Land-Use Change Scenarios and Their Implications for Bird Conservation in Subtropical Forests
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Bird Data
2.3. Landscape Variables
2.4. Distribution of Bird Richness in the Present Scenario
2.5. Distribution of Bird Richness in Future Change Scenarios
- Productive >> Urban
- Productive >> Shrubland
- Grassland >> Urban
- Grassland >> Productive
- Grassland >> Shrubland
- Grassland >> Native forest
- Shrubland >> Urban
- Shrubland >> Productive
- Shrubland >> Grassland
- Shrubland >> Native forest
- Native forest >> Urban
- Native forest >> Productive
- Native forest >> Grassland
- Native forest >> Shrubland
- Native forest >> Exotic forest
- Native forest >> Pine plantation
- Exotic forest >> Urban
2.6. Present vs. Future Bird Richness Distribution
3. Results
3.1. Bird Response to Landscape Structure and Richness Distribution
3.2. Present vs. Future Bird Richness Distribution
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LUCC | Land-use and -cover change |
Appendix A
Main Group/Trait | Categories | Abbreviation | Description |
---|---|---|---|
Feeding/DIET | Insectivores | DIET_Insec | Indicates the position in the trophic network and may provide information about ecosystem functions, such as the regulation of invertebrate populations, pollination, seed dispersal, etc. |
Granivores | DIET_Gran | ||
Omnivores | DIET_Omn | ||
Vertebrates | DIET_Ver | ||
Frugivores | DIET_Foli | ||
Nectarivores | DIET_Nect | ||
Herbivores | DIET_Herb | ||
Feeding/BODY SIZE | Smaller than 50 g | TAM_Mpeq | Body size is associated with metabolic rates, foraging behavior, longevity, amount of food they can process, etc. |
50–100 g | TAM_Peq | ||
100–150 g | TAM_Med | ||
Greater than 150 g | TAM_Grand | ||
Feeding/FORAGING stratum | Canopy | FOR_Cano | Indicates where birds perform foraging activities. Influences the use of resources and nutrient cycling. |
Understory | FOR_Med | ||
Ground | FOR_Sue | ||
Reproduction/NESTING site | Buildings | NID_Cont | Related to sensitivity to different environmental changes affecting nesting habitat availability. |
Parasites | NID_Para | ||
Abandoned nests | NID_Aban | ||
Natural cavities | NID_CavNat | ||
Trees | NID_Arbo | ||
Shrubs | NID_Arbu | ||
Herbs | NID_herv | ||
Ground | NID_Sue | ||
Trunks | NID_Tron | ||
Vulnerability/ sensitivity to anthropogenic disturbances | Favorable | SENS_Favo | Related to the way in which these species respond to anthropogenic processes, inducing modification and contamination of environments. Some species may benefit and others may be negatively affected. |
Low | SENS_Baja | ||
Medium | SENS_Med | ||
High | SENS_Alta | ||
Habitat/primary HABITAT | Forest | HAB_Bosq | Primary habitat is where different species are present and develop most of their activities. This includes anthropogenic habitats. |
Shrubland | HAB_Arbu | ||
Grassland | HAB_Past | ||
Rural | HAB_Rur | ||
Urban | HAB_Urb | ||
Habitat/Nº of HABITAT types | 1 to 3 | NHU_Poco | Habitat generalist species are more resistant to change than specialists, since they can use a variety of habitats. |
More than 3 | NHU_Much |
Response Variable | Year | Month | ||||
---|---|---|---|---|---|---|
Est | z/t | p-Value | Est | z/t | p-Value | |
Forest Birds | ||||||
Richness | 0.07 | 2.06 | 0.03 | −0.002 | −0.29 | 0.76 |
Functional richness | −1.38 | −1.29 | 0.20 | −0.08 | −0.23 | 0.81 |
Understory Birds | ||||||
