Little Giants: Lichens in Tropical Dry Forests
Abstract
1. Introduction
2. Tropical Dry Forests: Definition, Evolution, Current Distribution, Conservation Status, and Similar Biomes
2.1. Evolution and Paleoclimatic Fluctuation of TDFs in the Neotropics
2.2. Current Distribution and Patterns of Plant Diversity
2.3. Conservation of TDFs
2.4. Delimitation Towards Other Seasonally Dry Areas/Other Tropical Dry Ecosystems
3. Lichens: Definition, Diversity, and Biology
4. The Tropical Dry Forest as a Habitat for Lichens
4.1. Ecophysiological Challenges
4.2. Lichens in Soils: Biocrusts
4.3. Lichen Biodiversity in TDFs
4.4. Lichen Communities in TDFs Compared to Other Tropical Habitats
4.5. Regional Differences of Lichen Communities in Neotropical TDFs
4.6. Phorophyte and Microclimatic Differentiation
4.7. Competition
4.8. Lichenivory in TDFs
4.9. Lichens and Camouflage
4.10. Ethnolichenology
4.11. Chemical Compounds and Bioactive Properties of Lichens
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
TDF | Tropical Dry Forest |
References
- Honegger, R. The Lichen Symbiosis—What Is so Spectacular about It? Lichenologist 1998, 30, 193–212. [Google Scholar] [CrossRef]
- Hawksworth, D.L.; Grube, M. Lichens Redefined as Complex Ecosystems. New Phytol. 2020, 227, 1281–1283. [Google Scholar] [CrossRef]
- Allen, J.L.; Lendemer, J.C. A Call to Reconceptualize Lichen Symbioses. Trends Ecol. Evol. 2022, 37, 582–589. [Google Scholar] [CrossRef]
- Spribille, T.; Resl, P.; Stanton, D.E.; Tagirdzhanova, G. Evolutionary Biology of Lichen Symbioses. New Phytol. 2022, 234, 1566–1582. [Google Scholar] [CrossRef]
- Aanen, D.K.; Eggleton, P.; Rouland-Lefèvre, C.; Guldberg-Frøslev, T.; Rosendahl, S.; Boomsma, J.J. The Evolution of Fungus-Growing Termites and Their Mutualistic Fungal Symbionts. Proc. Natl. Acad. Sci. USA 2002, 99, 14887–14892. [Google Scholar] [CrossRef]
- Anderson, I.C.; Cairney, J.W.G. Ectomycorrhizal Fungi: Exploring the Mycelial Frontier. FEMS Microbiol. Rev. 2007, 31, 388–406. [Google Scholar] [CrossRef] [PubMed]
- Willis, A.; Rodrigues, B.F.; Harris, P.J.C. The Ecology of Arbuscular Mycorrhizal Fungi. Crit. Rev. Plant Sci. 2013, 32, 1–20. [Google Scholar] [CrossRef]
- Corrales, A.; Koch, R.A.; Vasco-Palacios, A.M.; Smith, M.E.; Ge, Z.-W.; Henkel, T.W. Diversity and Distribution of Tropical Ectomycorrhizal Fungi. Mycologia 2022, 114, 919–933. [Google Scholar] [CrossRef]
- Ryberg, M.; Kalsoom Khan, F.; Sánchez-García, M. On the Evolution of Ectomycorrhizal Fungi. Mycosphere 2023, 13, 1–12. [Google Scholar] [CrossRef]
- Seaward, M.R.D. Progress in the Study of the Lichen Flora of the British Isles. Bot. J. Linn. Soc. 1988, 96, 81–95. [Google Scholar] [CrossRef]
- Asplund, J.; Wardle, D.A. How Lichens Impact on Terrestrial Community and Ecosystem Properties. Biol. Rev. 2017, 92, 1720–1738. [Google Scholar] [CrossRef] [PubMed]
- Matos, P.; Geiser, L.; Hardman, A.; Glavich, D.; Pinho, P.; Nunes, A.; Soares, A.M.V.M.; Branquinho, C. Tracking Global Change Using Lichen Diversity: Towards a Global-scale Ecological Indicator. Methods Ecol. Evol. 2017, 8, 788–798. [Google Scholar] [CrossRef]
- Lücking, R.; Seavey, F.; Common, R.S.; Beeching, S.Q.; Breuss, O.; Buck, W.R.; Crane, L.; Hodges, M.; Hodkinson, B.P.; Lay, E.; et al. The Lichens of Fakahatchee Strand Preserve State Park, Florida: Proceedings from the 18th Tuckerman Workshop. Bull. Fla. Mus. Nat. Hist. 2011, 49, 127–186. [Google Scholar] [CrossRef]
- Cáceres, M.E.S.; Lücking, R.; Rambold, G. Corticolous Microlichens in Northeastern Brazil: Habitat Differentiation Between Coastal Mata Atlântica, Caatinga and Brejos de Altitude. Bryologist 2008, 111, 98–117. [Google Scholar] [CrossRef]
- Benítez, Á.; Aragón, G.; Prieto, M. Lichen Diversity on Tree Trunks in Tropical Dry Forests Is Highly Influenced by Host Tree Traits. Biodivers. Conserv. 2019, 28, 2909–2929. [Google Scholar] [CrossRef]
- Lücking, R.; Moncada, B.; Martinez-Habibe, M.C.; Salgado-Negret, B.E.; Celis, M.; Rojas-Zamora, O.; Rodriguez-M, G.M.; Brokamp, G.; Borsch, T. Lichen Diversity in Colombian Caribbean Dry Forest Remnants. Caldasia 2019, 41, 194–214. [Google Scholar] [CrossRef]
- Miranda-González, R.; McCune, B. The Weight of the Crust: Biomass of Crustose Lichens in Tropical Dry Forest Represents More than Half of Foliar Biomass. Biotropica 2020, 52, 1298–1308. [Google Scholar] [CrossRef]
- Miles, L.; Newton, A.C.; DeFries, R.S.; Ravilious, C.; May, I.; Blyth, S.; Kapos, V.; Gordon, J.E. A Global Overview of the Conservation Status of Tropical Dry Forests. J. Biogeogr. 2006, 33, 491–505. [Google Scholar] [CrossRef]
- DRYFLOR; Banda-R, K.; Delgado-Salinas, A.; Dexter, K.G.; Linares-Palomino, R.; Oliveira-Filho, A.; Prado, D.; Pullan, M.; Quintana, C.; Riina, R.; et al. Plant Diversity Patterns in Neotropical Dry Forests and Their Conservation Implications. Science 2016, 353, 1383–1387. [Google Scholar] [CrossRef]
- Holdridge, J.R. Life Zone Ecology; Tropical Science Center: San José, Costa Rica, 1967. [Google Scholar]
- Gentry, A.H. Diversity and Floristic Composition of Neotropical Dry Forests. In Seasonally Dry Tropical Forests; Bullock, S.H., Mooney, H.A., Medina, E., Eds.; Cambridge University Press: Cambridge, UK, 1995; pp. 146–194. [Google Scholar]
