cut or keep: What should a forest owner do after a windthrow? For. Ecol. Manag. 2020, 461, 117866. [Google Scholar] [CrossRef]
- Sanginés de Cárcer, P.; Mederski, P.S.; Magagnotti, N.; Spinelli, R.; Engler, B.; Seidl, R.; Eriksson, A.; Eggers, J.; Bont, L.G.; Schweier, J. The Management Response to Wind Disturbances in European Forests. Curr. For. Rep. 2021, 7, 167–180. [Google Scholar] [CrossRef]
- Zerbe, S. Forests. In Restoration of Ecosystems–Bridging Nature and Humans: A Transdisciplinary Approach; Springer: Berlin/Heidelberg, Germany, 2023; pp. 107–152. [Google Scholar]
- Brang, P.; Spathelf, P.; Larsen, J.B.; Bauhus, J.; Bončína, A.; Chauvin, C.; Drössler, L.; García-Güemes, C.; Heiri, C.; Kerr, G.; et al. Suitability of close-to-nature silviculture for adapting temperate European forests to climate change. Forestry 2014, 87, 492–503. [Google Scholar] [CrossRef]
- Teich, M.; Accastello, C.; Perzl, F.; Berger, F. Protective Forests for Ecosystem-based Disaster Risk Reduction (Eco-DRR) in the Alpine Space. In Protective Forests as Ecosystem-Based Solution for Disaster Risk Reduction (Eco-DRR); IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Remeš, J. Development and present state of close-to-nature silviculture. J. Landsc. Ecol. 2018, 11, 17–32. [Google Scholar] [CrossRef]
- Chirici, G.; Giannetti, F.; Travaglini, D.; Nocentini, S.; Francini, S.; D’Amico, G.; Calvo, E.; Fasolini, D.; Broll, M.; Maistrelli, F.; et al. Forest damage inventory after the “Vaia” storm in Italy. Forest@—Riv. Di Selvic. Ed Ecol. For. 2019, 16, 3–9. [Google Scholar] [CrossRef]
- Virot, E.; Ponomarenko, A.; Dehandschoewercker; Quéré, D.; Clanet, C. Critical wind speed at which trees break. Phys. Rev. E 2016, 93, 023001. [Google Scholar] [CrossRef]
- Gardiner, B.; Schuck, A.; Schelhaas, M.J.; Orazio, C.; Blennow, K.; Nicoll, B. Living with Storm Damage to Forests; European Forest Institute: Joensuu, Finland, 2013. [Google Scholar]
- Mitchell, S.J.; Ruel, J.C. Modeling windthrow at stand and landscape scales. In Simulation Modeling of Forest Landscape Disturbances; Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Faccoli, M.; Finozzi, V.; Andriolo, A.; Bernardinelli, I.; Salvadori, C.; Deganutti, L.; Battisti, A. Il bostrico tipografo sulle Alpi orientali. Evoluzione, gestione e prospettive future dopo Vaia. Sherwood For. Ed Alberi Oggi 2022, 257, 23–26. [Google Scholar]
- Nardi, D.; Finozzi, V.; Battisti, A. Massive windfalls boost an ongoing spruce bark beetle outbreak in the Southern Alps. L’Italia For. E Mont. 2022, 77, 23–34. [Google Scholar] [CrossRef]
- Lingua, E.; Richter, P.; Faes, L.; Berger, F.; Garbarino, M.; Marzano, R. Natural disturbances and protective forests: The effects of cascading and compound hazards after the storm VAIA (Northeastern Italy). In Proceedings of the Copernicus Meetings, Vienna, Austria, 14–19 April 2024. [Google Scholar]
- Hlásny, T.; König, L.; Krokene, P.; Lindner, M.; Montagné-Huck, C.; Müller, J.; Qin, H.; Raffa, K.F.; Schelhaas, M.J.; Svoboda, M.; et al. Bark Beetle Outbreaks in Europe: State of Knowledge and Ways Forward for Management. Curr. For. Rep. 2021, 7, 138–165. [Google Scholar] [CrossRef]
