Tracing Dam Impacts on Braided Riverbank Vegetation: A Spatiotemporal Analysis of Cover Dynamics and Hydrological Drivers
Abstract
1. Introduction
2. Study Area and Data Overview
2.1. Study Area
2.2. Data Overview
3. Methodology
3.1. Fractional Vegetation Coverage
3.2. Trend and Structural Breakpoint Analysis Methods
3.3. Driving Factors Analysis Methods
4. Results
4.1. Characteristics of Vegetation Coverage Mutation Based on STL
4.2. Spatiotemporal Trends of Vegetation Coverage
4.3. Spatial Characteristics of Vegetation Cover Responses to Drivers
4.4. Variation in the Impact of FVC Driving Factors Across Periods
5. Discussion
5.1. Characteristics of Vegetation Cover Changes Before and After Dam Construction
5.2. Dynamic Relationships Among Dam Construction, Braided River Morphology, and Vegetation Response Patterns
5.3. The Impact of Hydrological Factors on Vegetation Coverage
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Jun_AvgQ | June average discharge |
3dMA_MinQ | 3-day moving average minimum discharge |
BFI | Baseflow index |
Rev_Count | Reversal count |
HC | Hydrologic connectivity |
Ann_Temp | Annual mean temperature |
Jun_Temp | June mean temperature |
Ann_Precip | Annual mean of monthly cumulative precipitation |
Jun_Precip | June cumulative precipitation |
FVC | Fractional vegetation coverage |
STL | Seasonal and trend decomposition using Loess |
LMM | Linear mixed model |
References
- Guo, E.; Chen, L.; Sun, R.; Wang, Z. Effects of Riparian Vegetation Patterns on the Distribution and Potential Loss of Soil Nutrients: A Case Study of the Wenyu River in Beijing. Front. Environ. Sci. Eng. 2015, 9, 279–287. [Google Scholar] [CrossRef]
- Bennett, A.F.; Nimmo, D.G.; Radford, J.Q. Riparian Vegetation Has Disproportionate Benefits for Landscape-scale Conservation of Woodland Birds in Highly Modified Environments. J. Appl. Ecol. 2014, 51, 514–523. [Google Scholar] [CrossRef]
- Chua, E.M.; Wilson, S.P.; Vink, S.; Flint, N. The Influence of Riparian Vegetation on Water Quality in a Mixed Land Use River Basin. River Res. Appl. 2019, 35, 259–267. [Google Scholar] [CrossRef]
- Olokeogun, O.S.; Kumar, M. An Indicator Based Approach for Assessing the Vulnerability of Riparian Ecosystem under the Influence of Urbanization in the Indian Himalayan City, Dehradun. Ecol. Indic. 2020, 119, 106796. [Google Scholar] [CrossRef]
- Riis, T.; Kelly-Quinn, M.; Aguiar, F.C.; Manolaki, P.; Bruno, D.; Bejarano, M.D.; Clerici, N.; Fernandes, M.R.; Franco, J.C.; Pettit, N. Global Overview of Ecosystem Services Provided by Riparian Vegetation. BioScience 2020, 70, 501–514. [Google Scholar] [CrossRef]
- Dybala, K.E.; Matzek, V.; Gardali, T.; Seavy, N.E. Carbon Sequestration in Riparian Forests: A Global Synthesis and Meta-analysis. Glob. Change Biol. 2019, 25, 57–67. [Google Scholar] [CrossRef]
- Cantamessa, S.; Chiarabaglio, P.M.; Rizza, D.; Debernardi, G.; Bergante, S. Improving Carbon Sequestration in Wetlands Using Native Poplar Genotypes for Reforestation Purposes. Forests 2024, 15, 1641. [Google Scholar] [CrossRef]
- Bertoldi, W.; Drake, N.A.; Gurnell, A.M. Interactions between River Flows and Colonizing Vegetation on a Braided River: Exploring Spatial and Temporal Dynamics in Riparian Vegetation Cover Using Satellite Data. Earth Surf. Process. Landf. 2011, 36, 1474–1486. [Google Scholar] [CrossRef]
