Morpho-Physiological Responses During Dark-Induced Leaf Senescence in Cunninghamia lanceolata Seedlings
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Treatments
2.2. Methods
2.2.1. Leaf Morphology Measurements
2.2.2. Measurement of Leaf Photosynthesis and Gas Exchange
2.2.3. Measurement of Chlorophyll Fluorescence
2.2.4. Measurement of Leaf Chlorophyll Contents
2.2.5. Determination of Leaf Antioxidant Enzyme Activities
2.2.6. Determination of Leaf Membrane Stability and Extent of Lipid Peroxidation
2.2.7. Measurement of Leaf Non-Structural Carbohydrates Content
2.3. Experimental Design and Statistical Analysis
3. Results
3.1. Leaf Morphology Responses to Dark Treatment for Induction of Senescence
3.2. Photosynthetic Response to Dark Treatment for Senescence Induction
3.3. Chlorophyll Fluorescence Response to Dark Treatment for Senescence Induction
3.4. Chlorophyll Contents Response to Dark Treatment for Senescence Induction
3.5. Antioxidant Enzyme Activities Response to Dark Treatment for Senescence Induction
3.6. Leaf Membrane Permeability Response to Dark Treatment for Senescence Induction
3.7. Leaf Non-Structural Carbohydrate Contents Response to Dark Treatment for Senescence Induction
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ali, A.; Gao, X.M.; Guo, Y.F. Initiation, progression, and genetic manipulation of leaf senescence. Methods Mol. Biol. 2018, 1744, 9–31. [Google Scholar] [CrossRef]
- Woo, H.R.; Kim, H.J.; Lim, P.O.; Nam, H.G. Leaf senescence: Systems and dynamics aspects. Annu. Rev. Plant Biol. 2019, 70, 347–376. [Google Scholar] [CrossRef]
- Guo, Y.F.; Ren, G.D.; Zhang, K.W.; Li, Z.H.; Miao, Y.; Guo, H.W. Leaf Senescence: Progression, regulation, and application. Mol. Hortic. 2021, 1, 5. [Google Scholar] [CrossRef]
- Fan, H.M.; Quan, S.X.; Ye, Q.; Zhang, L.; Liu, W.; Zhu, N.; Zhang, X.Q.; Ruan, W.Y.; Yi, K.K.; Crawford, N.M.; et al. A molecular framework underlying low-nitrogen-induced early leaf senescence in Arabidopsis thaliana. Mol. Plant. 2023, 16, 756–774. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, A.H.; Tabassum, N.; Rawat, A.; Almeida Trapp, M.; Nawaz, K.; Hirt, H. m6A RNA methylation counteracts dark-induced leaf senescence in Arabidopsis. Plant Physiol. 2024, 194, 2663–2678. [Google Scholar] [CrossRef] [PubMed]
- Guiboileau, A.; Sormani, R.; Meyer, C.; Masclaux-Daubresse, C. Senescence and death of plant organs: Nutrient recycling and developmental regulation. Comptes Rendus Biol. 2010, 333, 382–391. [Google Scholar] [CrossRef]
- Liebsch, D.; Keech, O. Dark-induced leaf senescence: New insights into a complex light-dependent regulatory pathway. New Phytol. 2016, 212, 563–570. [Google Scholar] [CrossRef]
- Wojciechowska, N.; Sobieszczuk-Nowicka, E.; Bagniewska-Zadworna, A. Plant organ senescence-regulation by manifold pathways. Plant Biol. 2018, 20, 167–181. [Google Scholar] [CrossRef]
- Buchanan-Wollaston, V.; Page, T.; Harrison, E.; Breeze, E.; Lim, P.O.; Nam, H.G.; Lin, J.F.; Wu, S.H.; Swidzinski, J.; Ishizaki, K.; et al. Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J. 2005, 42, 567–585. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.T.; Zhao, C.N.; Wang, B.Y.; Yao, S.S.; Cui, H. Effect of dark treatment on ultrastructure and metabolism changes of tobacco leaves. Acta Agric. Boreali-Occident. Sin. 2011, 20, 83–88. [Google Scholar]