Richness | 0.007 | 0.05 | 0.89 | −0.006 | −0.49 | 0.61 |
Functional richness | −0.39 | −0.37 | 0.70 | −0.61 | −1.73 | 0.08 |
Taxonomic Richness | Functional Richness | |||||||
---|---|---|---|---|---|---|---|---|
Estimate | Error | z/t | p-Value | Estimate | Error | z/t | p-Value | |
Forest specialist birds | ||||||||
Forest500 | 0.64 | 0.128 | 4.24 | <0.001 | 5.93 | 1.807 | 3.21 | 0.001 |
Urban500 | −0.26 | 0.110 | 2.56 | 0.010 | −4.76 | 1.935 | −2.28 | 0.015 |
NDVI.mean | −0.35 | 0.107 | −3.28 | 0.001 | −2.13 | 1.627 | −2.12 | 0.029 |
Exotico500 | - | - | - | - | −3.45 | 1.291 | −1.65 | 0.104 |
NDVI.cont | - | - | - | - | 3.24 | 1.229 | 7.73 | 0.009 |
Altitude | - | - | - | - | 2.48 | 1.555 | 1.59 | 0.030 |
Understory specialist birds | ||||||||
Forest500 | 0.91 | 0.226 | 4.04 | <0.001 | - | - | - | - |
Urban500 | −0.28 | 0.154 | −1.82 | 0.068 | - | - | - | - |
npShrub250 | 0.22 | 0.145 | 1.52 | 0.128 | 1.72 | 1.6605 | 1.034 | 0.301 |
Shrub500 | 0.51 | 0.189 | 2.71 | 0.006 | - | - | - | - |
Forest1000 | - | - | - | - | 3.08 | 1.4529 | 2.102 | 0.035 |
Exotico1000 | - | - | - | - | −0.47 | 0.9975 | 0.477 | 0.633 |
NDVI.mean | - | - | - | - | −1.31 | 1.529 | −0.857 | 0.005 |
NDVI.cont | - | - | - | - | 1.35 | 1.628 | 2.504 | 0.465 |
References
- Daskalova, G.N.; Myers-Smith, I.H.; Bjorkman, A.D.; Blowes, S.A.; Supp, S.R.; Magurran, A.E.; Dornelas, M. Landscape-scale forest loss as a catalyst of population and biodiversity change. Science 2020, 368, 1341–1347. [Google Scholar] [CrossRef] [PubMed]
- Jaureguiberry, P.; Titeux, N.; Wiemers, M.; Bowler, D.E.; Coscieme, L.; Golden, A.S.; Purvis, A. The direct drivers of recent global anthropogenic biodiversity loss. Sci. Adv. 2022, 8, eabm9982. [Google Scholar] [CrossRef] [PubMed]
- United Nations. World Population Prospects 2022. Department of Economic and Social Affairs. 2022. Available online: https://population.un.org/wpp/Publications/ (accessed on 10 July 2024).
- FAO. Evaluación de los Recursos Forestales Mundiales 2020—Principales Resultados; FAO: Roma, Italy, 2020. [Google Scholar] [CrossRef]
- Soares-Filho, B.S.; Coutinho-Cerqueira, G.; Lopes-Pennachin, C. Dinamica a stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier. Ecol. Model. 2002, 154, 217–235. [Google Scholar] [CrossRef]
- Mosciaro, M.J.; Calamari, N.C.; Peri, P.L.; Montes, N.F.; Seghezzo, L.; Ortiz, E.; Volante, J. Future scenarios of land use change in the Gran Chaco: How far is zero-deforestation? Reg. Environ. Change 2022, 22, 115. [Google Scholar] [CrossRef]
- Zak, M.R.; Cabido, M.; Hodgson, J.G. Do subtropical seasonal forests in the Gran Chaco, Argentina, have a future? Biol. Conserv. 2004, 120, 589–598. [Google Scholar] [CrossRef]
- Gavier, G.I.; Bucher, E.H. Deforestación de las Sierras Chicas de Córdoba en el Período 1970–1997. Academia Nacional de Ciencias: Cordoba Argentina, Miscelánea, 2004; Volume 101. [Google Scholar]
- Arcamone, J.R.; Bellis, L.M.; Silvetti, L.E.; Gavier-Pizarro, G. 30 Years of Land Cover Changes Within a Global Deforestation Front: Insights from the Chaco Serrano Mountains. Land Degrad. Dev. 2025, 36, 2854–2867. [Google Scholar] [CrossRef]
- Naval-Fernandez, M.C.; Albornoz, J.; Bellis, L.M.; Baldini, C.; Arcamone, J.; Silvetti, L.; Álvarez, M.P.; Argañaraz, J.P. Megaincendios 2020 en Córdoba: Incidencia del fuego en áreas de valor ecológico y socioeconómico. Ecol. Austral 2023, 33, 136–151. [Google Scholar] [CrossRef]