- Pucher, C.; Erber, G.; Hasenauer, H. Europe’s Potential Wood Supply by Harvesting System. Forests 2023, 14, 398. [Google Scholar] [CrossRef]
- Äijälä, O.; Koistinen, A.; Sved, J.; Vanhatalo, K.; Väisänen, P. Metsänhoidon suositukset [best practices for forest management]. Hels. Tapion Julk. 2019, 252. [Google Scholar]
- Hoffmann, S.; Schönauer, M.; Heppelmann, J.; Asikainen, A.; Cacot, E.; Eberhard, B.; Hasenauer, H.; Ivanovs, J.; Jaeger, D.; Lazdins, A.; et al. Trafficability Prediction Using Depth-to-Water Maps: The Status of Application in Northern and Central European Forestry. Curr. For. Rep. 2022, 8, 55–71. [Google Scholar] [CrossRef]
- Murphy, P.N.C.; Ogilvie, J.; Castonguay, M.; Zhang, C.F.; Meng, F.R.; Arp, P.A. Improving forest operations planning through high-resolution flow-channel and wet-areas mapping. For. Chron. 2008, 84, 568–574. [Google Scholar] [CrossRef]
- White, B.; Ogilvie, J.; Campbell, D.M.H.; Hiltz, D.; Gauthier, B.; Chisholm, H.K.; Wen, H.K.; Murphy, P.N.C.; Arp, P.A. Using the cartographic depth-to-water index to locate small streams and associated wet areas across landscapes. Can. Water Resour. J. 2012, 37, 333–347. [Google Scholar] [CrossRef]
- Labelle, E.R.; Hansson, L.; Högbom, L.; Jourgholami, M.; Laschi, A. Strategies to Mitigate the Effects of Soil Physical Disturbances Caused by Forest Machinery: A Comprehensive Review. Curr. For. Rep. 2022, 8, 20–37. [Google Scholar] [CrossRef]
- Latterini, F.; Venanzi, R.; Tocci, D.; Picchio, R. Depth-to-Water Maps to Identify Soil Areas That Are Potentially Sensitive to Logging Disturbance: Initial Evaluations in the Mediterranean Forest Context. Land 2022, 11, 709. [Google Scholar] [CrossRef]
- Murphy, P.N.C.; Ogilvie, J.; Connor, K.; Arp, P.A. Mapping wetlands: A comparison of two different approaches for New Brunswick, Canada. Wetlands 2007, 27, 846–854. [Google Scholar] [CrossRef]
- Schönauer, M.; Väätäinen, K.; Prinz, R.; Lindeman, H.; Pszenny, D.; Jansen, M.; Maack, J.; Talbot, B.; Astrup, R.; Jaeger, D. Spatio-temporal prediction of soil moisture and soil strength by depth-to-water maps. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102614. [Google Scholar] [CrossRef]
- Larson, J.; Lidberg, W.; Ågren, A.M.; Laudon, H. Predicting soil moisture conditions across a heterogeneous boreal catchment using terrain indices. Hydrol. Earth Syst. Sci. 2022, 26, 4837–4851. [Google Scholar] [CrossRef]
- Schönauer, M.; Hoffmann, S.; Maack, J.; Jansen, M.; Jaeger, D. Comparison of selected terramechanical test procedures and cartographic indices to predict rutting caused by machine traffic during a cut-to-length thinning-operation. Forests 2021, 12, 113. [Google Scholar] [CrossRef]
- Amishev, D.; Hunt, J. Winch-Assist Harvester: Best Practice Manual; FPInnovations: Vancouver, BC, Canada, 2018; Volume SP-533, ISBN 9780864885784. [Google Scholar]