- Yang, S.X. Mechanisms of plant senescence and their application in tobacco leaf production. Crop Res. 2018, 32, 90–96. [Google Scholar]
- Navabpour, S.; Morris, K.; Allen, R.; Harrison, E.; A-H-Mackerness, S.; Buchanan-Wollaston, V. Expression of senescence-enhanced genes in response to oxidative stress. J. Exp. Bot. 2003, 54, 2285–2292. [Google Scholar] [CrossRef]
- Sobieszczuk-Nowicka, E.; Wrzesiński, T.; Bagniewska-Zadworna, A.; Kubala, S.; Rucińska-Sobkowiak, R.; Polcyn, W.; Misztal, L.; Mattoo, A.K. Physio-genetic dissection of dark-induced leaf senescence and timing its reversal in barley. Plant Physiol. 2018, 178, 654–671. [Google Scholar] [CrossRef]
- Huang, Z.J.; Liu, Q.Q.; An, B.; Wu, X.J.; Sun, L.J.; Wu, P.F.; Liu, B.; Ma, X.Q. Effects of planting density on morphological and photosynthetic characteristics of leaves in different positions on Cunninghamia lanceolata Saplings. Forests 2021, 12, 853. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Huang, Z.J.; Ma, X.Q.; Tigabu, M.; Xing, X.S.; Jin, S.F.; Liu, B. Phenotypic plasticity of Cunninghamia lanceolata (Lamb.) Hook. seedlings in response to varied light quality treatments. Forests 2022, 13, 201. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Huang, Z.J.; Wang, Z.N.; Chen, Y.F.; Wen, Z.M.; Liu, B.; Tigabu, M. Responses of leaf morphology, NSCs contents and C: N: P stoichiometry of Cunninghamia lanceolata and Schima superba to shading. BMC Plant Biol. 2002, 20, 354. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.Q.; Ma, X.Q.; Huang, Z.J.; Guo, S.; Wang, D.Y.; Wang, C.H.; Liu, B. Effects of light intensity on the morphology characteristics and leaf non-structural carbohydrate content of Chinese fir seedlings. Acta Ecol. Sin. 2019, 39, 4455–4462. [Google Scholar]
- Ye, Z.P. A review on modeling of responses of photosynthesis to light and CO2. Chin. J. Plant Ecol. 2010, 34, 727–740. [Google Scholar] [CrossRef]
- Liu, S.S.; Xu, G.Q.; Chen, T.Q.; Mi, X.J.; Liu, Y.; Ma, J.; Li, Y. Effects of groundwater depth on functional traits of young Haloxylon ammodendron. Chin. J. Appl. Ecol. 2022, 33, 733–741. [Google Scholar] [CrossRef]
- Yang, L.T.; Xie, Y.Y.; Zuo, K.Y.; Xu, S.; Gu, R.; Chen, S.L.; Guo, Z.W. Effects of ramet ratio on photosynthetic physiology of Indocalamus decorus clonal system under heterogeneous light environment. Chin. J. Plant Ecol. 2022, 46, 88–101. [Google Scholar] [CrossRef]
- Azhar, A.; Sathornkich, J.; Rattanawong, R.; Kasemsap, P. Responses of chlorophyll fluorescence, stomatal conductance, and net photosynthesis rates of four rubber (Hevea brasiliensis) genotypes to drought. Adv. Mater. Res. 2013, 4, 11–14. [Google Scholar] [CrossRef]
- Qiu, N.W.; Wang, X.S.; Yang, F.B.; Yang, X.G.; Yang, W.; Diao, R.J.; Wang, X.; Cui, J.; Zhou, F. Fast extraction and precise determination of chlorophyll. Chin. Bull. Bot. 2016, 51, 667–678. [Google Scholar] [CrossRef]
- Zou, Q. Experimental Guide for Plant Physiology and Biochemistry; China Agricultural Press: Beijing, China, 1995. [Google Scholar]
- Li, H.S. Principles and Techniques of Plant Physiological and Biochemical Experiments; Higher Education Press: Beijing, China, 2000. [Google Scholar]
