Species Composition and Ecological Niche Overlap of Alien and Endemic Plants in South Korea: Insights from the National Ecosystem Survey
Abstract
1. Introduction
2. Materials and Methods
2.1. Biotic Data and Selection of Target Sites
2.2. Abiotic and Ecosystem Service Variables
2.3. Analytical Methods
3. Results
3.1. Ordination and MRPP-Test
3.2. Ecological Niche Comparisons of Habitats of Alien and Endemic Plants
3.3. Zeta Diversity Analysis
4. Discussion
4.1. (Hypothesis 1) The Species Compositions of Alien and Endemic Plants Are Heterogeneous
4.2. (Hypothesis 2) The Ecological Niches of Alien and Endemic Plants Overlap in Specific Environmental Factors, Resulting in Differences in Niche Breadth
4.3. (Hypothesis 3) The Differences in the Ecological Niches of the Two Groups Originate from a Deterministic Process
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kunming–Montral Global Biodiversity Framework: 2030 Targets. Available online: https://www.cbd.int/gbf/targets/ (accessed on 2 July 2025).
- Son, D.C.; Jang, J.E.; Park, B.K.; Lee, K.H.; Kang, E.S.; Chang, K.S.; Jung, S.Y.; Gil, H.Y.; Kim, S.J.; Choi, K. An updated checklist of the vascular flora native to Korea. J. Asia-Pac. Biodivers. 2025, 18, 651–687. [Google Scholar] [CrossRef]
- Kang, E.S.; Lee, S.R.; Oh, S.H.; Kim, D.K.; Jung, S.Y.; Son, D.C. Comprehensive review about alien plants in Korea. Korean J. Plant Taxon. 2020, 50, 89–119. [Google Scholar] [CrossRef]
- Chung, G.Y.; Jang, H.D.; Chan, K.S.; Choi, H.J.; Kim, Y.S.; Kim, H.J.; Son, D.C. A checklist of endemic plants on the Korean Peninsula II. Korean J. Plant Taxon. 2023, 53, 79–101. [Google Scholar] [CrossRef]
- Wang, S.Q.; Dong, X.Y.; Ye, L.; Wang, H.F. Flora of Northeast Asia. Plants 2023, 12, 2240. [Google Scholar] [CrossRef] [PubMed]
- Simberloff, D.; Martin, J.-L.; Genovesi, P.; Maris, V.; Wardle, D.A.; Aronson, J.; Courchamp, F.; Galil, B.; García-Berthou, E.; Pascal, M.; et al. Impacts of biological invasions: What’s what and the way forward. Trends Ecol. Evol. 2013, 28, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Early, R.; Bradley, B.A.; Dukes, J.S.; Lawler, J.J.; Olden, J.D.; Blumenthal, D.M.; Gonzalez, P.; Grosholz, E.D.; Ibañez, I.; Miller, L.P.; et al. Global threats from invasive alien species in the twenty–first century and national response capacities. Nat. Commun. 2016, 7, 12485. [Google Scholar] [CrossRef] [PubMed]
- Levine, J.M.; Vilà, M.; Antonio, C.M.D.; Dukes, J.S.; Grigulis, K.; Lav Areorel, S. Mechanisms underlying the impacts of exotic plant invasions. Proc. R. Soc. Lond. B Biol. Sci. 2003, 270, 775–781. [Google Scholar] [CrossRef]
- Broennimann, O.; Treier, U.A.; Müller-Schärer, H.; Thuiller, W.; Peterson, A.T.; Guisan, A. Evidence of climatic niche shift during biological invasion. Ecol. Lett. 2007, 10, 701–709. [Google Scholar] [CrossRef]
- Gallien, L.; Münkemüller, T.; Albert, C.H.; Boulangeat, I.; Thuiller, W. Predicting potential distributions of invasive species: Where to go from here? Divers. Distrib. 2010, 16, 331–342. [Google Scholar] [CrossRef]
- Petitpierre, B.; Kueffer, C.; Broennimann, O.; Randin, C.; Daehler, C.; Guisan, A. Climatic niche shifts are rare among terrestrial plant invaders. Science 2012, 335, 1344–1348. [Google Scholar] [CrossRef]
- Cline, J.F.; Uresk, D.W.; Rickard, W.H. Comparison of water used by a sagebrush–bunchgrass community and a cheatgrass community. J. Range Mngmt. 1977, 30, 199–201. [Google Scholar] [CrossRef]
- Rickard, W.H.; Vaughan, B.E. Plant Community Characteristics and Responses. In Shrub–Steppe: Balance and Change in a Semi–Arid Terrestrial Ecosystem; Rickard, W.H., Rogers, L.E., Vaughan, B.E., Liebetrau, S.F., Eds.; Elsevier: Amsterdam, The Netherlands, 1988; pp. 109–179. ISBN 9780444988870. [Google Scholar]
- Melgoza, G.; Nowak, R.S.; Tausch, R.J. Soil water exploitation after fire: Competition between Bromus tectorum (cheatgrass) and two native species. Oecologia 1990, 83, 7–13. [Google Scholar] [CrossRef]