- Dvořák, J.; Bystrický, R.; Hošková, P.; Hrib, M.; Jarkovská, M.; Kováč, J.; Krilek, J.; Natov, P.; Natovová, L. The Use of Harvester Technology in Production Forests; Lesnická práce: Prague, Czech Republic, 2011; ISBN 978-80-7458-018-5. [Google Scholar]
- Berendt, F.; Tolosana, E.; Hoffmann, S.; Alonso, P.; Schweier, J. Harvester productivity in inclined terrain with extended machine operating trail intervals: A german case study comparison of standing and bunched trees. Sustainability 2020, 12, 9168. [Google Scholar] [CrossRef]
- Solgi, A.; Lotfalian, M.; Rafiei, A.A.; Marchi, E.; Ilstedt, U. Combined effects of traffic intensity, skid trail slope, skidder type, and soil moisture content on soil degradation in the Hyrcanian forest of Iran. Int. J. For. Eng. 2023, 34, 385–396. [Google Scholar] [CrossRef]
- Sadeghi, S.; Solgi, A.; Tsioras, P.A. Effects of traffic intensity and travel speed on forest soil disturbance at different soil moisture conditions. Int. J. For. Eng. 2022, 33, 146–154. [Google Scholar] [CrossRef]
- Kim, I.; Seo, J.; Woo, H.; Choi, B. Assessing Rutting and Soil Compaction Caused by Wood Extraction Using Traditional and Remote Sensing Methods. Forests 2025, 16, 86. [Google Scholar] [CrossRef]
- Solgi, A.; Naghdi, R.; Labelle, E.R.; Tsioras, P.A.; Nikooy, M. Effect of varying machine ground pressure and traffic frequency on the physical properties of clay loam soils located in mountainous forests. Int. J. For. Eng. 2016, 27, 161–168. [Google Scholar] [CrossRef]
- Parsakhoo, A.; Mostafa, M.; Shataee, S.; Lotfalian, M. Decision support system to find a skid trail network for extracting marked trees. J. For. Sci. 2017, 63, 62–69. [Google Scholar] [CrossRef]
- Ring, E.; Andersson, M.; Hansson, L.; Jansson, G.; Högbom, L. Logging mats and logging residue as ground protection during forwarder traffic along till hillslopes. Croat. J. For. Eng. 2021, 42, 445–462. [Google Scholar] [CrossRef]
- Mohtashami, S.; Eliasson, L.; Hansson, L.; Willén, E.; Thierfelder, T.; Nordfjell, T. Evaluating the effect of DEM resolution on performance of cartographic depth-to-water maps, for planning logging operations. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102728. [Google Scholar] [CrossRef]
- Balestra, M.; Marselis, S.; Sankey, T.T.; Cabo, C.; Liang, X.; Mokroš, M.; Peng, X.; Singh, A.; Stereńczak, K.; Vega, C.; et al. LiDAR Data Fusion to Improve Forest Attribute Estimates: A Review. Curr. For. Rep. 2024, 10, 281–297. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, T.; Skidmore, A.K.; Heurich, M. Improving LiDAR-based tree species mapping in Central European mixed forests using multi-temporal digital aerial colour-infrared photographs. Int. J. Appl. Earth Obs. Geoinf. 2020, 84, 101970. [Google Scholar] [CrossRef]
- Stupariu, M.S.; Cushman, S.A.; Pleşoianu, A.I.; Pătru-Stupariu, I.; Fürst, C. Machine learning in landscape ecological analysis: A review of recent approaches. Landsc. Ecol. 2022, 37, 1227–1250. [Google Scholar] [CrossRef]
Plot | Lat/Long Coord. | Area (ha) | Slope (%) | Elevation (m a.s.l.) | Tree Species |
---|---|---|---|---|---|