- Yang, L.F.; Pang, J.; Peng, X.L.; Yan, J.J. Measurement of catalase activity in plants by ultraviolet spectrophotometry. Mod. Agric. Sci. Technol. 2009, 20, 364–366. [Google Scholar]
- Zhang, L. Dwarfing Effects of Plant Growth Retardants on Melaleuca alternifolia in Pot. Master’s Thesis, Central South University of Forestry and Technology, Changsha, China, 2021. [Google Scholar]
- Ma, B.; Wan, J.; Shen, Z. H2O2 production and antioxidant responses in seeds and early seedlings of two different rice varieties exposed to aluminum. Plant Growth Regul. 2007, 52, 91–100. [Google Scholar] [CrossRef]
- Chen, A.K.; Han, R.H.; Li, D.Y.; Lin, L.L.; Luo, H.X.; Tang, S.J. A comparison of two methods for electrical conductivity about plant leaves. J. Guangdong Educ. Inst. 2010, 30, 88–91. [Google Scholar]
- Dai, Y.J.; Shen, Z.G.; Liu, Y.; Wang, L.L.; Hannaway, D.; Lu, H.F. Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg. Environ. Exp. Bot. 2009, 65, 177–182. [Google Scholar] [CrossRef]
- Liu, Y.J. Effects of Shade on Photosynthesis and PSII Reaction Center in Apple Leaves. Master’s Thesis, Northwest A&F University, Yangling, China, 2014. [Google Scholar]
- Wong, S.L.; Chen, C.W.; Huang, M.Y.; Weng, J.H. Relationship between photosynthetic CO2 uptake rate and electron transport rate in two C4 perennial grasses under different nitrogen fertilization, light and temperature conditions. Acta Physiol. Plant. 2014, 36, 849–857. [Google Scholar] [CrossRef]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- Paluch-Lubawa, E.; Stolarska, E.; Sobieszczuk-Nowicka, E. Dark-induced barley leaf senescence-a crop system for studying senescence and autophagy mechanisms. Front. Plant Sci. 2021, 12, 635619. [Google Scholar] [CrossRef]
- Yao, J.N.; Sun, D.W.; Cen, H.Y.; Xu, H.X.; Weng, H.Y.; Yuan, F.; He, Y. Phenotyping of Arabidopsis drought stress response using kinetic chlorophyll fluorescence and multicolor fluorescence imaging. Front. Plant Sci. 2019, 9, 603. [Google Scholar] [CrossRef]
- Ma, J.H.; Qi, Y.Q.; Ren, Q.F.; Liu, F.; Ou, M.Z.; Chen, Y.F. Effects of nitrogen on the growth and polysaccharides accumulation of Bletilla striata. Plant Physiol. J. 2020, 58, 331–338. [Google Scholar]
- Špundová, M.; Popelková, H.; Ilík, P.; Skotnica, J.; Novotný, R.; Naus, J. Ultra-structural and functional changes in the chloroplasts of detached barley leaves senescing under dark and light conditions. J. Plant Physiol. 2003, 160, 1051–1058. [Google Scholar] [CrossRef]
- Xu, D. Photosynthesis Science; Science Press: Beijing, China, 2013. [Google Scholar]
- Miersch, I.; Heise, J.; Zelmer, I.; Humbeck, K. Differential degradation of the photosynthetic apparatus during leaf senescence in barley (Hordeum vulgare L.). Plant Biol. 2000, 2, 618–623. [Google Scholar] [CrossRef]
- Mittler, R.; Vanderauwera, S.; Gollery, M.; van Breusegem, F. Reactive oxygen gene network of plants. Trends Plant Sci. 2004, 9, 490–498. [Google Scholar] [CrossRef]
- Sun, J.P.; Zhang, F.S.; Pi, Z.; Zhou, Q. Effect of low temperature stress on the antioxidant system of sugar beet. Chin. Agric. Sci. Bull. 2022, 38, 26–32. [Google Scholar] [CrossRef]