- Dyer, A.R.; Rice, K.J. Effects of competition on resource availability and growth of a California bunchgrass. Ecology 1999, 80, 2697–2710. [Google Scholar] [CrossRef]
- Park, J.S.; Lee, H.; Choi, D.; Kim, Y. Spatially varying relationships between alien plant distributions and environmental factors in South Korea. Plants 2021, 10, 1377. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, P.; Lee, Y.H.; Park, Y.S.; Hong, S.H. Assessment of the spatial invasion risk of intentionally introduced alien plant species (IIAPS) under environmental change in South Korea. Biology 2021, 10, 1169. [Google Scholar] [CrossRef]
- Lim, B.S.; Seok, J.E.; Lim, C.H.; Kim, G.S.; Shin, H.C.; Lee, C.S. Distribution, Effect, and Control of Exotic Plants in Republic of Korea. Biology 2023, 12, 826. [Google Scholar] [CrossRef] [PubMed]
- Kil, J.H.; Shim, K.C.; Park, S.H.; Koh, K.S.; Suh, M.H.; Ku, Y.B.; Suh, S.U.; Oh, H.K.; Kong, H.Y. Distributions of Naturalized Alien Plants in South Korea1. Weed Tech. 2004, 18, 1493–1495. [Google Scholar] [CrossRef]
- Lee, Y.M.; Park, S.H.; Jung, S.Y.; Oh, S.H.; Yang, J.C. Study on the current status of naturalized plants in South Korea. Korean J. Plant Taxon. 2011, 41, 87–101. [Google Scholar] [CrossRef]
- Kim, C.G.; Kil, J. Alien flora of the Korean Peninsula. Biol. Invasions 2016, 18, 1843–1852. [Google Scholar] [CrossRef]
- Choi, S.H.; Jeong, Y.H.; Park, S.M.; Lee, J.W.; Oh, H.S. Current status of invasive alien plants in Ramsar wetlands on Jeju Island, Republic of Korea. BioInvasions Rec. 2023, 12, 931–941. [Google Scholar] [CrossRef]
- Woo, J.H.; Lee, M.K.; Lee, H.I.; Lee, C.B. Joint influence of forest strata attributes and abiotic factors on herbaceous plant abundance in South Korean forest restoration sites: Native versus alien species. Forests 2024, 15, 1924. [Google Scholar] [CrossRef]
- Huston, M.A. Management strategies for plant invasions: Manipulating productivity, disturbance, and competition. Divers. Distrib. 2004, 10, 167–178. [Google Scholar] [CrossRef]
- Pearson, D.E.; Ortega, Y.K.; Eren, Ö.; Hierro, J.L. Community assembly theory as a framework for biological invasions. Trends Ecol. Evol. 2018, 33, 313–325. [Google Scholar] [CrossRef] [PubMed]
- Chung, M.Y.; Son, S.; Suh, G.U.; Herrando-Moraira, S.; Lee, C.H.; López-Pujol, J.; Chung, M.G. The Korean Baekdudaegan Mountains: A glacial refugium and a biodiversity hotspot that needs to be conserved. Front. Genet. 2018, 9, 489. [Google Scholar] [CrossRef] [PubMed]
- Pouteau, R.; Biurrun, I.; Brunel, C.; Chytrý, M.; Dawson, W.; Essl, F.; Fristoe, T.; Haveman, R.; Hobohm, C.; Jansen, F.; et al. Potential alien ranges of European plants will shrink in the future, but less so for already naturalized than for not yet naturalized species. Divers. Distrib. 2021, 27, 2063–2076. [Google Scholar] [CrossRef]
- Chae, H.H.; Kim, Y.C.; Son, S.W. Korean and worldwide research trends on rare plant and endemic plant in Korea. Korean J. Environ. Ecol. 2022, 36, 257–276. [Google Scholar] [CrossRef]
- Soberón, J.; Nakamura, M. Niches and distributional areas: Concepts, methods, and assumptions. Proc. Natl. Acad. Sci. USA 2009, 106, 19644–19650. [Google Scholar] [CrossRef]
- Hui, C.; McGeoch, M.A. Zeta diversity as a concept and metric that unifies incidence–based biodiversity patterns. Am. Nat. 2014, 184, 684–694. [Google Scholar] [CrossRef] [PubMed]
- Koo, K.A.; Park, S.A. Review of Ecological Niche Theory from the Early 1900s to the Present. Korean J. Environ. Ecol. 2021, 35, 316–335. [Google Scholar] [CrossRef]
- National Institute of Ecology. Manual of the 5th National Survey of Natural Environment; National Institute of Ecology: Seocheon, Republic of Korea, 2019; pp. 11–50. ISBN 9791189730727. [Google Scholar]
- Magurran, A.E. Measuring Biological Diversity; Blackwell Publishing: Oxford, UK, 2004; pp. 72–161. ISBN 9780632056330. [Google Scholar]
- Information of Korean Alien Species. Available online: https://kias.nie.re.kr/home/main/main.do (accessed on 8 July 2025).