- Sánchez-Azofeifa, G.A.; Quesada, M.; Rodríguez, J.P.; Nassar, J.M.; Stoner, K.E.; Castillo, A.; Garvin, T.; Zent, E.L.; Calvo-Alvarado, J.C.; Kalacska, M.E.R.; et al. Research Priorities for Neotropical Dry Forests. Biotropica 2005, 37, 477–485. [Google Scholar] [CrossRef]
- Meir, P.; Pennington, R.T. Climatic Change and Seasonally Dry Tropical Forests. In Seasonally Dry Tropical Forests; Dirzo, R., Young, H.S., Mooney, H.A., Ceballos, G., Eds.; Island Press/Center for Resource Economics: Washington, DC, USA, 2011; pp. 279–299. ISBN 978-1-61091-021-7. [Google Scholar]
- Hulshof, C.M.; Martínez-Yrízar, A.; Burquez, A.; Boyle, B.; Enquist, B.J. Plant Functional Trait Variation in Tropical Dry Forests: A Review and Synthesis. In Tropical Dry Forests in the Americas: Ecology, Conservation, and Management, 1st ed.; CRC Press: Boca Ratón, FL, USA, 2013; Volume 1, pp. 129–140. [Google Scholar]
- Singh, S.; Verma, A.K. Plant Functional Traits in Tropical Dry Forests: A Review. In Practice, Progress, and Proficiency in Sustainability; Bhadouria, R., Tripathi, S., Srivastava, P., Singh, P., Eds.; IGI Global: Hershey, PA, USA, 2020; pp. 66–88. ISBN 978-1-79980-014-9. [Google Scholar]
- Murphy, P.G.; Lugo, A.E. Ecology of Tropical Dry Forest. Annu. Rev. Ecol. Syst. 1986, 17, 67–88. [Google Scholar] [CrossRef]
- Menaut, C.; Lepage, M.; Abbadie, L. Savannas, Woodlands and Dry Forests in Africa. In Seasonally Dry Tropical Forests; Bullock, S.H., Mooney, H.A., Medina, E., Eds.; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Mayaux, P.; Holmgren, P.; Achard, F.; Eva, H.; Stibig, H.-J.; Branthomme, A. Tropical Forest Cover Change in the 1990s and Options for Future Monitoring. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 373–384. [Google Scholar] [CrossRef]
- FAO. Global Ecological Zones for FAO Forest Reporting: 2010 Update; Forest Resources Assessment Working Paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 2012. [Google Scholar]
- Ratnam, J.; Bond, W.J.; Fensham, R.J.; Hoffmann, W.A.; Archibald, S.; Lehmann, C.E.R.; Anderson, M.T.; Higgins, S.I.; Sankaran, M. When Is a ‘Forest’ a Savanna, and Why Does It Matter?: When Is a ‘Forest’ a Savanna. Glob. Ecol. Biogeogr. 2011, 20, 653–660. [Google Scholar] [CrossRef]
- Charles-Dominique, T.; Staver, A.C.; Midgley, G.F.; Bond, W.J. Functional Differentiation of Biomes in an African Savanna/Forest Mosaic. S. Afr. J. Bot. 2015, 101, 82–90. [Google Scholar] [CrossRef]
- Trejo, I.; Dirzo, R. Deforestation of Seasonally Dry Tropical Forest. Biol. Conserv. 2000, 94, 133–142. [Google Scholar] [CrossRef]
- González-M, R.; García, H.; Isaacs, P.; Cuadros, H.; López-Camacho, R.; Rodríguez, N.; Pérez, K.; Mijares, F.; Castaño-Naranjo, A.; Jurado, R.; et al. Disentangling the Environmental Heterogeneity, Floristic Distinctiveness and Current Threats of Tropical Dry Forests in Colombia. Environ. Res. Lett. 2018, 13, 045007. [Google Scholar] [CrossRef]
- Martínez, C.; Jaramillo, C.; Martínez-Murcia, J.; Crepet, W.; Cárdenas, A.; Escobar, J.; Moreno, F.; Pardo-Trujillo, A.; Caballero-Rodríguez, D. Paleoclimatic and Paleoecological Reconstruction of a Middle to Late Eocene South American Tropical Dry Forest. Glob. Planet. Change 2021, 205, 103617. [Google Scholar] [CrossRef]
- Woodcock, D.W.; Meyer, H.W.; Prado, Y. The Piedra Chamana Fossil Woods (Eocene, Peru). IAWA J. 2017, 38, 313–365. [Google Scholar] [CrossRef]
- Jaramillo, C. The Evolution of Extant South American Tropical Biomes. New Phytol. 2023, 239, 477–493. [Google Scholar] [CrossRef]
- Prado, D.E.; Gibbs, P.E. Patterns of Species Distributions in the Dry Seasonal Forests of South America. Ann. Mo. Bot. Gard. 1993, 80, 902. [Google Scholar] [CrossRef]
- Pennington, R.T.; Prado, D.E.; Pendry, C.A. Neotropical Seasonally Dry Forests and Quaternary Vegetation Changes. J. Biogeogr. 2000, 27, 261–273. [Google Scholar] [CrossRef]
- Brown, S.; Lugo, A.E. The Storage and Production of Organic Matter in Tropical Forests and Their Role in the Global Carbon Cycle. Biotropica 1982, 14, 161. [Google Scholar] [CrossRef]
- Intergovernmental Panel On Climate Change (IPCC). Climate Change 2022—Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Cambridge, UK, 2023; ISBN 978-1-00-932584-4. [Google Scholar]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth. BioScience 2001, 51, 933. [Google Scholar] [CrossRef]
- Pennington, R.T.; Lavin, M.; Oliveira-Filho, A. Woody Plant Diversity, Evolution, and Ecology in the Tropics: Perspectives from Seasonally Dry Tropical Forests. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 437–457. [Google Scholar] [CrossRef]
- Portillo-Quintero, C.A.; Sánchez-Azofeifa, G.A. Extent and Conservation of Tropical Dry Forests in the Americas. Biol. Conserv. 2010, 143, 144–155. [Google Scholar] [CrossRef]
- Linares-Palomino, R.; Oliveira-Filho, A.T.; Pennington, R.T. Neotropical Seasonally Dry Forests: Diversity, Endemism, and Biogeography of Woody Plants. In Seasonally Dry Tropical Forests; Dirzo, R., Young, H.S., Mooney, H.A., Ceballos, G., Eds.; Island Press/Center for Resource Economics: Washington, DC, USA, 2011; pp. 3–21. ISBN 978-1-61091-021-7. [Google Scholar]
- Noguera, F.A.; Vega Rivera, J.H.; García Aldrete, A.N.; Quesada Avendaño, M. Historia Natural de Chamela; Universidad Nacional Autónoma de México: Mexico City, Mexico, 2002. [Google Scholar]