- Shi, X.J.; Wang, Y.Q.; Li, Z.J. Physiological changes during seed germination and seedling development in Karelinia caspia Less. under drought and salinity stress. Pratacultural Sci. 2017, 34, 1855–1862. [Google Scholar]
- Ren, J.L. Effects of exogenous H2O2 on physiological characteristics of Populus tomentosa under saline-alkali stress. Chin. Agric. Sci. Bull. 2021, 37, 43–48. [Google Scholar]
- Gepstein, S.; Glick, B.R. Strategies to ameliorate abiotic stress-induced plant senescence. Plant Mol. Biol. 2013, 82, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Zhang, D.Q.; Du, S.M.; Shao, Y.H.; Fang, B.T.; Li, X.D.; Yue, J.Q.; Zhang, S.Y. Effects of dark induced senescence on the function of photosystem II in flag leaves of winter wheat released in different years. Chin. J. Appl. Ecol. 2018, 29, 2525–2531. [Google Scholar]
- Chen, Y.; Dong, H. Mechanisms and regulation of senescence and maturity performance in cotton. Field Crops Res. 2016, 189, 1–9. [Google Scholar] [CrossRef]
- Ueda, H.; Ito, T.; Inoue, R.; Masuda, Y.; Nagashima, Y.; Kozuka, T.; Kusaba, M. Genetic interaction among phytochrome, ethylene and abscisic acid signaling during dark-induced senescence in Arabidopsis thaliana. Front. Plant Sci. 2020, 11, 564. [Google Scholar] [CrossRef]
- Li, J.; Chen, G.P.; Zhang, J.L.; Shen, H.; Kang, J.; Feng, P.P.; Xie, Q.L.; Hu, Z.L. Suppression of a hexokinase gene, SlHXK1, leads to accelerated leaf senescence and stunted plant growth in tomato. Plant Sci. 2020, 298, 110544. [Google Scholar] [CrossRef] [PubMed]
- Afzal, S.; Chaudhary, N.; Singh, N.K. Role of Soluble Sugars in metabolism and sensing under abiotic stress. In Plant Growth Regulators: Signalling Under Stress Conditions; Aftab, T., Hakeem, K.R., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 305–334. [Google Scholar]
- Asad, M.A.U.; Yan, Z.; Zhou, L.J.; Guan, X.Y.; Cheng, F.M. How abiotic stresses trigger sugar signaling to modulate leaf senescence? Plant Physiol. Biochem. 2024, 210, 108650. [Google Scholar] [CrossRef]
- Asad, M.A.U.; Wang, F.B.; Ye, Y.; Guan, X.Y.; Zhou, L.J.; Han, Z.Y.; Pan, G.; Cheng, F.M. Contribution of ABA metabolism and ROS generation to sugar starvation-induced senescence of rice leaves. Plant Growth Regul. 2021, 95, 241–257. [Google Scholar] [CrossRef]
- Brouwer, B.; Ziolkowska, A.; Bagard, M.; Keech, O.; Gardeström, P. The impact of light intensity on shade-induced leaf senescence. Plant Cell Environ. 2012, 35, 1084–1098. [Google Scholar] [CrossRef]
- Tcherkez, G.; Nogues, S.; Bleton, J.; Cornic, G.; Badeck, F.; Ghashghaie, J. Metabolic origin of carbon isotope composition of leaf dark-respired CO2 in French bean. Plant. Physiol. 2003, 131, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Wiley, E.; Helliker, B. A re-evaluation of carbon storage in trees lends greater support for carbon limitation to growth. New Phytol. 2012, 195, 285–289. [Google Scholar] [CrossRef]
- Zhan, H. Growth Strategies of Quercus mongolica Fisch. ex Ledeb. Seedlings in Shade Environment and Functions of QmbHLH81 Gene. Ph.D. Thesis, Shenyang Agricultural University, Shenyang, China, 2023. [Google Scholar]
- Weber, R.; Schwendener, A.; Schmid, S.; Lambert, S.; Wiley, E.; Landhäusser, S.M.; Hartmann, H.; Hoch, G. Living on next to nothing: Tree seedlings can survive weeks with very low carbohydrate concentrations. New Phytol. 2018, 218, 107–118. [Google Scholar] [CrossRef]