- Graae, B.J.; Vandvik, V.; Armbruster, W.S.; Eiserhardt, W.L.; Svenning, J.C.; Hylander, K.; Ehrlén, J.; Speed, J.D.; Klanderud, K.; Bråthen, K.A.; et al. Stay or go–how topographic complexity influences alpine plant population and community responses to climate change. Perspect. Plant Ecol. Evol. Syst. 2018, 30, 41–50. [Google Scholar] [CrossRef]
- Ríos-Muñoz, C.A.; Navarro-Sigüenza, A.G. Efectos del cambio de uso de suelo en la disponibilidad hipotética de hábitat para los psitácidos de México. Ornitol. Neotrop. 2009, 20, 491–509. [Google Scholar]
- Radford, J.Q.; Bennett, A.F.; Cheers, G.J. Landscape-level thresholds of habitat cover for woodland-dependent birds. Biol. Conserv. 2005, 124, 317–337. [Google Scholar] [CrossRef]
- Fumy, F.; Fartmann, T. Climate and land-use change drive habitat loss in a mountain bird species. Ibis 2021, 163, 1189–1206. [Google Scholar] [CrossRef]
- Silvetti, L.E.; Gavier Pizarro, G.; Solari, L.M.; Arcamone, J.R.; Bellis, L.M. Land use changes and bird diversity in subtropical forests: Urban development as the underlying factor. Biodivers. Conserv. 2023, 32, 385–403. [Google Scholar] [CrossRef]
- Silvetti, L.E.; Gavier-Pizarro, G.; Arcamone, J.R.; Bellis, L.M. Delayed responses and extinction debt: An opportunity for the conservation of Chaco Serrano forest birds. Anim. Conserv. 2024, 28, 277–290. [Google Scholar] [CrossRef]
- De Kort, H.; Baguette, M.; Lenoir, J.; Stevens, V.M. Toward reliable habitat suitability and accessibility models in an era of multiple environmental stressors. Ecol. Evol. 2020, 10, 10937–10952. [Google Scholar] [CrossRef]
- Tejada, G.; Dalla-Nora, E.; Cordoba, D.; Lafortezza, R.; Ovando, A.; Assis, T.; Aguiar, A.P. Deforestation scenarios for the Bolivian lowlands. Env. Res. 2016, 144, 49–63. [Google Scholar] [CrossRef]
- Proswitz, K.; Edward, M.C.; Evers, M.; Mombo, F.; Mpwaga, A.; Näschen, K.; Sesabo, J.; Höllermann, B. Complex socio-ecological systems: Translating narratives into future land use and land cover scenarios in the Kilombero Catchment. Tanzan. Sustain 2021, 13, 6552. [Google Scholar] [CrossRef]
- Mejía, D.; Tonon, M.D.; Abad, L. Distribución potencial del género Polylepis en la Cuenca del río Paute bajo un escenario de cambio climático. Rev. De La Fac. De Cienc. Químicas 2018, 19, 22–37. [Google Scholar]
- Quipuscoa Silvestre, V.; Dillon, M.O.; Treviño Zevallos, Í.; Balvin Aguilar, M.; Mejía Rios, A.; Ramos Aranibar, D.; Durand Vera, K.; Montesinos Tubée, D. Impacto de los cambios climáticos y uso de suelo, en la distribución de las especies de géneros endémicos de Asteraceae de Arequipa. Arnaldoa 2019, 26, 71–96. [Google Scholar] [CrossRef]
- Pearson, R.G.; Dawson, T.P. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 2003, 12, 361–371. [Google Scholar] [CrossRef]
- Brown, J.L.; Yoder, A.D. Shifting ranges and conservation challenges for lemurs in the face of climate change. Ecol. Evol. 2015, 5, 1131–1142. [Google Scholar] [CrossRef]
- Bolochio, B.E.; Lescano, J.N.; Cordier, J.M.; Loyola, R.; Nori, J. A functional perspective for global amphibian conservation. Biol. Conserv. 2020, 245, 108572. [Google Scholar] [CrossRef]
- Alaggia, F.G.; Torres, R.C.; Nori, J. Efecto hipotético del cambio climático sobre la distribución de dos especies leñosas dominantes del Chaco Serrano. Ecologia Austral 2022, 32, 319–330. [Google Scholar] [CrossRef]