- Daly, D.C.; Mitchell, J.D. 14. Lowland Vegetation of Tropical South America: An Overview. In Imperfect Balance; Lentz, D.L., Ed.; Columbia University Press: New York, NY, USA, 2000; pp. 391–454. ISBN 978-0-231-11157-7. [Google Scholar]
- Furley Peter, A. Tropical Forests of the Lowlands. In The Physical Geography of South America; Oxford University Press: New York, NY, USA, 2007; Volume 1, pp. 135–157. ISBN 978-0-19-531341-3. [Google Scholar]
- Pizano, C.; García, H. (Eds.) El Bosque seco Tropical en Colombia; Primera edición; Ministerio de Ambiente y Desarrollo Sostenible, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt: Bogotá, Colombia, 2014; ISBN 978-958-8343-97-6. [Google Scholar]
- Etter, A.; Andrade, A.; Nelson, C.R.; Cortés, J.; Saavedra, K. Assessing Restoration Priorities for High-Risk Ecosystems: An Application of the IUCN Red List of Ecosystems. Land Use Policy 2020, 99, 104874. [Google Scholar] [CrossRef]
- Schröder, J.M.; Ávila Rodríguez, L.P.; Günter, S. Research Trends: Tropical Dry Forests: The Neglected Research Agenda? For. Policy Econ. 2021, 122, 102333. [Google Scholar] [CrossRef]
- Sunderland, T.; Apgaua, D.; Baldauf, C.; Blackie, R.; Colfer, C.; Prado, A.B.; Dexter, K.; Djoudi, H.; Gautier, D.; Gumbo, D.; et al. Global Dry Forests. Int. For. Rev. 2015, 17, 1–9. [Google Scholar] [CrossRef]
- Jansen, D.H. Tropical Dry Forests: The Most Endangered Major Tropical Ecosystem. In Biodiversity; Natural Academy: Washington, DC, USA, 1998; pp. 130–137. [Google Scholar]
- Manuel Rodríguez Becerra. Nuestro Planeta, Nuestro Futuro, 1st ed.; Penguin Random House: Bogotá, Colombia, 2019. [Google Scholar]
- Pennington, R.T.; Lehmann, C.E.R.; Rowland, L.M. Tropical Savannas and Dry Forests. Curr. Biol. 2018, 28, R541–R545. [Google Scholar] [CrossRef] [PubMed]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Da Fonseca, G.A.B.; Kent, J. Biodiversity Hotspots for Conservation Priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, T.W.; Lipkin, B.; Sullivan, L.; Benowitz, D.R.; Pau, S.; Keppel, G. The Rarest and Least Protected Forests in Biodiversity Hotspots. Biodivers. Conserv. 2012, 21, 3597–3611. [Google Scholar] [CrossRef]
- Prado, D.E. Seasonally Dry Forests of Tropical South America: From Forgotten Ecosystems to a New Phytogeographic Unit. Edinb. J. Bot. 2000, 57, 437–461. [Google Scholar] [CrossRef]
- Ratter, J. Observations on Woody Vegetation Types in the Pantanal and at Corumba, Brazil. Notes R. Bot. Gard. Edinb. 1988, 455, 503–525. [Google Scholar]
- Ratter, J.; Askew, G.P.; Montgomery, R.F.; Gifford, D.R. Observations on Forests of Some Mesotrophic Soils in Central Brazil. Rev. Bras. Bot. 1978, 1, 47–58. [Google Scholar]
- Lücking, R.; Hodkinson, B.P.; Leavitt, S.D. The 2016 Classification of Lichenized Fungi in the Ascomycota and Basidiomycota—Approaching One Thousand Genera. Bryologist 2017, 119, 361. [Google Scholar] [CrossRef]
- Gargas, A.; DePriest, P.T.; Grube, M.; Tehler, A. Multiple Origins of Lichen Symbioses in Fungi Suggested by SSU rDNA Phylogeny. Science 1995, 268, 1492–1495. [Google Scholar] [CrossRef] [PubMed]
- Schoch, C.L.; Sung, G.-H.; López-Giráldez, F.; Townsend, J.P.; Miadlikowska, J.; Hofstetter, V.; Robbertse, B.; Matheny, P.B.; Kauff, F.; Wang, Z.; et al. The Ascomycota Tree of Life: A Phylum-Wide Phylogeny Clarifies the Origin and Evolution of Fundamental Reproductive and Ecological Traits. Syst. Biol. 2009, 58, 224–239. [Google Scholar] [CrossRef]
- Lutzoni, F.; Pagel, M.; Reeb, V. Major Fungal Lineages Are Derived from Lichen Symbiotic Ancestors. Nature 2001, 411, 937–940. [Google Scholar] [CrossRef]
- Lücking, R.; Nelsen, M.P. Ediacarans, Protolichens, and Lichen-Derived Penicillium: A Critical Reassessment of the Evolution of Lichenization in Fungi. In Transformative Paleobotany: Papers to Commemorate the Life and Legacy of Thomas N. Taylor; Academic Press: London, UK, 2018. [Google Scholar]
- Boustie, J.; Grube, M. Lichens—A Promising Source of Bioactive Secondary Metabolites. Plant Genet. Resour. 2005, 3, 273–287. [Google Scholar] [CrossRef]
- Lücking, R.; Spribille, T. The Lives of Lichens: Successful Miniature Ecosystems; The lives of the natural world; Princeton University Press: Princeton, NJ, USA, 2024; ISBN 978-0-691-24727-4. [Google Scholar]
- Lakatos, M. Lichens and Bryophytes: Habitats and Species. In Plant Desiccation Tolerance; Lüttge, U., Beck, E., Bartels, D., Eds.; Ecological Studies; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2011; Volume 215, pp. 65–87. ISBN 978-3-642-19105-3. [Google Scholar]
- Green, T.G.A.; Sancho, L.G.; Pintado, A. Ecophysiology of Desiccation/Rehydration Cycles in Mosses and Lichens. In Plant Desiccation Tolerance; Lüttge, U., Beck, E., Bartels, D., Eds.; Ecological Studies; Springer: Berlin/Heidelberg, Germany, 2011; Volume 215, pp. 89–120. ISBN 978-3-642-19105-3. [Google Scholar]
- Gasulla, F.; Del Campo, E.M.; Casano, L.M.; Guéra, A. Advances in Understanding of Desiccation Tolerance of Lichens and Lichen-Forming Algae. Plants 2021, 10, 807. [Google Scholar] [CrossRef]
- Palmqvist, K. Tansley Review No. 117: Carbon Economy in Lichens. New Phytol. 2000, 148, 11–36. [Google Scholar] [CrossRef] [PubMed]