C01 | 5,091,793 N 680,192 E | 6.86 | 29.13 | 1430 | RS/WS/BE |
C02 | 5,090,400 N 680,908 E | 14.63 | 24.40 | 1475 | RS/WS/LA/BE |
C03 | 5,092,042 N 682,541 E | 21.66 | 23.79 | 1290 | RS/WS/LA/AP |
C04 | 5,135,719 N 691,033 E | 40.51 | 20.40 | 1719 | RS/WS/BE |
C05 | 5,135,421N 689,841 E | 68.37 | 20.32 | 1910 | RS/WS/BE |
C06 | 5,122,385 N 685,326 E | 33.18 | 31.78 | 1230 | RS/WS/LA/BE |
C07 | 5,112,063 N 672,520 E | 22.85 | 22.86 | 1029 | RS/CT/OA |
C08 | 5,112,636 N 673,345 E | 25.09 | 20.88 | 1116 | RS/WS/BE |
C09 | 5,094,997 N 702,085 E | 83.77 | 23.44 | 1348 | RS/WS/BE |
C10 | 5,094,371 N 700,705 E | 37.12 | 17.71 | 1387 | RS/WS/LA/AP |
C11 | 5,097,097 N 700,957 E | 106.58 | 29.61 | 1381 | RS/WS/LA/BE |
C12 | 5,109,221 N 669,772 E | 31.37 | 32.02 | 909 | RS/WS/LA/SP |
C13 | 5,093,814 N 699,963 E | 20.31 | 17.60 | 1401 | RS/WS/BE |
C14 | 5,092,381 N 686,677 E | 6.83 | 31.82 | 1468 | RS/WS/BE |
C15 | 5,091,544 N 699,835 E | 51.07 | 23.58 | 1483 | RS/WS/BE |
C16 | 5,092,541 N 700,058 E | 60.81 | 17.96 | 1492 | RS/WS/BE |
C17 | 5,092,081 N 700,081 E | 18.61 | 19.10 | 1391 | RS/WS/BE |
C18 | 5,092,775 N 700,809 E | 43.88 | 13.73 | 1423 | RS/WS/BE |
C19 | 5,092,254 N 701,254 E | 44.33 | 17.43 | 1329 | RS/WS/BE |
C20 | 5,091,682 N 700,720 E | 112.58 | 19.48 | 1365 | RS/WS/BE |
C21 | 5,091,141 N 701,854 E | 51.00 | 21.30 | 1346 | RS/WS/BE |
C22 | 5,091,016 N 704,077 E | 12.67 | 32.91 | 1451 | RS/WS/BE |
C23 | 5,091,856 N 703,665 E | 81.95 | 33.22 | 1397 | RS/WS/BE |
C24 | 5,091,016 N 704,077 E | 11.35 | 29.53 | 1464 | RS/WS/BE |
C25 | 5,093,105 N 704,822 E | 17.42 | 32.31 | 1311 | RS/WS/BE |
C26 | 5,092,626 N 704,834 E | 22.87 | 36.75 | 1290 | RS/WS/BE |
C27 | 5,090,811 N 703,250 E | 3.29 | 35.82 | 1337 | RS/WS/BE |
C28 | 5,086,246 N 686,046 E | 10.67 | 29.84 | 1252 | RS/WS/BE |
C29 | 5,084,211 N 688,111 E | 16.29 | 31.40 | 1315 | RS/WS/BE |
Combination | DWT—025 ha | DWT—1 ha | Description |
---|---|---|---|
0 | NO | NO | Non-sensitive area |
1 | YES | NO | Sensitive areas during wet periods |
2 | YES | YES | Wet area |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Marzio, N.; Imperiali, D.; Marchi, L.; Grigolato, S. Extension of Cut-to-Length Logging Trails on Salvage Logging Operations: An Overview of the Northeastern Italian Alps. Forests 2025, 16, 673. https://doi.org/10.3390/f16040673
Di Marzio N, Imperiali D, Marchi L, Grigolato S. Extension of Cut-to-Length Logging Trails on Salvage Logging Operations: An Overview of the Northeastern Italian Alps. Forests. 2025; 16(4):673. https://doi.org/10.3390/f16040673
Chicago/Turabian StyleDi Marzio, Nicolò, Davide Imperiali, Luca Marchi, and Stefano Grigolato. 2025. "Extension of Cut-to-Length Logging Trails on Salvage Logging Operations: An Overview of the Northeastern Italian Alps" Forests 16, no. 4: 673. https://doi.org/10.3390/f16040673
APA StyleDi Marzio, N., Imperiali, D., Marchi, L., & Grigolato, S. (2025). Extension of Cut-to-Length Logging Trails on Salvage Logging Operations: An Overview of the Northeastern Italian Alps. Forests, 16(4), 673. https://doi.org/10.3390/f16040673