- National Institute of Biological Resources: Biodiversity of the Korean Peninsula. Available online: https://species.nibr.go.kr/index.do (accessed on 8 July 2025).
- Zurell, D.; Thuiller, W.; Pagel, J.; Cabral, J.S.; Münkemüller, T.; Gravel, D.; Dullinger, S.; Normand, S.; Schiffers, K.H.; Moore, K.A.; et al. Benchmarking novel approaches for modelling species range dynamics. Glob. Change Biol. 2016, 22, 2651–2664. [Google Scholar] [CrossRef]
- Guisan, A.; Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 2005, 8, 993–1009. [Google Scholar] [CrossRef]
- Broennimann, O.; Fitzpatrick, M.C.; Pearman, P.B.; Petitpierre, B.; Pellissier, L.; Yoccoz, N.G.; Thuiller, W.; Fortin, M.J.; Randin, C.; Zimmermann, N.E.; et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 2012, 21, 481–497. [Google Scholar] [CrossRef]
- Oliver, C.D.; Larson, B.C. Forest Stand Dynamics; McGraw-Hill: New York, NY, USA, 1990; pp. 27–467. ISBN 9780070478299. [Google Scholar]
- Wilson, E.P. The Diversity of Life; The Belknap Press of Harvard University Press: Cambridge, MA, USA, 1992; pp. 278–424. ISBN 9780080289144. [Google Scholar]
- Kimmins, J.P. Forest Ecology: A Foundation for Sustainable Management; Prentice–Hall Inc.: Saddle River, NJ, USA, 1997; pp. 33–596. ISBN 9780137174219. [Google Scholar]
- Thuiller, W.; Lavorel, S.; Araújo, M.B.; Sykes, M.T.; Prentice, I.C. Climate change threats to plant diversity in Europe. Proc. Natl. Acad. Sci. USA 2005, 102, 8245–8250. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.B.; Chun, J.H.; Kim, H.H. Plant & Forest: Elevational Patterns and Determinants of α and β Plant Diversity on the Ridge of the Baekdudaegan Mountains, South Korea. J. Agric. Life Sci. 2014, 48, 93–104. [Google Scholar]
- Stevens, G.C. The elevational gradient in altitudinal range: An extension of Rapoport’s latitudinal rule to altitude. Am. Nat. 1992, 140, 893–911. [Google Scholar] [CrossRef]
- Körner, C. The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 2007, 22, 569–574. [Google Scholar] [CrossRef]
- Kong, W.S.; Kim, K.; Lee, S.; Park, H.; Cho, S.H. Distribution of High Mountain Plants and Species Vulnerability Against Climate Change. J. Environ. Impact Assess. 2014, 23, 119–136. [Google Scholar] [CrossRef][Green Version]
- Trigas, P.; Panitsa, M.; Tsiftsis, S. Elevational Gradient of Vascular Plant Species Richness and Endemism in Crete—The Effect of Post-Isolation Mountain Uplift on a Continental Island System. PLoS ONE 2013, 8, e59425. [Google Scholar] [CrossRef]
- Isbell, F.; Calcagno, V.; Hector, A.; Connolly, J.; Harpole, W.S.; Reich, P.B.; Scherer-Lorenzen, M.; Schmid, B.; Tilman, D.; Ruijven, J.; et al. High plant diversity is needed to maintain ecosystem services. Nature 2011, 477, 199–202. [Google Scholar] [CrossRef]
- Cardinale, B.; Duffy, J.; Gonzalez, A.; Hooper, D.U.; Perrings, C.; Venail, P.; Narwani, A.; Mace, G.M.; Tilman, D.; Wardle, D.A.; et al. Biodiversity loss and its impact on humanity. Nature 2012, 486, 59–67. [Google Scholar] [CrossRef]
- Maestre, F.T.; Quero, J.L.; Gotelli, N.J.; Escudero, A.; Ochoa, V.; Delgado-Baquerizo, M.; García-Gómez, M.; Bowker, M.A.; Soliveres, S.; Escolar, C.; et al. Plant species richness and ecosystem multifunctionality in global drylands. Science 2012, 335, 214–218. [Google Scholar] [CrossRef]