- Maass, M.; Ahedo-Hernández, R.; Araiza, S.; Verduzco, A.; Martínez-Yrízar, A.; Jaramillo, V.J.; Parker, G.; Pascual, F.; García-Méndez, G.; Sarukhán, J. Long-Term (33 Years) Rainfall and Runoff Dynamics in a Tropical Dry Forest Ecosystem in Western Mexico: Management Implications under Extreme Hydrometeorological Events. For. Ecol. Manag. 2018, 426, 7–17. [Google Scholar] [CrossRef]
- Barradas, V.L.; Glez-Medellín, M.G. Dew and Its Effect on Two Heliophile Understorey Species of a Tropical Dry Deciduous Forest in Mexico. Int. J. Biometeorol. 1999, 43, 1–7. [Google Scholar] [CrossRef]
- Sosa-Quintero, J.; Godínez-Alvarez, H.; Camargo-Ricalde, S.L.; Gutiérrez-Gutiérrez, M.; Huber-Sannwald, E.; Jiménez-Aguilar, A.; Maya-Delgado, Y.; Mendoza-Aguilar, D.; Montaño, N.M.; Pando-Moreno, M.; et al. Biocrusts in Mexican Deserts and Semideserts: A Review of Their Species Composition, Ecology, and Ecosystem Function. J. Arid Environ. 2022, 199, 104712. [Google Scholar] [CrossRef]
- Szyja, M.; Menezes, A.G.D.S.; Oliveira, F.D.A.; Leal, I.; Tabarelli, M.; Büdel, B.; Wirth, R. Neglected but Potent Dry Forest Players: Ecological Role and Ecosystem Service Provision of Biological Soil Crusts in the Human-Modified Caatinga. Front. Ecol. Evol. 2019, 7, 482. [Google Scholar] [CrossRef]
- Sulzbacher, M.A.; Wartchow, F.; Ovrebo, C.L.; Sousa, J.O.; Baseia, I.G.; Moncada, B.; Lücking, R. Sulzbacheromyces Caatingae: Notes on Its Systematics, Morphology and Distribution Based on ITS Barcoding Sequences. Lichenologist 2016, 48, 61–70. [Google Scholar] [CrossRef]
- Oliveira, M.F.; Maciel-Silva, A.S. Biological Soil Crusts and How They Might Colonize Other Worlds: Insights from These Brazilian Ecosystem Engineers. J. Exp. Bot. 2022, 73, 4362–4379. [Google Scholar] [CrossRef]
- Barbosa-Silva, A.M.; Santos, L.A.; Cáceres, M.E.S.; Vasconcellos, A. Constrictotermes Cyphergaster (Blattaria, Termitidae) Termite Nests as Substrates for Lichen Fixation in the Semiarid Region of Northeastern Brazil. Braz. J. Biol. 2020, 80, 685–687. [Google Scholar] [CrossRef]
- Cáceres, M.E.D.S.; Aptroot, A.; Lücking, R. Lichen Fungi in the Atlantic Rain Forest of Northeast Brazil: The Relationship of Species Richness with Habitat Diversity and Conservation Status. Braz. J. Bot. 2017, 40, 145–156. [Google Scholar] [CrossRef]
- Nascimento, E.L.D.L.; Maia, L.C.; Cáceres, M.E.D.S.; Lücking, R. Phylogenetic Structure of Lichen Metacommunities in Amazonian and Northeast Brazil. Ecol. Res. 2021, 36, 440–463. [Google Scholar] [CrossRef]
- Benítez, Á.; Ortiz, J.; Matamoros-Apolo, D.; Bustamante, A.; López, F.; Yangua-Solano, E.; Gusmán-Montalván, E. Forest Disturbance Determines Diversity of Epiphytic Lichens and Bryophytes on Trunk Bases in Tropical Dry Forests. Forests 2024, 15, 1565. [Google Scholar] [CrossRef]
- España-Puccini, P.; Gómez, J.P.; Muñoz-Acevedo, A.; Posada-Echeverría, D.; Martinez-Habibe, M.C. Analysis of the Diversity of Corticolous Lichens Associated with Tree Trunks in the Understories of Four Tropical Dry Forests of the Atlántico Department in Colombia. Forests 2024, 15, 2000. [Google Scholar] [CrossRef]
- Soto-Medina, E.A.; Castaño-Naranjo, A.; Granobles, J.; Aptroot, A. Una Nueva Especie y Nuevos Registros de Líquenes En Colombia y Suramérica En El Bosque Seco Tropical de La Cuenca Media Del Río Cauca. Rev. Acad. Colomb. Cienc. Exactas Físicas Nat. 2021, 45, 175. [Google Scholar] [CrossRef]
- Soto, E.; Montoya, C.; Castaño, A.; Granobles, J. Diversity Patterns of Vascular and Non-Vascular Epiphytes along Tropical Dry Forest. Rev. Biol. Trop. 2023, 71, e53522. [Google Scholar] [CrossRef]
- Miranda-González, R. Lichen Studies of Tropical Dry Forest: A Systematic and Ecological Approach; Oregon State University: Chamela, Jalisco, Mexico, 2019. [Google Scholar]
- Herrera-Campos, M.D.L.Á.; Barcenas-Peña, A.; Miranda-González, R.; Mejía, M.A.; González, J.A.B.; Colín, P.M.; Téllez, N.S.; Lücking, R. New Lichenized Arthoniales and Ostropales from Mexican Seasonally Dry Tropical Forest. Bryologist 2019, 122, 62. [Google Scholar] [CrossRef]
- Miranda-González, R.; McCune, B.; Moldenke, A.R. Lichens as Material for Lepidoptera’s Housing: A Molecular Approach to a Widespread and Highly Selective Interaction. Fungal Ecol. 2023, 61, 101195. [Google Scholar] [CrossRef]
- Simijaca, D.; Ocampo, G.; Escoto-Moreno, J.; Pérez-Pérez, R.E. Lichen Community Assemblages and Functional Traits as Indicators of Vegetation Types in Central Mexico, Based on Herbarium Specimens. Cryptogam. Mycol. 2023, 44, 83–102. [Google Scholar] [CrossRef]
- Wolseley, P.A.; Aguirre-Hudson, B. The Ecology and Distribution of Lichens in Tropical Deciduous and Evergreen Forests of Northern Thailand. J. Biogeogr. 1997, 24, 327–343. [Google Scholar] [CrossRef]
- Aptroot, A.; Cáceres, M.E.S.; Johnston, M.K.; Lücking, R. How Diverse Is the Lichenized Fungal Family Trypetheliaceae (Ascomycota: Dothideomycetes)? A Quantitative Prediction of Global Species Richness. Lichenologist 2016, 48, 983–994. [Google Scholar] [CrossRef]
- Mendonça, C.D.O.; Aptroot, A.; Lücking, R.; Cáceres, M.E.D.S. Global Species Richness Prediction for Pyrenulaceae (Ascomycota: Pyrenulales), the Last of the “Big Three” Most Speciose Tropical Microlichen Families. Biodivers. Conserv. 2020, 29, 1059–1079. [Google Scholar] [CrossRef]