- Camporeale, C.; Perucca, E.; Ridolfi, L.; Gurnell, A.M. Modeling the Interactions between River Morphodynamics and Riparian Vegetation. Rev. Geophys. 2013, 51, 379–414. [Google Scholar] [CrossRef]
- Gran, K.; Paola, C. Riparian Vegetation Controls on Braided Stream Dynamics. Water Resour. Res. 2001, 37, 3275–3283. [Google Scholar] [CrossRef]
- Henriques, M.; McVicar, T.R.; Holland, K.L.; Daly, E. Riparian Vegetation and Geomorphological Interactions in Anabranching Rivers: A Global Review. Ecohydrology 2022, 15, e2370. [Google Scholar] [CrossRef]
- Gurnell, A. Plants as River System Engineers. Earth Surf. Process. Landf. 2014, 39, 4–25. [Google Scholar] [CrossRef]
- Dawson, M.; Lewin, J. The Heterogeneous Geomorphological Impact of an Exceptional Flood Event and the Role of Floodplain Vegetation. Earth Surf. Process. Landf. 2024, 49, 354–373. [Google Scholar] [CrossRef]
- Mao, L.; Ravazzolo, D.; Bertoldi, W. The Role of Vegetation and Large Wood on the Topographic Characteristics of Braided River Systems. Geomorphology 2020, 367, 107299. [Google Scholar] [CrossRef]
- Ielpi, A.; Lapôtre, M.G.; Gibling, M.R.; Boyce, C.K. The Impact of Vegetation on Meandering Rivers. Nat. Rev. Earth Environ. 2022, 3, 165–178. [Google Scholar] [CrossRef]
- Guo, S.; Xiong, L.; Zha, X.; Zeng, L.; Cheng, L. Impacts of the Three Gorges Dam on the Streamflow Fluctuations in the Downstream Region. J. Hydrol. 2021, 598, 126480. [Google Scholar] [CrossRef]
- Stecca, G.; Hicks, D.M.; Measures, R.; Henderson, R. Numerical Modeling Prediction of Vegetation Trajectories Under Different Flow Regimes in New Zealand Braided Rivers. JGR Earth Surf. 2023, 128, e2023JF007397. [Google Scholar] [CrossRef]
- Mouillot, D.; Graham, N.A.; Villéger, S.; Mason, N.W.; Bellwood, D.R. A Functional Approach Reveals Community Responses to Disturbances. Trends Ecol. Evol. 2013, 28, 167–177. [Google Scholar] [CrossRef]
- Benjankar, R.; Jorde, K.; Yager, E.M.; Egger, G.; Goodwin, P.; Glenn, N.F. The Impact of River Modification and Dam Operation on Floodplain Vegetation Succession Trends in the Kootenai River, USA. Ecol. Eng. 2012, 46, 88–97. [Google Scholar] [CrossRef]
- Woo, H. Trends in Ecological River Engineering in Korea. J. Hydro-Environ. Res. 2010, 4, 269–278. [Google Scholar] [CrossRef]
- Ashmore, P. Morphology and Dynamics of Braided Rivers. Treatise Geomorphol. 2013, 9, 289–312. [Google Scholar] [CrossRef]
- Li, J.; Xia, J.; Zhou, M.; Deng, S.; Zhang, X. Variation in Reach-scale Thalweg-migration Intensity in a Braided Reach of the Lower Yellow River in 1986–2015. Earth Surf. Process. Landf. 2017, 42, 1952–1962. [Google Scholar] [CrossRef]
- Dai, Z.; Liu, J.T. Impacts of Large Dams on Downstream Fluvial Sedimentation: An Example of the Three Gorges Dam (TGD) on the Changjiang (Yangtze River). J. Hydrol. 2013, 480, 10–18. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. 30 m Annual Land Cover and Its Dynamics in China from 1990 to 2019. Earth Syst. Sci. Data Discuss. 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Cho, M.S.; Qi, J. Quantifying Spatiotemporal Impacts of Hydro-Dams on Land Use/Land Cover Changes in the Lower Mekong River Basin. Appl. Geogr. 2021, 136, 102588. [Google Scholar] [CrossRef]