- Zakari, S.A.; Asad, M.-A.-U.; Han, Z.; Guan, X.; Zaidi, S.-H.-R.; Gang, P.; Cheng, F. Senescence-related translocation of nonstructural carbohydrate in rice leaf sheaths under different nitrogen supply. Agron. J. 2020, 112, 1601–1616. [Google Scholar] [CrossRef]
- Biswal, B.; Pandey, J.K. Loss of photosynthesis signals a metabolic reprogramming to sustain sugar homeostasis during senescence of green leaves: Role of cell wall hydrolases. Photosynthetica 2018, 56, 404–410. [Google Scholar] [CrossRef]
- Kim, J. Sugar metabolism as input signals and fuel for leaf senescence. Genes Genom. 2019, 41, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Chaomurilege, N.; Miyagi, A.; Ishikawa, T.; Yamaguchi, M.; Murayama, H.; Kawai-Yamada, M. Metabolic changes associated with dark-induced leaf senescence in Arabidopsis nadk2 mutants. Plant Signal. Behav. 2023, 18, 2215618. [Google Scholar] [CrossRef] [PubMed]
Dark Stress Duration | Pmax (μmol·m−2·s−1) | AQY (mol·mol−1) | LCP (μmol·m−2·s−1) | LSP (μmol·m−2·s−1) | Rd (μmol·m−2·s−1) |
---|---|---|---|---|---|
0 d | 7.96 ± 1.02 a | 0.061 ± 0.004 a | 7.61 ± 1.18 c | 1199.23 ± 56.72 a | 0.444 ± 0.060 a |
7 d | 4.10 ± 1.18 b | 0.018 ± 0.008 b | 9.21 ± 1.06 c | 1127.68 ± 20.22 ab | 0.421 ± 0.059 a |
14 d | 1.36 ± 0.52 c | 0.010 ± 0.004 bc | 43.33 ± 13.66 b | 1051.05 ± 127.96 b | 0.325 ± 0.091 a |
21 d | 0.10 ± 0.00 cd | 0.008 ± 0.003 c | 115.88 ± 25.06 a | 654.69 ± 10.89 c | 0.317 ± 0.107 a |
28 d | −0.12 ± 0.02 d | 0.006 ± 0.005 c | —— | 485.59 ± 27.52 d | 0.159 ± 0.057 b |
Dark Stress Duration | Fv/Fo | Fv/Fm | ΦPSII | Rfd | NPQ | qP |
---|---|---|---|---|---|---|
0 d | 4.66 ± 0.22 a | 0.82 ± 0.01 a | 0.71 ± 0.01 a | 1.85 ± 0.22 b | 1.90 ± 0.22 b | 0.92 ± 0.01 a |
7 d | 3.54 ± 0.52 b | 0.78 ± 0.03 b | 0.41 ± 0.03 b | 2.60 ± 0.22 a | 2.23 ± 0.31 a | 0.75 ± 0.04 b |
14 d | 1.74 ± 0.26 c | 0.63 ± 0.04 c | 0.31 ± 0.05 c | 1.60 ± 0.24 c | 1.16 ± 0.15 c | 0.63 ± 0.07 c |
21 d | 1.00 ± 0.17 d | 0.50 ± 0.04 d | 0.30 ± 0.08 c | 0.59 ± 0.19 d | 0.42 ± 0.11 d | 0.65 ± 0.13 c |
28 d | 0.86 ± 0.15 d | 0.46 ± 0.04 e | 0.25 ± 0.07 d | 0.50 ± 0.16 d | 0.39 ± 0.10 d | 0.61 ± 0.10 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Liu, Q.; Zou, X.; Zhu, L.; Ma, X.; Huang, R. Morpho-Physiological Responses During Dark-Induced Leaf Senescence in Cunninghamia lanceolata Seedlings. Forests 2025, 16, 1372. https://doi.org/10.3390/f16091372
Huang Z, Liu Q, Zou X, Zhu L, Ma X, Huang R. Morpho-Physiological Responses During Dark-Induced Leaf Senescence in Cunninghamia lanceolata Seedlings. Forests. 2025; 16(9):1372. https://doi.org/10.3390/f16091372
Chicago/Turabian StyleHuang, Zhijun, Qingqing Liu, Xianhua Zou, Liqin Zhu, Xiangqing Ma, and Rongzhen Huang. 2025. "Morpho-Physiological Responses During Dark-Induced Leaf Senescence in Cunninghamia lanceolata Seedlings" Forests 16, no. 9: 1372. https://doi.org/10.3390/f16091372
APA StyleHuang, Z., Liu, Q., Zou, X., Zhu, L., Ma, X., & Huang, R. (2025). Morpho-Physiological Responses During Dark-Induced Leaf Senescence in Cunninghamia lanceolata Seedlings. Forests, 16(9), 1372. https://doi.org/10.3390/f16091372