- Lücking, R.; Johnston, M.K.; Aptroot, A.; Kraichak, E.; Lendemer, J.C.; Boonpragob, K.; Cáceres, M.E.S.; Ertz, D.; Ferraro, L.I.; Jia, Z.-F.; et al. One Hundred and Seventy-Five New Species of Graphidaceae: Closing the Gap or a Drop in the Bucket? Phytotaxa 2014, 189, 7. [Google Scholar] [CrossRef]
- Komposch, H.; Haefellner, J. Species Composition of Lichen Dominated Corticolous Communities: A Lowland Rain Forest Canopy Compared to an Adjacent Shrubland in Venezuela. Bibl. Lichenol. 2002, 86, 351–367. [Google Scholar]
- Brodo, I.M.; Sharnoff, S.D.; Sharnoff, S. Lichens of North America. Blue Jay 2002, 60, 34. [Google Scholar] [CrossRef]
- Mercado-Díaz, J.; Gould, W.A.; González, G.; Lücking, R. Lichens in Puerto Rico: An Ecosystem Approach; International Institute of Tropical Forestry; United States Department of Agriculture: Washington, DC, USA, 2015. [Google Scholar]
- Dos Santos, L.A.; Aptroot, A.; Lücking, R.; Da Silva Cáceres, M.E. High Diversification in the Neoprotoparmelia Multifera Complex (Ascomycota, Parmeliaceae) in Northeast Brazil Revealed by DNA Barcoding and Phenotypical Characters. Bryologist 2019, 122, 539. [Google Scholar] [CrossRef]
- Lücking, R.; Villaseñor, J.L.; Herrera-Campos, M.A. Phylogenetic Structure of Metacommunities in Mexican Parmeliaceae (Lichenized Ascomycota: Lecanorales). Bibl. Lichenol. 2016, 110, 27–54. [Google Scholar]
- Leite, A.B.X.; Menezes, A.A.D.; Souto, L.D.S.; Aptroot, A.; Lücking, R.; Santos, V.M.D.; Cáceres, M.E.D.S. Epiphytic Microlichens as Indicators of Phytosociological Differentiation between Caatinga and Brejos de Altitude. Acta Bot. Bras. 2015, 29, 457–466. [Google Scholar] [CrossRef]
- Barcenas Peña, A. Taxonomía y Comparación de La Diversidad de Graphis En Diferentes Tipos de Vegetación En México; Universidad Nacional Autónoma de México: Ciudad de México, Mexico, 2016. [Google Scholar]
- Abas, A.; Din, L. Diversity, Composition and Distribution of Lichens along Elevational Gradients in the Tropical Mountain Forest of Gunung Nuang, Selangor, Malaysia. Ecomont J. Prot. Mt. Areas Res. 2020, 13, 4–11. [Google Scholar] [CrossRef]
- Frisch, A.; Rudolphi, J.; Sheil, D.; Caruso, A.; Thor, G.; Gustafsson, L. Tree Species Composition Predicts Epiphytic Lichen Communities in an African Montane Rain Forest. Biotropica 2015, 47, 542–549. [Google Scholar] [CrossRef]
- Aguirre-Gutiérrez, J.; Malhi, Y.; Lewis, S.L.; Fauset, S.; Adu-Bredu, S.; Affum-Baffoe, K.; Baker, T.R.; Gvozdevaite, A.; Hubau, W.; Moore, S.; et al. Long-Term Droughts May Drive Drier Tropical Forests towards Increased Functional, Taxonomic and Phylogenetic Homogeneity. Nat. Commun. 2020, 11, 3346. [Google Scholar] [CrossRef]
- Miranda-González, R.; Bungartz, F.; Lücking, R.; Gaya, E.; Mendonça, C.D.O.; Viñas-Portilla, C.; Cáceres, M.E.D.S.; Herrera-Campos, M.D.L.A. Phylogeny of the Pyrenula Ochraceoflava Group (Pyrenulaceae) Reveals near-Cryptic Diversification and the Inclusion of the Mazaediothecium Album Aggregate. Bryologist 2022, 125, 541–557. [Google Scholar] [CrossRef]
- Aptroot, A.; Andrade, D.S.; Mendonça, C.; Lima, E.L.D.; Cáceres, M.E.D.S. Ten New Species of Corticolous Pyrenocarpous Lichens from NE Brazil. Phytotaxa 2015, 197, 197. [Google Scholar] [CrossRef]
- Miranda-González, R.; Campos-Cerda, F.; Herrera-Campos, M.D.L.A. Diploicia edulis (Caliciaceae) and Physcia ornamentalis (Physciaceae), Two New Species Associated with Invertebrates from the Tropical Dry Forest of Mexico. Lichenologist 2025, 57, 25–33. [Google Scholar] [CrossRef]
- Pereira, T.A.; Passos, P.D.O.; Santos, L.A.D.; Lücking, R.; Cáceres, M.E.D.S. Going Extinct before Being Discovered? New Lichen Fungi from a Small Fragment of the Vanishing Atlantic Rainforest in Brazil. Biota Neotropica 2018, 18, e20170445. [Google Scholar] [CrossRef]
- Miranda-González, R. Líquenes Costrosos de La Estación de Biología Chamela, Un Análisis de Diversidad y Composición de Especies En Diferentes Microhábitats; Universidad Nacional Autónoma de México: Ciudad de México, Mexico, 2012. [Google Scholar]
- Cáceres, M.E.S.; Lücking, R.; Rambold, G. Phorophyte Specificity and Environmental Parameters versus Stochasticity as Determinants for Species Composition of Corticolous Crustose Lichen Communities in the Atlantic Rain Forest of Northeastern Brazil. Mycol. Prog. 2007, 6, 117–136. [Google Scholar] [CrossRef]
- Rosabal, D.; Burgaz, A.R.; Reyes, O.J. Substrate Preferences and Phorophyte Specificity of Corticolous Lichens on Five Tree Species of the Montane Rainforest of Gran Piedra, Santiago de Cuba. Bryologist 2013, 116, 113–121. [Google Scholar] [CrossRef]
- Rosabal, D.; Burgaz, A.R.; Altamirano, A.; Aragón, G. Differences in Diversity of Corticolous Lichens between Interior and Edge of the Monte Barranca Semi-Deciduous Forest, Santiago de Cuba. Bryologist 2012, 115, 333–340. [Google Scholar] [CrossRef]
- Rivas Plata, E.; Lücking, R.; Lumbsch, H.T. When Family Matters: An Analysis of Thelotremataceae (Lichenized Ascomycota: Ostropales) as Bioindicators of Ecological Continuity in Tropical Forests. Biodivers. Conserv. 2008, 17, 1319–1351. [Google Scholar] [CrossRef]
- Kivistö, L.; Kuusinen, M. Edge Effects on the Epiphytic Lichen Flora of Picea Abies in Middle Boreal Finland. Lichenologist 2000, 32, 387–398. [Google Scholar] [CrossRef]