- Giorgis, M.A.; Cingolani, A.M.; Gurvich, D.E.; Tecco, P.A.; Chiapella, J.; Chiarini, F.; Cabido, M. Changes in floristic composition. Appl. Veg. Sci. 2017, 20, 558–571. [Google Scholar] [CrossRef]
- Gavier-Pizarro, G.I.; Kuemmerle, T.; Hoyos, L.E.; Stewart, S.I.; Huebner, C.D.; Keuler, N.S.; Radeloff, V.C. Monitoring the invasion of an exotic tree (Ligustrum lucidum) from 1983 to 2006 with Landsat TM/ETM+ satellite data and Support Vector Machines in Córdoba, Argentina. Remote Sens. Environ. 2012, 122, 134–145. [Google Scholar] [CrossRef]
- Sutherland, W.J.; Newton, I.; Green, R.E. Bird Ecology and Conservation: A Handbook of Techniques; Oxford University Press: New York, NY, USA, 2004. [Google Scholar]
- Johnston, A.; Hochachka, W.M.; Strimas-Mackey, M.E.; Ruiz-Gutierrez, V.; Robinson, O.J.; Miller, E.T.; Fink, D. Analytical guidelines to increase the value of community science data: An example using eBird data to estimate species distributions. Divers. Distrib. 2021, 27, 1265–1277. [Google Scholar] [CrossRef]
- Laliberté, E.; Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 2010, 91, 299–305. [Google Scholar] [CrossRef]
- R CoreTeam. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Magurran, A.E. Measuring Biological Diversity; Blackwell Publishing: Oxford, UK, 2004. [Google Scholar]
- Villéger, S.; Miranda, J.R.; Hernández, D.F.; Mouillot, D. Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecol. Appl. 2010, 20, 1512–1522. [Google Scholar] [CrossRef]
- Weyland, F.; Baudry, J.; Ghersa, C.M. A fuzzy logic method to assess the relationship between landscape patterns and bird richness of the Rolling Pampas. Landsc. Ecol 2012, 27, 869–885. [Google Scholar] [CrossRef]
- Boscolo, D.; Metzger, J.P. Is bird incidence in Atlantic forest fragments influenced by landscape patterns at multiple scales? Landsc. Ecol. 2009, 24, 907–918. [Google Scholar] [CrossRef]
- Wood, E.M.; Pidgeon, A.M.; Radeloff, V.C.; Keuler, N.S. Image texture predicts avian density and species richness. PLoS ONE 2013, 8, e63211. [Google Scholar] [CrossRef]
- Bennett, A.F.; Radford, J.Q.; Haslem, A. Properties of land mosaics: Implications for nature conservation in agricultural environments. Biol. Conserv. 2006, 133, 250–264. [Google Scholar] [CrossRef]
- Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 2010, 1, 103–113. [Google Scholar] [CrossRef]
- Bartón, K. Multi-Model Inference, R Package Version 1.7.2. 2012. Available online: http://CRAN.R-project.org/package=MuMIn (accessed on 28 May 2024).
- Burnham, K.P.; Anderson, D.R. Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach; Springer: New York, NY, USA, 2002. [Google Scholar]
- Wagenmakers, E.J.; Farrell, S. AIC model selection using Akaike weights. Psychon. Bull. Rev. 2004, 11, 192–196. [Google Scholar] [CrossRef]
- Quinn, G.P.; Keough, M.J. Experimental Design and Data Analysis for Biologists; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- QGIS Development Team. QGIS Geographic Information System. Open Source Acspatial Foundation Project. 2019. Available online: http://qgis.osgeo.org (accessed on 23 May 2024).
- Gavier-Pizarro, G.; Calamari, N.C.; Piquer-Rodríguez, M.; Kuemmerle, T. El método de construcción de escenarios aplicado al Ordenamiento Territorial. In Ordenamiento Territorial: Conceptos, Metodologías y Experiencias; Paruelo, J.M., Ed.; FAO: Buenos Aires, Argentina, 2014; pp. 173–197. Available online: http://www.fao.org/3/ai4195s.pdf (accessed on 28 May 2024).
