Ecosystem Service Assessment of Campus Street Trees for Urban Resilience: A Case Study from Guangxi Arts University
Abstract
1. Introduction
- Quantify the ESs provided by street trees at the parcel level, including carbon storage, carbon sequestration, air pollution removal, and stormwater runoff mitigation;
- Analyze how tree species composition and structural characteristics influence ES provision;
- Evaluate how quantified ecosystem services contribute to climate resilience and inform localized ecosystem-based adaptation strategies in small-scale urban units.
2. Materials and Methods
2.1. Study Area
2.2. Structural Tree Data Acquisition: A Dual-Modality Survey Approach
2.2.1. Field-Based Tree Census
2.2.2. LiDAR-Enhanced 3D Structural Mapping
- Aerial LiDAR System (ALS):
- Backpack LiDAR System (BLS):
- Post-Processing Pipeline:
- ○
- Raw point cloud data were preprocessed using LiDAR360 (version 6.3; GreenValley International Inc., Berkeley, CA, USA):
- ○
- Noise removal and ground filtering
- ○
- Tree segmentation (individual crown isolation)
- ○
- DBH and height modeling via circle and surface fitting algorithms
2.3. Ecosystem Service Value Estimation Based on the i-Tree Eco Model
2.4. Hourly Weather and Pollution Data Acquisition and Substitution Strategy
3. Structure and Function
3.1. Street Tree Structure
3.1.1. Importance Value
3.1.2. Age Structure
3.2. Assessment of Ecosystem Benefits Provided by Urban Street Trees
3.2.1. Quantifying Stored and Sequestered Carbon
3.2.2. Air Pollutant Removal
- F—flux of pollutant removal (g·m−2·s−1).
- Vd—deposition velocity (m·s−1).
- C—atmospheric pollutant concentration (g·m−3).
3.2.3. Runoff Reduction
- RD—annual runoff avoided (m3).
- V—study area (km2).
- Cis—percent impervious surface area (%).
- P—mean annual precipitation (m3).
4. Results
4.1. Structure of Street Trees at GXAU
4.1.1. Species Composition
4.1.2. Importance Values
4.1.3. Age Structure of Trees
4.2. Ecosystem Services Provided by Street Trees at GXAU
4.2.1. Carbon Storage and Sequestration
- Carbon Storage
- Carbon Sequestration
4.2.2. Air Pollutant Removal of Trees
4.2.3. Reduction in Surface Runoff by Campus Street Trees
4.3. Integrated Assessment of Ecosystem Services Provided by Street Trees
5. Discussion
5.1. Evaluation and Planning Guidance for Optimizing Street Tree Deployment
- Introduce heterogeneous, multi-species compositions to avoid dominance by a single species;
- Select native species with both ecological and aesthetic value, based on i-Tree Eco assessments;
- Adjust age structure and establish continuous renewal mechanisms to ensure generational succession;
- Break linear planting patterns and adopt spatial layouts featuring “vertical layering, varied density, and multi-tiered integration” to improve quality as well as quantity.
5.2. Benchmarking Street Tree Ecosystem Functions
5.3. LiDAR-Assisted Assessment for Enhanced Accuracy
5.4. Research Limitations
6. Conclusions
- (1)
- Objective 1—Quantify structure and ESs: Street trees at GXAU are dominated by a few species, with the top ten accounting for 86.2% of the total population. Cinnamomum camphora and Mangifera indica disproportionately contribute to ecological benefits due to their wide canopy spread and mature crowns. However, overreliance on Mangifera indica and Prunus dulcis is not recommended, as they increase vulnerability to pests, diseases, and environmental stress.
- (2)
- Objective 2—LiDAR integration: The hybrid field–LiDAR workflow improved the accuracy of canopy and LAI estimations, showing clear methodological value for campus- and municipal-scale urban forestry assessments. This demonstrates the added accuracy of LiDAR-enhanced modeling compared to field surveys alone.