- Rosabal, D.; Aragón, G. Líquenes Epífitos En El Matorral Costero de La Reserva Ecológica Siboney-Juticí (Cuba). Bot. Complut. 2010, 24, 21–25. [Google Scholar]
- Rosabal, D.; Burgaz, A.R.; De La Masa, R. Diversity and Distribution of Epiphytic Macrolichens on Tree Trunks in Two Slopes of the Montane Rainforest of Gran Piedra, Santiago de Cuba. Bryologist 2010, 113, 313–321. [Google Scholar] [CrossRef]
- Cornelissen, J.H.C.; Steege, H.T. Distribution and Ecology of Epiphytic Bryophytes and Lichens in Dry Evergreen Forest of Guyana. J. Trop. Ecol. 1989, 5, 131–150. [Google Scholar] [CrossRef]
- Honegger, R. Lichens and Their Allies Past and Present. In Plant Relationships; Scott, B., Mesarich, C., Eds.; The Mycota; Springer International Publishing: Cham, Switzerland, 2023; Volume 5, pp. 133–183. ISBN 978-3-031-16502-3. [Google Scholar]
- Nogales, M.; Hervías-Parejo, S. Consumption of the Lichen Roccella Gracilis by the Large Ground-Finch Geospiza Magnirostris on the Island of Daphne Major (Galápagos). Ornitol. Neotropical 2023, 34, 40–41. [Google Scholar] [CrossRef]
- Barbosa-Silva, A.M.; Vasconcellos, A.; Buril, M.L.L. Vitality of Mycobionts and Photobionts after Passing through the Digestive Tract of Constrictotermes Cyphergaster (Isoptera) Workers. Braz. J. Biol. 2023, 83, e272278. [Google Scholar] [CrossRef] [PubMed]
- Boom, B.M. Ethnobotany of the Chácobo Indians, Beni, Bolivia: Second Edition. Adv. Econ. Bot. 1996, 4, 1–74. [Google Scholar]
- Londoño-Castañeda, P.A.; Rego-Cunha, I.P.; Silva, N.H.; Honda, N.K.; Pereira, E.C.; Andrade, L.H.C.; Buril, M.L.L. Lichens Used in the Traditional Medicine by the Pankararu Indigenous Community, Pernambuco-Brazil. Glob. J. Sci. Front. Res. C Biological Sci. 2017, 17, 14–22. [Google Scholar]
- Crawford, S.D. Lichens Used in Traditional Medicine. In Lichen Secondary Metabolites; Ranković, B., Ed.; Springer: Cham, Switzerland, 2014; pp. 27–80. [Google Scholar] [CrossRef]
- Bautista-González, J.A.; Montoya, A.; Bye, R.; Esqueda, M.; Herrera-Campos, M.D.L.A. Traditional Knowledge of Medicinal Mushrooms and Lichens of Yuman Peoples in Northern Mexico. J. Ethnobiol. Ethnomed. 2022, 18, 52. [Google Scholar] [CrossRef]
- Pennington, C.W. The Tarahumara of Mexico: A Culture of the Mountains; University of Utah Press: Salt Lake City, UT, USA, 1963. [Google Scholar]
- Miranda-González, R.; Epitacio-Joaquin, G.; Tehler, A.; Téllez, N.S.; Herrera-Campos, M.D.L.A. Roccella ramitumidula (Roccellaceae), a New Species from the Tropical Dry Forest of Mexico. Bryologist 2022, 125, 477–484. [Google Scholar] [CrossRef]
- Estrabou, C. Preferencia de forófito por los líquenes en el bosque chaqueño oriental. Bosque 2007, 28, 46–49. [Google Scholar] [CrossRef]
- Llano, G.A. Economic uses of lichens. In Annual Report of the Smithsonian Institution; Smithsonian Institute: Washington, DC, USA, 1951; pp. 385–422. [Google Scholar]
- Guzmán Guillermo, J.; Barrera Bernal, C.; Cárdenas Mendoza, K.D.R. Utilización de líquenes como adornos navideños en la región de Xalapa, Veracruz, México. Rev. Biológico Agropecu. Tuxpan 2019, 7, 106–112. [Google Scholar] [CrossRef]
- Richardson, D.H.S. Lichens and Man. In Frontiers in Mycology: Honorary and General Lectures from the Fourth International Mycological Congress, Regensburg, Germany, 1990; Hawksworth, D.L., International Mycological Association, International Mycological Institute, Eds.; CAB International on behalf of the International Mycological Association and the International Mycological Institute: Wallingford, UK, 1991; pp. 187–210. ISBN 978-0-85198-698-2. [Google Scholar]
- De Mayolo, K.K.A. Peruvian Natural Dye Plants. Econ. Bot. 1989, 43, 181–191. [Google Scholar] [CrossRef]
- Mantilla Sanmiguel, C.P. La Moda y Los Textiles Guanes; División Diseño, Artesanías de Colombia: Bucaramanga, Colombia, 1990. [Google Scholar]
- Rodríguez, J.M.; Estrabou, C. Usnea amblyoclada «Barba de piedra» (Ascomycetes liquenizados) en Argentina. Bol. Soc. Argent. Bot. 2008, 43, 221–225. [Google Scholar]
- Roquero, A. Identification of Red Dyes in Textiles from the Andean Region. In Proceedings of the 11th Biennial Symposium of the Textile Society of America, Honolulu, HI, USA, 24–27 September 2008; pp. 1–10. [Google Scholar]
- Camacho Cambrón, M. Líquenes Medicinales en México; Nexos: Aberdeen, Scotland, 2024. [Google Scholar]
- Bautista González, J.A. Uso, Conocimiento local y Cosmovisión de Líquenes en la Región de Tehuacán-Cuicatlán; Universidad Nacional Autónoma de México: Ciudad de México, Mexico, 2017. [Google Scholar]
- Molnár, K.; Farkas, E. Current Results on Biological Activities of Lichen Secondary Metabolites: A Review. Z. Naturforschung C 2010, 65, 157–173. [Google Scholar] [CrossRef]
- Clerc, P.; Troung, C. The genus Usnea (Parmeliaceae) in tropical South America: Species with a pigmented medulla, reacting C+ yellow. Lichenologist 2012, 44, 625–637. [Google Scholar] [CrossRef]
- Flakus, A.; Ahti, T.; Kukwa, M.; Wilk, K. New and interesting records of Cladonia and their lichenicolous fungi from the Andean cloud forest in Bolivia. Ann. Bot. Fenn. 2008, 45, 448–454. [Google Scholar] [CrossRef]