- Soares-Filho, B.S.; Rodrigues, H.O.; Costa, W.L. Modeling Environmental Dynamics with Dinamica EGO, 1ed.; Centro de Sensoriamento Remoto, Universidade Federal de Minas Gerais: Belo Horizonte, Brazil, 2009; 115p, ISBN 978-85-910119-0-2. [Google Scholar]
- Blanchard, G.; Munoz, F. Revisiting extinction debt through the lens of multitrophic networks and meta-ecosystems. Oikos 2023, 2023, e09435. [Google Scholar] [CrossRef]
- Pidgeon, A.M.; Flather, C.H.; Radeloff, V.C.; Lepczyk, C.A.; Keuler, N.S.; Wood, E.M.; Hammer, R.B. Systematic temporal patterns in the relationship between housing development and forest bird biodiversity. Conserv. Biol. 2014, 28, 1291–1301. [Google Scholar] [CrossRef]
- Brown, M.L.; Donovan, T.M.; Schwenk, W.S.; Theobald, D.M. Predicting impacts of future human population growth and development on occupancy rates of forest-dependent birds. Biol. Conserv. 2014, 170, 311–320. [Google Scholar] [CrossRef]
- Kissling, W.D.; Field, R.; Böhning-Gaese, K. Spatial patterns of woody plant and bird diversity: Functional relationships or environmental effects? Glob. Ecol. Biogeogr. 2008, 17, 327–339. [Google Scholar] [CrossRef]
- Macchi, L.; Baumann, M.; Bluhm, H.; Baker, M.; Levers, C.; Grau, H.R.; Kuemmerle, T. Thresholds in forest bird communities along woody vegetation gradients in the South American Dry Chaco. J. Appl. Ecol. 2019, 56, 629–639. [Google Scholar] [CrossRef]
- Luck, G.W.; Carter, A.; Smallbone, L. Changes in bird functional diversity across multiple land uses: Interpretations of functional redundancy depend on functional group identity. PLoS ONE 2013, 8, e63671. [Google Scholar] [CrossRef]
- Cagnolo, L.; Valladares, G.; Salvo, A.; Cabido, M.; Zak, M. Habitat fragmentation and species loss across three interacting trophic levels: Effects of life-history and food-web traits. Conserv. Biol. 2009, 23, 1167–1175. [Google Scholar] [CrossRef]
- Verga, E.G.; Peluc, S.I.; Landi, M.A.; Galetto, L. Efecto de la fragmentación del bosque sobre las fuentes potenciales de alimento para aves en Córdoba. Ecol. Austral 2018, 28, 339–352. [Google Scholar] [CrossRef]
- Albanesi, S.; Dardanelli, S.; Bellis, L.M. Effects of fire disturbance on bird communities and species of mountain Serrano forest in central Argentina. J. For. Res. 2014, 19, 105–114. [Google Scholar] [CrossRef]
- Fahrig, L. Ecological responses to habitat fragmentation per se. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 1–23. [Google Scholar] [CrossRef]
- Barzan, F.R.; Bellis, L.M.; Calamari, N.C.; Canavelli, S.B.; Dardanelli, S. Using bird foraging height guilds and species to assess forest degradation by livestock production. Biodivers. Conserv. 2025, 34, 877–894. [Google Scholar] [CrossRef]
- Fischer, J.; Lindenmayer, D.B. Landscape modification and habitat fragmentation: A synthesis. Glob. Ecol. Biogeogr. 2007, 16, 265–280. [Google Scholar] [CrossRef]
- Tilman, D. Functional diversity. In Encyclopedia of Biodiversity: Second Edition; Elsevier Inc.: Amsterdam, The Netherlands, 2001; pp. 587–596. [Google Scholar]
- Francisco, V.; de la Cueva, H. Nuevas perspectivas en la diversidad funcional de ambientes marinos. Lat. Am. J. Aquat. Res. 2017, 45, 261–275. [Google Scholar] [CrossRef]