- Jiang, X.; Lu, D.; Moran, E.; Calvi, M.F.; Dutra, L.V.; Li, G. Examining Impacts of the Belo Monte Hydroelectric Dam Construction on Land-Cover Changes Using Multitemporal Landsat Imagery. Appl. Geogr. 2018, 97, 35–47. [Google Scholar] [CrossRef]
- Ouyang, W.; Shan, Y.; Hao, F.; Shi, X.; Wang, X. Accumulated Impact Assessment of River Buffer Zone after 30 Years of Dam Disturbance in the Yellow River Basin. Stoch. Environ. Res. Risk Assess. 2013, 27, 1069–1079. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, S.; Dong, S. Effect of Dam Construction on Spatial-Temporal Change of Land Use: A Case Study of Manwan, Lancang River, Yunnan, China. Procedia Environ. Sci. 2010, 2, 852–858. [Google Scholar] [CrossRef]
- Zhu, H.; Huang, Y.; Li, Y.; Yu, F.; Zhang, G.; Fan, L.; Zhou, J.; Li, Z.; Yuan, M. Predicting Plant Diversity in Beach Wetland Downstream of Xiaolangdi Reservoir with UAV and Satellite Multispectral Images. Sci. Total Environ. 2022, 819, 153059. [Google Scholar] [CrossRef]
- Wang, Y.; Xia, J.; Deng, S.; Zhou, M.; Wang, Z.; Xu, X. Numerical Simulation of Bank Erosion and Accretion in a Braided Reach of the Lower Yellow River. Catena 2022, 217, 106456. [Google Scholar] [CrossRef]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y. The Impacts of Climate Change on Water Resources and Agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Ma, Y.; Salama, M.S.; Su, Z. Assessment of Vegetation Dynamics and Their Response to Variations in Precipitation and Temperature in the Tibetan Plateau. Clim. Change 2010, 103, 519–535. [Google Scholar] [CrossRef]
- Tonkin, J.D.; Merritt, D.M.; Olden, J.D.; Reynolds, L.V.; Lytle, D.A. Flow Regime Alteration Degrades Ecological Networks in Riparian Ecosystems. Nat. Ecol. Evol. 2018, 2, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Kuai, S.; Tang, C.; Zhang, S. Evaluation of Hydrological Connectivity in a River Floodplain System and Its Influence on the Vegetation Coverage. Ecol. Indic. 2022, 144, 109445. [Google Scholar] [CrossRef]
- Zhang, C.; Peng, Z.; Tang, C.; Zhang, S. Evaluation of River Longitudinal Connectivity Based on Landscape Pattern and Its Application in the Middle and Lower Reaches of the Yellow River, China. Environ. Sci. Pollut. Res. 2022, 30, 30779–30792. [Google Scholar] [CrossRef]
- Zhang, X.; Qiao, W.; Lu, Y.; Huang, J.; Xiao, Y. Quantitative Analysis of the Influence of the Xiaolangdi Reservoir on Water and Sediment in the Middle and Lower Reaches of the Yellow River. Int. J. Environ. Res. Public Health 2023, 20, 4351. [Google Scholar] [CrossRef]
- Ma, Y.; Huang, H.Q. Controls of Channel Morphology and Sediment Concentration on Flow Resistance in a Large Sand-Bed River: A Case Study of the Lower Yellow River. Geomorphology 2016, 264, 132–146. [Google Scholar] [CrossRef]
- Vose, R.S.; Arndt, D.; Banzon, V.F.; Easterling, D.R.; Gleason, B.; Huang, B.; Kearns, E.; Lawrimore, J.H.; Menne, M.J.; Peterson, T.C. NOAA’s Merged Land–Ocean Surface Temperature Analysis. Bull. Am. Meteorol. Soc. 2012, 93, 1677–1685. [Google Scholar] [CrossRef]
- Peng, S. 1-Km Monthly Precipitation Dataset for China (1901–2023) [Dataset]. National Tibetan Plateau/Third Pole Environment Data Center. 2020. Available online: https://www.tpdc.ac.cn/zh-hans/data/faae7605-a0f2-4d18-b28f-5cee413766a2/ (accessed on 3 July 2025).