- Barrera-Tomas, M.; Tomas-Chota, G.E.; Sheen-Cortavarría, P.; Fuentes-Bonilla, P.; Inocente-Camones, M.A.; Santiago-Contreras, J. Synthesis of acyl-hydrazone from usnic acid and isoniazid and its anti-Mycobacterium tuberculosis activity. Rev. Colomb. Química 2017, 46, 17–21. [Google Scholar] [CrossRef]
- Aptroot, A.; Bungartz, F. The lichen genus Ramalina on the Galapagos. Lichenologist 2007, 39, 519–542. [Google Scholar] [CrossRef]
- Michlig, S.A.; Rodríguez, M.P.; Ferraro, L.I. New record and distribution map of Parmotrema rubifaciens (Parmeliaceae, Ascomycota) in the Neotropics. Check List 2015, 11, 1763–1767. [Google Scholar] [CrossRef]
- Rincón-Espitia, A.J. Corticolous lichens in the Caribbean region of Colombia. Caldasia 2011, 33, 331–347. [Google Scholar]
- Moreno-Cocchietto, A.; Skert, N.; Nimis, P.L.; Sava, G. A Review on Usnic Acid, an Interesting Natural Compound. Naturwissenschaften 2002, 89, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Maciąg-Dorszyńska, M.; Węgrzyn, G.; Guzow-Krzemińska, B. Antibacterial Activity of Lichen Secondary Metabolite Usnic Acid Is Primarily Caused by Inhibition of RNA and DNA Synthesis. FEMS Microbiol. Lett. 2014, 353, 57–62. [Google Scholar] [CrossRef]
- Wang, H.; Xuan, M.; Huang, C.; Wang, C. Advances in Research on Bioactivity, Toxicity, Metabolism, and Pharmacokinetics of Usnic Acid In Vitro and In Vivo. Molecules 2022, 27, 7469. [Google Scholar] [CrossRef]
- Galanty, A.; Pasko, P.; Podolak, I. Enantioselective Activity of Usnic Acid: A Comprehensive Review and Future Perspectives. Phytochem. Rev. 2019, 12, 555–567. [Google Scholar] [CrossRef]
- Millot, M.; Dieu, A.; Tomasi, S. Dibenzofurans and derivatives from lichens and ascomycetes. Nat. Prod. Rep. 2016, 33, 801–811. [Google Scholar] [CrossRef]
- Dieu, A.; Millot, M.; Champavier, Y.; Mambu, L.; Chaleix, V.; Sol, V.; Gloaguen, V. Uncommon Chlorinated Xanthone and Other Antibacterial Compounds from the Lichen Cladonia incrassata. Planta Med. 2014, 80, 931–935. [Google Scholar] [CrossRef] [PubMed]
- España Puccini, P.; Habibe-Martínez, M.C.; Muñoz-Acevedo, A. Diversity, Chemical Composition, and Biological Potential of Corticolous Lichens from the Tropical Dry Forests of the Atlántico Department–Colombia; Universidad del Norte: Barranquilla, Colombia, 2024. [Google Scholar]
- Studzinska-Sroka, E.; Galanty, A.; Bylka, W. Atranorin—An Interesting Lichen Secondary Metabolite. Mini Rev. Med. Chem. 2017, 17, 1633–1645. [Google Scholar] [CrossRef]
- Zhou, R.; Yang, Y.; Park, S.-Y.; Nguyen, T.T.; Seo, Y.-W.; Lee, K.H.; Lee, J.H.; Kim, K.K.; Hur, J.-S.; Kim, H. The Lichen Secondary Metabolite Atranorin Suppresses Lung Cancer Cell Motility and Tumorigenesis. Sci. Rep. 2017, 7, 8136. [Google Scholar] [CrossRef]
- Melo, M.G.D.; dos Santos, J.P.A.; Serafini, M.R.; Caregnato, F.F.; de Bittencourt Pasquali, M.A.; Rabelo, T.K.; da Rocha, R.F.; Quintans, L.; de Souza Araújo, A.A.; da Silva, F.A.; et al. Redox Properties and Cytoprotective Actions of Atranorin, a Lichen Secondary Metabolite. Toxicol. Vitr. 2011, 25, 462–468. [Google Scholar] [CrossRef]
- Harikrishnan, A.; Veena, V.; Lakshmi, B.; Shanmugavalli, R.; Theres, S.; Prashantha, C.N.; Shah, T.; Oshin, K.; Togam, R.; Nandi, S. Atranorin, an Antimicrobial Metabolite from Lichen Parmotrema rampoddense, Exhibited In Vitro Anti-Breast Cancer Activity through Interaction with Akt Activity. J. Biomol. Struct. Dyn. 2021, 39, 1248–1258. [Google Scholar] [CrossRef] [PubMed]
- Bungartz, F.; Spielmann, A.A. The Genus Parmotrema (Parmeliaceae, Lecanoromycetes) in the Galapagos Islands. Plant Fungal Syst. 2019, 64, 173–231. [Google Scholar] [CrossRef]
- Ureña-Vacas, I.; González-Burgos, E.; Divakar, P.K.; Gómez-Serranillos, M.P. Lichen Depsides and Tridepsides: Progress in Pharmacological Approaches. J. Fungi 2023, 9, 116. [Google Scholar] [CrossRef] [PubMed]
- Loeanurit, N.; Tuong, T.L.; Nguyen, V.-K.; Vibulakhaophan, V.; Hengphasatporn, K.; Shigeta, Y.; Ho, S.X.; Chu, J.J.H.; Rungrotmongkol, T.; Chavasiri, W.; et al. Lichen-Derived Diffractaic Acid Inhibited Dengue Virus Replication in a Cell-Based System. Molecules 2023, 28, 974. [Google Scholar] [CrossRef]
- Urbanska, N.; Karasova, M.; Jendzelovska, Z.; Majerník, M.; Kolesarova, M.; Kecsey, D.; Jendzelovsky, R.; Bohus, P.; Kiskova, T. Gyrophoric Acid, a Secondary Metabolite of Lichens, Exhibits Antidepressant and Anxiolytic Activity In Vivo in Wistar Rats. Int. J. Mol. Sci. 2024, 25, 11840. [Google Scholar] [CrossRef]
- Rosso, M.L.; Bertoni, M.D.; Adler, M.T.; Maier, M.S. Anthraquinones from the cultured lichen mycobionts of Teloschistes exilis and Caloplaca erythrantha. Biochem. Syst. Ecol. 2003, 31, 1197–1200. [Google Scholar] [CrossRef]
- Manojlović, N.T.; Solujić, S.; Sukdolak, S.; Krstić, L. Isolation and antimicrobial activity of anthraquinones from some species of the lichen genus Xanthoria. J. Serbian Chem. Soc. 2000, 65, 555–560. [Google Scholar] [CrossRef]
- Cohen, P.A.; Hudson, J.B.; Towers, G.H.N. Antiviral activities of anthraquinones, bianthrones and hypericin derivatives from lichens. Experientia 1996, 52, 180–183. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Chen, W.W.; Sun, X.; Qian, D.; Tang, D.D.; Zhang, L.L.; Li, M.Y.; Wang, L.Y.; Wu, C.-J.; Peng, W. The versatile emodin: A natural easily acquired anthraquinone possesses promising anticancer properties against a variety of cancers. Int. J. Biol. Sci. 2022, 18, 3498–9527. [Google Scholar] [CrossRef]