- (3)
- Objective 3—Climate resilience and EbA: The quantified ESs highlight the role of campus trees in supporting carbon mitigation, air-quality improvement, and stormwater regulation. These findings directly contribute to climate resilience and provide parcel-scale evidence to inform localized ecosystem-based adaptation strategies in urban environments.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Belmeziti, A.; Cherqui, F.; Kaufmann, B. Improving the multi-functionality of urban green spaces: Relations between components of green spaces and urban services. Sustain. Cities Soc. 2018, 43, 1–10. [Google Scholar] [CrossRef]
- Nieuwenhuijsen, M.J. Green Infrastructure and Health. Annu. Rev. Public Health 2021, 42, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Pulighe, G.; Fava, F.; Lupia, F. Insights and opportunities from mapping ecosystem services of urban green spaces and potentials in planning. Ecosyst. Serv. 2016, 22, 1–10. [Google Scholar] [CrossRef]
- Suchocka, M.; Heciak, J.; Błaszczyk, M.; Adamczyk, J.; Gaworski, M.; Gawłowska, A.; Mojski, J.; Kalaji, H.M.; Kais, K.; Kosno-Jończy, J.; et al. Comparison of Ecosystem Services and Replacement Value calculations performed for urban trees. Ecosyst. Serv. 2023, 63, 101553. [Google Scholar] [CrossRef]
- Pineda-Pinto, M.; Frantzeskaki, N.; Nygaard, C.A. The potential of nature-based solutions to deliver ecologically just cities: Lessons for research and urban planning from a systematic literature review. Ambio 2022, 51, 167–182. [Google Scholar] [CrossRef]
- Salmond, J.A.; Tadaki, M.; Vardoulakis, S.; Arbuthnott, K.; Coutts, A.; Demuzere, M.; Dirks, K.N.; Heaviside, C.; Lim, S.; Macintyre, H.; et al. Health and Climate Related Ecosystem Services Provided by Street Trees in the Urban Environment. Environ. Health 2016, 15, S36. [Google Scholar] [CrossRef]
- Sunitiyoso, Y.; Wicaksono, A.; Pambudi, N.F.; Rahayu, W.A.; Nurdayat, I.F.; Hadiansyah, F.; Nuraeni, S.; Muhammad, A.A. Future of mobility in Jakarta metropolitan area: A multi-stakeholder scenario planning. Transp. Res. Interdiscip. Perspect. 2023, 19, 100810. [Google Scholar] [CrossRef]
- Janhäll, S. Review on Urban Vegetation and Particle Air Pollution—Deposition and Dispersion. Atmos. Environ. 2015, 105, 130–137. [Google Scholar] [CrossRef]
- Orta-Ortiz, M.S.; Geneletti, D. What variables matter when designing nature-based solutions for stormwater management? A review of impacts on ecosystem services. Environ. Impact Assess. Rev. 2022, 95, 106802. [Google Scholar] [CrossRef]
- Richards, D.R.; Edwards, P.J. Quantifying Street Tree Regulating Ecosystem Services Using Google Street View. Ecol. Indic. 2017, 77, 31–40. [Google Scholar] [CrossRef]
- Silvera Seamans, G. Mainstreaming the Environmental Benefits of Street Trees. Urban For. Urban Green. 2013, 12, 2–11. [Google Scholar] [CrossRef]
- Threlfall, C.G.; Gunn, L.D.; Davern, M.; Kendal, D. Beyond the Luxury Effect: Individual and Structural Drivers Lead to ‘Urban Forest Inequity’ in Public Street Trees in Melbourne, Australia. Landsc. Urban Plan. 2022, 218, 104311. [Google Scholar] [CrossRef]
- Moody, R.; Geron, N.; Healy, M.; Rogan, J.; Martin, D. Modeling the Spatial Distribution of the Current and Future Ecosystem Services of Urban Tree Planting in Chicopee and Fall River, Massachusetts. Urban For. Urban Green. 2021, 66, 127403. [Google Scholar] [CrossRef]
- Nyelele, C.; Kroll, C.N.; Nowak, D.J. Present and Future Ecosystem Services of Trees in the Bronx, NY. Urban For. Urban Green. 2019, 42, 10–20. [Google Scholar] [CrossRef]