- Lu, H.; Raupach, M.R.; McVicar, T.R.; Barrett, D.J. Decomposition of Vegetation Cover into Woody and Herbaceous Components Using AVHRR NDVI Time Series. Remote Sens. Environ. 2003, 86, 1–18. [Google Scholar] [CrossRef]
- Cleveland, R.B.; Cleveland, W.S.; McRae, J.E.; Terpenning, I. STL: A Seasonal-Trend Decomposition. J. Off. Stat. 1990, 6, 3–73. [Google Scholar]
- Ben Abbes, A.; Bounouh, O.; Farah, I.R.; De Jong, R.; Martínez, B. Comparative Study of Three Satellite Image Time-Series Decomposition Methods for Vegetation Change Detection. Eur. J. Remote Sens. 2018, 51, 607–615. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of Changes in Meteorological Variables Using Mann-Kendall and Sen’s Slope Estimator Statistical Tests in Serbia. Glob. Planet. Change 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Richter, B.D.; Baumgartner, J.V.; Powell, J.; Braun, D.P. A Method for Assessing Hydrologic Alteration within Ecosystems. Conserv. Biol. 1996, 10, 1163–1174. [Google Scholar] [CrossRef]
- Wu, D.; Zhao, X.; Liang, S.; Zhou, T.; Huang, K.; Tang, B.; Zhao, W. Time-lag Effects of Global Vegetation Responses to Climate Change. Glob. Change Biol. 2015, 21, 3520–3531. [Google Scholar] [CrossRef] [PubMed]
- Bates, D.M. Lme4: Mixed-Effects Modeling with R; Spinger: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Nakagawa, S.; Schielzeth, H. A General and Simple Method for Obtaining R2 from Generalized Linear Mixed-effects Models. Methods Ecol. Evol. 2013, 4, 133–142. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Multimodel Inference: Understanding AIC and BIC in Model Selection. Sociol. Methods Res. 2004, 33, 261–304. [Google Scholar] [CrossRef]
- Lai, J.; Zou, Y.; Zhang, S.; Zhang, X.; Mao, L. Glmm. Hp: An R Package for Computing Individual Effect of Predictors in Generalized Linear Mixed Models. J. Plant Ecol. 2022, 15, 1302–1307. [Google Scholar] [CrossRef]
- Corenblit, D.; Tabacchi, E.; Steiger, J.; Gurnell, A.M. Reciprocal Interactions and Adjustments between Fluvial Landforms and Vegetation Dynamics in River Corridors: A Review of Complementary Approaches. Earth-Sci. Rev. 2007, 84, 56–86. [Google Scholar] [CrossRef]
- Li, S.; Sawada, Y. Soil Moisture-Vegetation Interaction from near-Global in-Situ Soil Moisture Measurements. Environ. Res. Lett. 2022, 17, 114028. [Google Scholar] [CrossRef]
- Duo, A.; Zhao, W.; Qu, X.; Jing, R.; Xiong, K. Spatio-Temporal Variation of Vegetation Coverage and Its Response to Climate Change in North China Plain in the Last 33 Years. Int. J. Appl. Earth Obs. Geoinf. 2016, 53, 103–117. [Google Scholar] [CrossRef]
- Khir Alla, Y.M.; Liu, L. Impacts of Dams on the Environment: A Review. Int. J. Environ. Agric. Biotechnol. 2021, 6, 64–74. [Google Scholar] [CrossRef]
- Schielzeth, H.; Dingemanse, N.J.; Nakagawa, S.; Westneat, D.F.; Allegue, H.; Teplitsky, C.; Réale, D.; Dochtermann, N.A.; Garamszegi, L.Z.; Araya-Ajoy, Y.G. Robustness of Linear Mixed-effects Models to Violations of Distributional Assumptions. Methods Ecol. Evol. 2020, 11, 1141–1152. [Google Scholar] [CrossRef]