- Varol, M. Parietin as an efficient and promising anti-angiogenic and apoptotic small-molecule from Xanthoria parietina. Rev. Bras. Farmacogn. 2019, 29, 728–734. [Google Scholar] [CrossRef]
- Fazio, A.T.; Adler, M.T.; Bertoni, M.D.; Maier, M.S. Culture studies on the mycobiont of Caloplaca erythrantha (Tuck.) Zahlbr. (Teloschistaceae): High production of major lichen secondary metabolites. Lichenologist 2012, 44, 533–542. [Google Scholar] [CrossRef]
- Lücking, R.; Archer, A.W.; Aptroot, A. A world-wide key to the genus Graphis (Ostropales: Graphidaceae). Lichenologist 2009, 41, 363–452. [Google Scholar] [CrossRef]
- Rivas Plata, E.; Lücking, R.; Sipman, H.J.M.; Mangold, A.; Kalb, K.; Aptroot, A. A world-wide key to the thelotremoid Graphidaceae, excluding the Ocellularia–Myriotrema–Stegobolus clade. Lichenologist 2010, 42, 139–185. [Google Scholar] [CrossRef]
- Pejin, B.; Iodice, C.; Bogdanović, G.; Kojić, V.; Tešević, V. Stictic acid inhibits cell growth of human colon adenocarcinoma HT-29 cells. Arab. J. Chem. 2017, 10 (Suppl. S1), S1240–S1242. [Google Scholar] [CrossRef]
- Ebrahim, H.Y.; Elsayed, H.E.; Mohyeldin, M.M.; Akl, M.R.; Bhattacharjee, J.; Egbert, S.; El Sayed, K.A. Norstictic acid inhibits breast cancer cell proliferation, migration, invasion, and in vivo invasive growth through targeting c-Met. Phytother. Res. 2016, 30, 620–628. [Google Scholar] [CrossRef] [PubMed]
- de Barros Alves, G.M.; de Sousa Maia, M.B.; de Souza Franco, E.; Galvão, A.M.; da Silva, T.G.; Gomes, R.M.; Martins, M.B.; da Silva Falcão, E.P.; Barbosa de Castro, C.M.M.; da Silva, N.H. Expectorant and antioxidant activities of purified fumarprotocetraric acid from Cladonia verticillaris lichen in mice. Pulm. Pharmacol. Ther. 2013, 26, 562–567. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Moriano, C.; Divakar, P.K.; Gómez-Serranillos, M.P. In vitro neuroprotective potential of lichen metabolite fumarprotocetraric acid via intracellular redox modulation. Toxicol. Appl. Pharmacol. 2017, 316, 27–36. [Google Scholar] [CrossRef]
- Ureña-Vacas, I.; González-Burgos, E.; Divakar, P.K.; Gómez-Serranillos, M.P. Lichen depsidones with biological interest. Planta Medica 2022, 88, 855–880. [Google Scholar] [CrossRef]
- Dias, D.A. Natural Product Studies of Terrestrial and Marine Organisms. Ph.D. Thesis, RMIT University, Melbourne, Australia, 2009. [Google Scholar]
- Paguirigan, J.A.; Liu, R.; Im, S.M.; Hur, J.-S.; Kim, W. Evaluation of Antimicrobial Properties of Lichen Substances against Plant Pathogens. Plant Pathol. J. 2022, 38, 25–32. [Google Scholar] [CrossRef]
- Varol, M.; Türk, A.; Candan, M.; Tay, T.; Koparal, A.T. Photoprotective Activity of Vulpinic and Gyrophoric Acids Toward Ultraviolet B-Induced Damage in Human Keratinocytes. Phytother. Res. 2016, 30, 226–232. [Google Scholar] [CrossRef]
- Saidhareddy, P.; Ajay, S.; Shaw, A.K. ‘Chiron’ Approach to the Total Synthesis of Macrolide (+)-Aspicilin. RSC Adv. 2013, 3, 25461–25466. [Google Scholar] [CrossRef]
- Tripathi, A.H.; Negi, N.; Gahtori, R.; Kumari, A.; Joshi, P.; Tewari, L.M.; Joshi, Y.; Bajpai, R.; Upreti, D.K.; Upadhyay, S.K. A Review of Anti-Cancer and Related Properties of Lichen-Extracts and Metabolites. Anti-Cancer Agents Med. Chem. 2022, 22, 115–142. [Google Scholar] [CrossRef]
Author(s) | Annual Average Temperature (°C) | Annual Precipitation (mm) | Dry Season (Months) | Vegetation Type | Soil | Altitude (Masl) |
---|---|---|---|---|---|---|
Holdridge (1967) [20] | 17 | (400-)700–2000 | >50% of trees are deciduous | - | - | |
Murphy and Lugo (1986) [26], Miles et al. (2006) [18] | frost free | (250-)500–2000 | 4 to 7 | - | - | |
Menaut et al. (1995) [27], Mayaux et al. (2005) [28], Meir and Pennington (2011) [23] | >17 | 250–2000 | at least 3 | Upper stratum trees deciduous, no dominant species | - | - |
FAO (2012) [29] | 500–1500 | 5 to 8 | - | - | ||
Sánchez-Azofeifa et al. (2005) [22] | 25 | 700–2000 | at least 3 | At least 50% of trees are drought deciduous | - | - |
Ratnam et al. (2011) [30], Charles-Dominique et al. (2015) [31] | Woody, >10 m tall vegetation, intermediate shade-tolerant tree layer and grass, occasional patches of C3 grass | litter layer | - | |||
Gentry (1995) [21] | >1600 | 5 to 6 | - | - | - | |
Trejo and Dirzo (2000) [32] | 22–26 | 400–1300 | 6 to 8 | - | - | up to 2000 |
González-M (2018) [33] | 26 | 3 to 5 | - | fertile, low lixiviation | up to 1200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Habibe, M.C.; Espana-Puccini, P.; Miranda-González, R. Little Giants: Lichens in Tropical Dry Forests. Forests 2025, 16, 1364. https://doi.org/10.3390/f16091364
Martínez-Habibe MC, Espana-Puccini P, Miranda-González R. Little Giants: Lichens in Tropical Dry Forests. Forests. 2025; 16(9):1364. https://doi.org/10.3390/f16091364
Chicago/Turabian StyleMartínez-Habibe, María Cristina, Pierine Espana-Puccini, and Ricardo Miranda-González. 2025. "Little Giants: Lichens in Tropical Dry Forests" Forests 16, no. 9: 1364. https://doi.org/10.3390/f16091364
APA StyleMartínez-Habibe, M. C., Espana-Puccini, P., & Miranda-González, R. (2025). Little Giants: Lichens in Tropical Dry Forests. Forests, 16(9), 1364. https://doi.org/10.3390/f16091364