- Selmi, W.; Weber, C.; Rivière, E.; Blond, N.; Mehdi, L.; Nowak, D. Air Pollution Removal by Trees in Public Green Spaces in Strasbourg City, France. Urban For. Urban Green. 2016, 17, 192–201. [Google Scholar] [CrossRef]
- Tan, X.; Hirabayashi, S.; Shibata, S. Estimation of Ecosystem Services Provided by Street Trees in Kyoto, Japan. Forests 2021, 12, 311. [Google Scholar] [CrossRef]
- Coleman, A.F.; Harper, R.W.; Eisenman, T.S.; Warner, S.H.; Wilkinson, M.A. Street Tree Structure, Function, and Value: A Review of Scholarly Research (1997–2020). Forests 2022, 13, 1779. [Google Scholar] [CrossRef]
- Wang, X.; Yao, J.; Yu, S.; Miao, C.; Chen, W.; He, X. Street Trees in a Chinese Forest City: Structure, Benefits and Costs. Sustainability 2018, 10, 674. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, C.; Jiang, R.; Che, S. Optimization of Ecosystem Services of Shanghai Urban–Suburban Street Trees Based on Low-Carbon Targets. Sustainability 2021, 13, 13251. [Google Scholar] [CrossRef]
- Zhao, W.; Li, X.; Zhang, L.; Peng, L.; Liu, Y.; Wang, Z.; Jiao, L.; Wang, H. The Multi-Scale Spatial Heterogeneity of Ecosystem Services’ Supply–Demand Matching and Its Influencing Factors on Urban Green Space in China. Forests 2023, 14, 2091. [Google Scholar] [CrossRef]
- Liu, D.; Li, H.; Qiu, M.; Liu, Y. Understanding coupled coordination relationships between social and ecological functions of urban green spaces. Geo-Spat. Inf. Sci. 2023, 26, 431–445. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, Y.; He, M. The Spatial Interaction Effect of Green Spaces on Urban Economic Growth: Empirical Evidence from China. Int. J. Environ. Res. Public Health 2022, 19, 10360. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Wang, K.; Zhang, J.; Zhang, Y. Application of i-Tree model to evaluate the ecological benefits of campus street trees. Chin. Soc. Landsc. Archit. 2020, 336–340. [Google Scholar]
- Xiong, J.; Deng, H.; Wang, Q.; Wang, Q.; Wang, W.; Zuo, W.; Sun, Y. Evaluation of the ecological benefits of street trees in urban communities based on the i-Tree model. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2019, 43, 128–136. [Google Scholar]
- Hintural, W.P.; Jeon, H.J.; Kim, S.Y.; Go, S.; Park, B.B. Quantifying Regulating Ecosystem Services of Urban Trees: A Case Study of a Green Space at Chungnam National University Using i-Tree Eco. Forests 2024, 15, 1446. [Google Scholar] [CrossRef]
- Yang, M.; Zhou, X.; Liu, Z.; Li, P.; Tang, J.; Xie, B.; Peng, C. A Review of General Methods for Quantifying and Estimating Urban Trees and Biomass. Forests 2022, 13, 616. [Google Scholar] [CrossRef]
- Salas, E.A.L. Waveform LiDAR concepts and applications for potential vegetation phenology monitoring and modeling: A comprehensive review. Geo-Spat. Inf. Sci. 2021, 24, 179–200. [Google Scholar] [CrossRef]
- Nowak, D.J. Understanding I-Tree: 2021 Summary of Programs and Methods; General Technical Report NRS-200-2021; Northern Research Station, Forest Service, U.S. Department of Agriculture: Madison, WI, USA, 2021. [Google Scholar]
- Flora of China Editorial Committee. Flora of China; CAB International: Wallingford, UK, 2018. [Google Scholar]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C.; Hoehn, R.E.; Walton, J.T.; Bond, J. A Ground-Based Method of Assessing Urban Forest Structure and Ecosystem Services. Arboric Urban 2008, 34, 347–358. [Google Scholar] [CrossRef]
- Sharma, R.; Bakshi, B.R.; Ramteke, M.; Kodamana, H. Quantifying ecosystem services from trees by using i-tree with low-resolution satellite images. Ecosyst. Serv. 2024, 67, 101611. [Google Scholar] [CrossRef]