- Jacqmin-Gadda, H.; Sibillot, S.; Proust, C.; Molina, J.-M.; Thiébaut, R. Robustness of the Linear Mixed Model to Misspecified Error Distribution. Comput. Stat. Data Anal. 2007, 51, 5142–5154. [Google Scholar] [CrossRef]
- Kong, D.; Latrubesse, E.M.; Miao, C.; Zhou, R. Morphological Response of the Lower Yellow River to the Operation of Xiaolangdi Dam, China. Geomorphology 2020, 350, 106931. [Google Scholar] [CrossRef]
- Li, H.; Shen, W.; Zou, C.; Jiang, J.; Fu, L.; She, G. Spatio-Temporal Variability of Soil Moisture and Its Effect on Vegetation in a Desertified Aeolian Riparian Ecotone on the Tibetan Plateau, China. J. Hydrol. 2013, 479, 215–225. [Google Scholar] [CrossRef]
- Salerno, L.; Moreno-Martínez, Á.; Izquierdo-Verdiguier, E.; Clinton, N.; Siviglia, A.; Camporeale, C. Satellite Analyses Unravel the Multi-Decadal Impact of Dam Management on Tropical Floodplain Vegetation. Front. Environ. Sci. 2022, 10, 871530. [Google Scholar] [CrossRef]
- Gao, L.; Xu, X.; Xia, J. Deciphering the Role of Riverbank Collapse in the Braided Reach of the Lower Yellow River: Helpful or Harmful? J. Earth Syst. Sci. 2024, 133, 30. [Google Scholar] [CrossRef]
- Al-Munqedhi Bander, M.; El-Sheikh, M.A.; Alfarhan, A.H.; Alkahtani, A.M.; Arif, I.A.; Rajagopal, R.; Alharthi, S.T. Climate Change and Hydrological Regime in Arid Lands: Impacts of Dams on the Plant Diversity, Vegetation Structure and Soil in Saudi Arabia. Saudi J. Biol. Sci. 2022, 29, 3194–3206. [Google Scholar] [CrossRef]
- Takahashi, M.; Nakamura, F. Impacts of Dam-Regulated Flows on Channel Morphology and Riparian Vegetation: A Longitudinal Analysis of Satsunai River, Japan. Landsc. Ecol. Eng. 2011, 7, 65–77. [Google Scholar] [CrossRef]
- Jiang, W.; Pan, H.; Yang, N.; Xiao, H. Dam Inundation Duration as a Dominant Constraint on Riparian Vegetation Recovery. Sci. Total Environ. 2023, 904, 166427. [Google Scholar] [CrossRef]
Landscape Pattern Indices | Grading Range of Mid-Channel Bar Area (m2) | ||
---|---|---|---|
Shape index | 0.14 | 0–1.7 × 105 | 0.006 |
Contagion index | 0.18 | 1.7 × 105–6.0 × 105 | 0.022 |
Connectance index | 0.24 | 6.0 × 105–1.3 × 106 | 0.049 |
Splitting index | 0.17 | 1.3 × 106–2.9 × 106 | 0.106 |
Shannon’s diversity index | 0.27 | 2.9 × 106–1 × 107 | 0.200 |
Variables | Number | Definition | Unit | Description |
---|---|---|---|---|
Jun_AvgQ | X1 | June average discharge | 104 m3/s | Mean discharge in June, representing typical hydrological conditions for the month. |
3dMA_MinQ | X2 | 3-day moving average minimum discharge | 104 m3/s | Minimum discharge averaged over a 3-day sliding window, reflecting short-term low-flow extremes. |
BFI | X3 | Baseflow index | - | Ratio of the annual minimum 7-day discharge to the median annual discharge. |
Rev_Count | X4 | Reversal count | 102 | Number of daily flow direction reversals per year. |
HC | X5 | Hydrologic connectivity | - | Connectivity index calculated using landscape-hydrology model |
Ann_Temp | X6 | Annual mean temperature | °C | Long-term average temperature, reflecting regional thermal conditions. |
Jun_Temp | X7 | June mean temperature | °C | Average temperature in June, reflecting thermal conditions during the early growing season. |