- Northrup, J.M.; Gerber, B.D. A comment on priors for Bayesian occupancy models. PLoS ONE 2018, 13, e0192819. [Google Scholar] [CrossRef]
- Müller, R.; Pacheco, P.; Montero, J.C. El Contexto de la Deforestación y Degradación de los Bosques en Bolivia: Causas, Actores e Instituciones; Cifor: Bogor, Indonesia, 2014; Volume 100. [Google Scholar]
- Kuemmerle, T.; Altrichter, M.; Baldi, G.; Cabido, M.; Camino, M.; Cuellar, E.; Zak, M. Forest conservation: Remember Gran Chaco. Science 2017, 355, 465. [Google Scholar] [CrossRef]
- Valfré-Giorello, T.A.; Torres, R.C.; Barri, F.R.; Renison, D. Control mecánico del árbol no nativo Ligustrum lucidum (Oleaceae): Supervivencia, regeneración y costos. Boletín De La Soc. Argent. De Botánica 2019, 54, 1–5. [Google Scholar] [CrossRef]
- Cingolani, A.M.; Giorgis, M.A.; Hoyos, L.E.; Cabido, M. La vegetación de las montañas de Córdoba (Argentina) a comienzos del siglo XXI: Un mapa base para el ordenamiento territorial. Boletín De La Soc. Argent. De Botánica 2022, 57, 51–60. [Google Scholar] [CrossRef]
- Barri, F.R.; Toledo, M.; Herzog, P.; Bellis, L.M.; Renison, D. Avifaunal responses after two decades of Polylepis forest restoration in central Argentina. Neotrop. Biodivers. 2021, 7, 205–212. [Google Scholar] [CrossRef]
- Hsieh, T.C.; Ma, K.; Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (H ill numbers). Methods Ecol. Evol. 2016, 7, 1451–1456. [Google Scholar] [CrossRef]
Group Variable | Name | Description |
---|---|---|
Landscape structure: buffer < 250 m | ||
Texture Index: Mean | NDVI.mean | Mean distribution of NDVI pixel values in winter, associated with the presence of L. lucidum |
Texture Index: Contrast | NDVI.cont | Variation in NDVI pixel values in summer |
Number of shrubland patches | npShrub | Number of shrubland patches within the buffer |
Number of forest patches | npForest | Number of forest patches within the buffer |
Number of exotic forest patches | npExotic | Number of exotic forest patches within the buffer |
Edge length | Edge | Length (m) of edge between forest and non-forest patches within the buffer |
Landscape structure: buffer 500 m and 1000 m | ||
Forest area | Forest | Hectares of forest within the buffer |
Shrubland area | Shrub | Hectares of shrubland within the buffer |
Exotic forest area | Exotic | Hectares of exotic forest within the buffer |
Urban area | Urban | Percentage of urban area within the buffer |
Topographic | ||
Altitude | Altitude | Calculated from an SRTM DEM (30 m) |
Slope | Slope | Calculated from an SRTM DEM (30 m) |
Model | df | AICc | R2 | ∆AICc | Wi | Overall Accuracy (%) |
---|---|---|---|---|---|---|
Forest bird richness—3 models of 196 | ||||||
1. (0.64 * Forest500) (−0.26 * Urban500) (−0.35 * NDVI.mean) | 6 | 587.22 | 0.61 | 0 | 0.31 | 72.00 |
2. (0.55 * Forest500) (−0.26 * Urban500) (−0.34 * NDVI.mean) (−0.05 * Exotic500) | 7 | 589.11 | 0.61 | 1.88 | 0.12 | |
3. (0.56 * Forest500) (−0.26 * Urban500) (−0.36 * NDVI.mean) (0.04 * Altitude) | 7 | 589.21 | 0.61 | 1.99 | 0.11 | |
Functional richness of forest birds—1 model of 886 | ||||||