- Richards, N.A. Diversity and Stability in a Street Tree Population. Urban Ecol. 1983, 7, 159–171. [Google Scholar] [CrossRef]
- Peper, P.J.; McPherson, E.G.; Mori, S.M. Equations for Predicting Diameter, Height, Crown Width, and Leaf Area of San Joaquin Valley Street Trees. J. Arboric. 2001, 27, 306–317. [Google Scholar] [CrossRef]
- Wilson, K.; Willette, D.A. Valuation of Ecosystem Services of a Nascent Urban Park in East Los Angeles, California. Urban Ecosyst. 2022, 25, 1787–1795. [Google Scholar] [CrossRef]
- Nowak, D.J.; Greenfield, E.J.; Hoehn, R.E.; Lapoint, E. Carbon storage and sequestration by trees in urban and community areas of the United States. Environ. Pollut. 2013, 178, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Gatsuk, L.E.; Smirnova, O.V.; Vorontzova, L.I.; Zaugolnova, L.B.; Zhukova, L.A. Age states of plants of various growth forms: A review. J. Ecol. 1980, 68, 675–696. [Google Scholar] [CrossRef]
- Nowak, D.J. Atmospheric carbon dioxide reduction by Chicago’s urban forest. In Chicago’s Urban Forest Ecosystem: Results of the Chicago Urban Forest Climate Project; Forest Service, US Department of Agriculture: Washington, DC, USA, 1994; pp. 83–94. [Google Scholar]
- Hirabayashi, S.; Kroll, C.N.; Nowak, D.J. Component-based development and sensitivity analyses of an air pollutant dry deposition model. Environ. Model. Softw. 2011, 26, 804–816. [Google Scholar] [CrossRef]
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Greenfield, E. Tree and forest effects on air quality and human health in the United States. Environ. Pollut. 2014, 193, 119–129. [Google Scholar] [CrossRef]
- Thomsen, P.; Bühler, O.; Kristoffersen, P. Diversity of street tree populations in larger Danish municipalities. Urban For. Urban Green. 2016, 15, 200–210. [Google Scholar] [CrossRef]
- Shen, G.; Song, Z.; Xu, J.; Zou, L.; Huang, L.; Li, Y. Are Ecosystem Services Provided by Street Trees at Parcel Level Worthy of Attention? A Case Study of a Campus in Zhenjiang, China. Int. J. Environ. Res. Public Health 2023, 20, 880. [Google Scholar] [CrossRef] [PubMed]
- Ayob, Z.; Ahmad, S.; Shinbira, I.A. Criteria for Sustainable Landscape Maintenance: Addressing Cost Implication. Environ.-Behav. Proc. J. 2022, 7, 315–322. [Google Scholar] [CrossRef]
- Gao, A.; Chen, Y.; Luo, R.; Huang, J.; Zhao, Z.; Wang, W.; Wang, Y.; Dang, Z. Development status of Chinese mango industry in 2018. Adv. Agric. Hortic. Entomol. 2019, 1, 21–60. [Google Scholar]
- Ahmad, M.; Shabbir, M.; Ali, H.; Hashmi, M.B.F.; Ahmed, M.; Ahmad, S.; Malik, A. Climate-Induced Changes in Mango Production: Phenological Impacts, Pest Threats, and Mitigation Approaches. In Climate Change and Mango Production; Springer: Cham, Switzerland, 2025; pp. 773–802. [Google Scholar]
- Khalil, U.; Khan, S.R.; Jamil, A.; Mustafa, G. Understanding the Physiology of Mango Trees in the Context of Climate Change. In Climate Change and Mango Production; Springer: Cham, Switzerland, 2025; pp. 137–154. [Google Scholar]
- Huang, H. Plant diversity and conservation in China: Planning a strategic bioresource for a sustainable future. Bot. J. Linn. Soc. 2011, 166, 282–300. [Google Scholar] [CrossRef]
- Chowdhuri, T.K.; Deka, K. Biodiversity and conservation of ornamental crops. In Conservation and Utilization of Horticultural Genetic Resources; Springer: Singapore, 2019; pp. 139–216. [Google Scholar]
- Givnish, T.J. Adaptive significance of evergreen vs. deciduous leaves: Solving the triple paradox. Silva Fenn. 2022, 36, 703–743. [Google Scholar] [CrossRef]
- Morrison, D. A methodology for ecological landscape and planting design—Site planning and spatial design. In The Dynamic Landscape; Taylor & Francis: Abingdon, UK, 2004; pp. 150–171. [Google Scholar]