Ann_Precip | X8 | Annual mean of monthly cumulative precipitation | 102 mm | Average of monthly cumulative precipitation over a year, reflecting annual moisture availability. |
Jun_Precip | X9 | June cumulative precipitation | 102 mm | Total precipitation in June, representing moisture supply during the critical growth period. |
Reach | Period | Model | Fixed Effects Variable | Random Slopes Variable | R2c |
---|---|---|---|---|---|
Xiaolangdi–Jiahetan | 1990–2020 | 1 | X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 | X2 + X3 + X5 | 0.746 |
1990–2004 | 2 | X1 + X3 + X4 + X5 + X7 + X8 + X9 | X4 | 0.696 | |
2005–2020 | 3 | X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 | X1 + X3 + X5 | 0.809 | |
Jiahetan–Gaocun | 1990–2020 | 4 | X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 | - | 0.549 |
1990–2004 | 5 | X1 + X3 + X4 + X5 + X7 + X8 + X9 | - | 0.615 | |
2005–2020 | 6 | X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 | X5 | 0.714 |
Predictors | Unit | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 |
---|---|---|---|---|---|---|---|
X1 | 104 m3/s | 0.02 **(7.21) | 1.71 **(11.75) | −0.19 **(4.80) | −0.23 **(3.29) | 1.24 **(9.69) | −0.77 **(40.87) |
X2 | 104 m3/s | −0.27 **(3.85) | - | −0.32 **(9.83) | −0.35 **(5.47) | - | −0.33 **(11.36) |
X3 | - | 0.13 **(6.42) | −0.51 **(8.92) | 0.19 **(7.21) | 0.17 **(4.41) | −1.15 **(35.15) | 0.21 **(10.08) |
X4 | 102 | 0.17 **(27.77) | 0.06 **(21.89) | 0.18 **(4.15) | 0.15 **(19.62) | 0.16 **(12.32) | −0.13 **(2.65) |
X5 | - | 0.07 **(14.03) | −0.08 **(2.97) | 0.20 **(32.53) | 0.05 **(11.19) | −0.1 **(1.95) | −0.08 **(2.44) |
X6 | °C | 0.01 **(4.45) | - | −0.02 **(4.80) | 0.04 **(14.55) | - | 0.04 **(10.83) |
X7 | °C | 0.03 **(17.49) | 0.11 **(27.54) | 0.02 **(15.28) | 0.01 **(5.40) | 0.12 **(12.83) | 0.03 **(7.86) |
X8 | 102 mm | −0.05 **(4.45) | 0.32 **(6.94) | −0.62 **(21.40) | −0.1 **(12.57) | 0.12 **(12.44) | −0.51 **(13.91) |
X9 | 102 mm | −0.11 **(14.33) | −0.39 **(19.98) | - | −0.18 **(23.50) | −0.24 **(15.62) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Liu, X.; Wei, S.; Tang, C.; Zhang, S. Tracing Dam Impacts on Braided Riverbank Vegetation: A Spatiotemporal Analysis of Cover Dynamics and Hydrological Drivers. Forests 2025, 16, 1117. https://doi.org/10.3390/f16071117
Zhang C, Liu X, Wei S, Tang C, Zhang S. Tracing Dam Impacts on Braided Riverbank Vegetation: A Spatiotemporal Analysis of Cover Dynamics and Hydrological Drivers. Forests. 2025; 16(7):1117. https://doi.org/10.3390/f16071117
Chicago/Turabian StyleZhang, Cheng, Xiyu Liu, Shutong Wei, Caihong Tang, and Shanghong Zhang. 2025. "Tracing Dam Impacts on Braided Riverbank Vegetation: A Spatiotemporal Analysis of Cover Dynamics and Hydrological Drivers" Forests 16, no. 7: 1117. https://doi.org/10.3390/f16071117
APA StyleZhang, C., Liu, X., Wei, S., Tang, C., & Zhang, S. (2025). Tracing Dam Impacts on Braided Riverbank Vegetation: A Spatiotemporal Analysis of Cover Dynamics and Hydrological Drivers. Forests, 16(7), 1117. https://doi.org/10.3390/f16071117