1. (5.93 * Forest500) (−4.76 * Urban500) (−2.13 * Exotic500) (−3.45 * NDVI.mean) (3.24 * NDVI.cont) (2.48 * Altitude) | 13 | 740.50 | 0.40 | 0 | 0.27 | 52.00 |
Understory bird richness—6 models of 68 | ||||||
1. (0.22 * npShrub250) (0.51 * Shrub500) (0.91 * Forest500) (−0.28 * Urban500) | 5 | 455.40 | 0.29 | 0 | 0.21 | 93.00 |
2. (0.59 * Shrub500) (0.93 * Forest500) | 4 | 455.49 | 0.27 | 0.09 | 0.20 | |
3. (0.28 * npShrub250) (0.47 * Shrub500) (0.80 * Forest500) (−0.23 * Urban500) | 6 | 455.83 | 0.30 | 0.43 | 0.17 | |
4. (0.65 * Shrub1000) (0.93 * Forest1000) (0.25 * Urban1000) | 5 | 456.01 | 0.28 | 0.61 | 0.15 | |
5. (0.64 * Shrub1000) (0.77 * Forest1000) | 4 | 456.44 | 0.27 | 1.04 | 0.12 | |
6. (0.58 * Shrub500) (0.87 * Forest500) (−0.12 * Urban500) | 5 | 457.10 | 0.28 | 1.70 | 0.08 | |
Functional richness of understory birds—9 models of 422 | ||||||
1. (1.72 * npShrub250) (3.08 * Forest1000) (−0.47 * Exotic1000) (−1.31 * NDVI.mean) (1.35 * NDVI.cont) | 11 | 736.66 | 0.30 | 0 | 0.11 | 92.16 |
2. (1.92 * npShrub250) (4.36 * Forest1000) (−1.55 * Exotic1000) (−1.21 * NDVI.mean) (1.28 * NDVI.cont) (1.5 * Urban1000) | 10 | 737.14 | 0.27 | 0.47 | 0.08 | |
3. (2.41 * npShrub250) (5.15 * Forest1000) (−1.71 * Exotic1000) (−1.59 * NDVI.mean) (0.94 * FreqFire) (1.44 * Urban1000) | 10 | 737.72 | 0.27 | 1.06 | 0.07 | |
4. (2.21 * npShrub250) (4.21 * Forest1000) (−0.95 * Exotic1000) (−1.4 * NDVI.mean) (1.65 * NDVI.cont) (0.93 * FreqFire) | 10 | 737.84 | 0.27 | 1.17 | 0.06 | |
5. (2.21 * npShrub250) (4.26 * Forest1000) (−1.26 * NDVI.mean) (1.56 * NDVI.cont) (0.94 * FreqFire) (0.69 * Urban1000) | 10 | 738.04 | 0.27 | 1.37 | 0.06 | |
6. (1.98 * npShrub250) (4.57 * Forest1000) (−1.66 * Exotic1000) (−1.48 * NDVI.mean) (165 * Urban1000) | 9 | 738.17 | 0.27 | 1.50 | 0.05 | |
7. (2.19 * npShrub250) (3.98 * Forest1000) (1.33 * NDVI.mean) (1.69 * NDVI.cont) (0.92 * FreqFire) | 9 | 738.27 | 0.27 | 1.60 | 0.05 | |
8. (2.06 * npShrub250) (3.68 * Forest1000) (−1.31 * NDVI.mean) (1.57 * NDVI.cont) | 9 | 738.28 | 0.27 | 1.62 | 0.05 | |
9. (2 * npShrub250) (3.71 * Forest1000) (−0.94 * Exotic1000) (−1.17 * NDVI.mean) (1.49 * NDVI.cont) | 9 | 738.50 | 0.27 | 1.83 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silvetti, L.E.; Arcamone, J.R.; Gavier Pizarro, G.; Landi, M.A.; Bellis, L.M. Land-Use Change Scenarios and Their Implications for Bird Conservation in Subtropical Forests. Forests 2025, 16, 1001. https://doi.org/10.3390/f16061001
Silvetti LE, Arcamone JR, Gavier Pizarro G, Landi MA, Bellis LM. Land-Use Change Scenarios and Their Implications for Bird Conservation in Subtropical Forests. Forests. 2025; 16(6):1001. https://doi.org/10.3390/f16061001
Chicago/Turabian StyleSilvetti, Luna E., Julieta R. Arcamone, Gregorio Gavier Pizarro, Marcos A. Landi, and Laura M. Bellis. 2025. "Land-Use Change Scenarios and Their Implications for Bird Conservation in Subtropical Forests" Forests 16, no. 6: 1001. https://doi.org/10.3390/f16061001
APA StyleSilvetti, L. E., Arcamone, J. R., Gavier Pizarro, G., Landi, M. A., & Bellis, L. M. (2025). Land-Use Change Scenarios and Their Implications for Bird Conservation in Subtropical Forests. Forests, 16(6), 1001. https://doi.org/10.3390/f16061001