- Nowak, D.J. Brooklyn’s Urban Forest; USDA Forest Service: Washington, DC, USA, 2002. [Google Scholar]
- Eskander, S.M.S.U.; Fankhauser, S. Reduction in Greenhouse Gas Emissions from National Climate Legislation. Nat. Clim. Chang. 2020, 10, 750–756. [Google Scholar] [CrossRef]
- Ju, W.; Wang, S.; Yu, G.; Zhou, Y.; Wang, H. Modeling the impact of drought on canopy carbon and water fluxes for a subtropical evergreen coniferous plantation in southern China through parameter optimization using an ensemble Kalman filter. Biogeosciences 2010, 7, 845–857. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Qu, X.; Huang, B.; Li, Z.; Sun, J.; Wei, X.; Yang, X. Urban Trees in University Campus: Structure, Function, and Ecological Values. Environ. Sci. Pollut. Res. 2021, 28, 4. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Pradhan, L.; Kumari, M.; Bhattacharya, P. Assessment of Carbon Sequestration Potential of Tree Species in Amity University Campus Noida. Environ. Sci. Proc. 2020, 3, 52. [Google Scholar]
- Nandal, A.; Singh, N.; Yadav, S.S.; Singh Rao, A.; Yadav, V. Carbon Stock Assessment of Selected Tree Species in Maharshi Dayanand University Campus, Rohtak (Haryana) India. Indian J. Ecol. 2019, 46, 330–334. [Google Scholar]
- Fang, S.; Xue, J.; Tang, L. Biomass production and carbon sequestration potential in poplar plantations with different management patterns. J. Environ. Manag. 2007, 85, 672–679. [Google Scholar] [CrossRef]
- Yin, S.; Tan, H.; Hui, N.; Ma, Y.; Tian, L.; Sun, N.; Liu, C. Polycyclic aromatic hydrocarbons in leaves of Cinnamomum camphora along the urban–rural gradient of a megacity: Distribution varies in concentration and potential toxicity. Sci. Total Environ. 2020, 732, 139328. [Google Scholar] [CrossRef] [PubMed]
- Ross, S.; Jean-Philippe, S.; Clatterbuck, W.; Giffen, N.; Herold, J.; Zobel, J. i-Tree Eco Analysis of Landscape Vegetation on Remediated Areas of Oak Ridge National Laboratory. Open J. For. 2020, 10, 412–442. [Google Scholar] [CrossRef]
- Ji, Y.; Zhang, P.; Shen, H. Competition intensity affects growing season nutrient dynamics in Korean pine trees and their microhabitat soil in mixed forest. For. Ecol. Manag. 2023, 539, 121018. [Google Scholar] [CrossRef]
- Li, M.; Xu, N.; Liu, F.; Tong, H.; Ding, N.; Dong, J.; Wang, M. Ecological Management Zoning Based on the Supply–Demand Relationship and Synergies of Urban Forest Ecosystem Services: A Case Study from Fuzhou, China. Forests 2025, 16, 17. [Google Scholar] [CrossRef]
- Ghorbankhani, Z.; Zarrabi, M.M.; Ghorbankhani, M. The significance and benefits of green infrastructures using I-Tree canopy software with a sustainable approach. Environ. Dev. Sustain. 2024, 26, 14893–14913. [Google Scholar] [CrossRef]
- Côté, J.F.; Fournier, R.A.; Frazer, G.W.; Niemann, K.O. A fine-scale architectural model of trees to enhance LiDAR-derived measurements of forest canopy structure. Agric. For. Meteorol. 2012, 166, 72–85. [Google Scholar] [CrossRef]
- Valbuena, R.; Maltamo, M.; Mehtätalo, L.; Packalen, P. Key structural features of Boreal forests may be detected directly using L-moments from airborne lidar data. Remote Sens. Environ. 2017, 194, 437–446. [Google Scholar] [CrossRef]
Rank | Scientific Name | Family | Number of Trees | Percentage (%) |
---|---|---|---|---|
1 | Mangifera indica | Anacardiaceae | 513 | 19.4 |
2 | Cinnamomum camphora | Lauraceae | 444 | 16.8 |
3 | Bauhinia spp. | Fabaceae | 336 | 12.7 |
4 | Koelreuteria paniculata | Sapindaceae | 219 | 8.3 |
5 | Prunus dulcis | Rosaceae | 209 | 7.9 |
6 | Styphnolobium japonicum | Fabaceae | 161 | 6.1 |
7 | Ginkgo biloba | Ginkgoaceae | 143 | 5.4 |
8 | Platanus orientalis | Platanaceae | 122 | 4.6 |
9 | Pandanus spp. | Pandanaceae | 66 | 2.5 |
10 | Prunus subhirtella | Rosaceae | 66 | 2.5 |
DBH Class | Number of Trees | Percentage (%) |
---|---|---|
Young (0–15 cm) | 529 | 20 |
Maturing (15–30 cm) | 1480 | 56 |
Mature (30–60 cm) | 476 | 18 |
Old (>60 cm) | 159 | 6 |
Carbon Storage (kg) | Carbon Sequestered (kg/Y) | Total Value ($) | |||||||
---|---|---|---|---|---|---|---|---|---|
Species | Avg. | Total | Percent Total | Value ($) | Avg. | Total | Percent Total | Value ($) | |
C. camphora | 300 | 133,200 | 26.2 | 26,640 | 32 | 14,208 | 29.3 | 17,760 | 44,400 |
M. indica | 220 | 112,860 | 22.2 | 22,572 | 18.5 | 9490.5 | 19.5 | 11,863.12 | 34,435.12 |
K. paniculata | 260 | 56,940 | 11.2 | 11,388 | 26 | 5694 | 11.7 | 7117.5 | 18,505.5 |
B. spp. | 180 | 60,480 | 11.9 | 12,096 | 15 | 5040 | 10.4 | 6300 | 18,396 |
P. orientalis | 410 | 50,020 | 9.8 | 10,004 | 38 | 4636 | 9.5 | 5795 | 15,799 |
P. dulcis | 210 | 43,890 | 8.6 | 8778 | 19 | 3971 | 8.2 | 4963.75 | 13,741.75 |
S. japonicum | 160 | 25,760 | 5.1 | 5152 | 17 | 2737 | 5.6 | 3421.25 | 8573.25 |
G. biloba | 90 | 12,870 | 2.5 | 2574 | 8 | 1144 | 2.4 | 1430 | 4004 |
P. subhirtella | 85 | 5610 | 1.1 | 1122 | 14 | 924 | 1.9 | 1155 | 2277 |
P. spp. | 100 | 6600 | 1.3 | 1320 | 11 | 726 | 1.5 | 907.5 | 2227.5 |
Species | Pollutants Removed (kg/y) | Percent Total Removed | Removal Value ($/y) | Percent Total Value |
---|---|---|---|---|
C. camphora | 835.1 | 39.2 | 7058.6 | 39.4 |
K. paniculata | 478.4 | 22.4 | 4481.8 | 25 |
B. spp. | 247.8 | 11.6 | 1986.9 | 11.1 |
M. indica | 182.5 | 8.6 | 1311.9 | 7.3 |
P. dulcis | 123.7 | 5.8 | 937.8 | 5.2 |
S. japonicum | 99.9 | 4.7 | 779.3 | 4.4 |
G. biloba | 65.7 | 3.1 | 562.1 | 3.1 |
P. orientalis | 47.3 | 2.2 | 379.1 | 2.1 |
P. subhirtella | 25.4 | 1.2 | 206 | 1.2 |
P. spp. | 25.7 | 1.2 | 200.1 | 1.1 |
Species Name | Avoided Runoff (m3/y) | Avoided Runoff Value ($/y) | Avg. m3/Tree | Avg. $/Tree |
---|---|---|---|---|
C. camphora | 840.5 | 248.9 | 0.9 | 0.27 |
K. paniculata | 492.8 | 1187.4 | 1.4 | 3.38 |
B. spp. | 276.1 | 678.1 | 1.1 | 2.73 |
M. indica | 200.3 | 429.2 | 0.75 | 1.61 |
P. dulcis | 160.4 | 376.1 | 0.92 | 2.15 |
S. japonicum | 102.5 | 218.5 | 0.58 | 1.24 |
G. biloba | 90.3 | 192.8 | 0.55 | 1.17 |
P. orientalis | 138.4 | 315.2 | 2.2 | 7.84 |
P. subhirtella | 13.9 | 32.2 | 0.12 | 0.31 |
P. spp. | 9.6 | 18.5 | 0.08 | 0.15 |
Benefits | Total Y ($) | Y ($)/Tree |
---|---|---|
Carbon storage | 103,900.7 | 39.32 |
Gross carbon sequestration | 75,300 | 28.49 |
Pollution removal | 17,963.6 | 6.82 |
Avoided runoff | 5582.6 | 2.11 |
Total value | 202,822.1 | 76.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, M.; Ding, L. Ecosystem Service Assessment of Campus Street Trees for Urban Resilience: A Case Study from Guangxi Arts University. Forests 2025, 16, 1465. https://doi.org/10.3390/f16091465
Xu M, Ding L. Ecosystem Service Assessment of Campus Street Trees for Urban Resilience: A Case Study from Guangxi Arts University. Forests. 2025; 16(9):1465. https://doi.org/10.3390/f16091465
Chicago/Turabian StyleXu, Mingxing, and Lu Ding. 2025. "Ecosystem Service Assessment of Campus Street Trees for Urban Resilience: A Case Study from Guangxi Arts University" Forests 16, no. 9: 1465. https://doi.org/10.3390/f16091465
APA StyleXu, M., & Ding, L. (2025). Ecosystem Service Assessment of Campus Street Trees for Urban Resilience: A Case Study from Guangxi Arts University. Forests, 16(9), 1465. https://doi.org/10.3390/f16091465