- Lavorel, S.; Grigulis, K.; McIntyre, S.; Williams, N.S.; Garden, D.; Dorrough, J.; Berman, S.; Quétier, F.; Thébault, A.; Bonis, A. Assessing functional diversity in the field–methodology matters! Funct. Ecol. 2008, 22, 134–147. [Google Scholar] [CrossRef]
- Sekercioglu, C.H. Increasing awareness of avian ecological function. Trends Ecol. Evol. 2006, 21, 464–471. [Google Scholar] [CrossRef]
- Kissling, W.D.; Rahbek, C.; Böhning-Gaese, K. Food plant diversity as broad–scale determinant of avian frugivore richness. Proc. R. Soc. B 2007, 274, 799–808. [Google Scholar] [CrossRef]
- National Institute of Ecology. The Manual of Assessment Map of Ecosystem Service; Design Crepas: Seoul, Republic of Korea, 2022; pp. 54–61. ISBN 9791166981463. [Google Scholar]
- Pimentel, D.; Harvey, C.; Resosudarmo, P.; Sinclair, K.; Kurz, D.; McNair, M.; Crist, S.; Shpritz, L.; Fitton, L.; Saffouri, R.; et al. Environmental and economic costs of soil erosion and conservation benefits. Science 1995, 267, 1117–1123. [Google Scholar] [CrossRef]
- Montgomery, D.R. Soil erosion and agricultural sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 13268–13272. [Google Scholar] [CrossRef] [PubMed]
- Lambers, H.; Oliveira, R.S. Plant Physiological Ecology, 5th ed.; Lambers, H., Ed.; Springer: Cham, Switzerland, 2019; pp. 187–263. ISBN 9783030231971. [Google Scholar]
- McCune, B.; Grace, J.B. Analysis of Ecologcial Communities; MjM Software Design: Gleneden Beach, OR, USA, 2002; pp. 179–204. ISBN 9780972129008. [Google Scholar]
- Anderson, A.J.B. Ordination methods in ecology. J. Ecol. 1971, 59, 713–726. [Google Scholar] [CrossRef]
- Clarke, K.R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 1993, 18, 117–143. [Google Scholar] [CrossRef]
- Mielke, P.W.; Berry, K.J. Permutation Methods: A Distance Function Approach; Springer Science & Business Media: New York, NY, USA, 2007; pp. 11–124. ISBN 9781441924162. [Google Scholar]
- Schoener, T.W. Nonsynchronous spatial overlap of lizards in patchy habitats. Ecology 1970, 51, 408–418. [Google Scholar] [CrossRef]
- Fieberg, J.; Kochanny, C.O. Quantifying home–range overlap: The importance of the utilization distribution. J. Wildl. Manage. 2005, 69, 1346–1359. [Google Scholar] [CrossRef]
- Silverman, B.W. Density Estimation for Statistics and Data Analysis; Chapman and Hall: London, UK, 1986; pp. 1–19. ISBN 9780412246203. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Jost, L. Entropy and diversity. Oikos 2006, 113, 363–375. [Google Scholar] [CrossRef]
- Davison, A.C.; Hinkley, D.V. Bootstrap Methods and Their Application; Cambridge University Press: Cambridge, UK, 1997; pp. 212–309. ISBN 9780521574716. [Google Scholar]
- McGeoch, M.A.; Latombe, G.; Andrew, N.R.; Nakagawa, S.; Nipperess, D.A.; Roigé, M.; Marzinelli, E.M.; Campbell, A.H.; Vergés, A.; Thomas, T.; et al. Measuring continuous compositional change using decline and decay in zeta diversity. Ecology 2019, 100, e02832. [Google Scholar] [CrossRef]
- Park, B.J.; Lee, J.W.; Kim, J.D.; Heo, T.I.; Lee, D.H.; Lee, J.H.; Nam, K.B.; Kim, H.J.; Shin, C.H.; Byeon, J.G. Forest Stand Structure of Abies nephrolepis Population in Mt. Hwangbyeong. J. Agric. Life Sci. 2020, 54, 35–45. [Google Scholar] [CrossRef]
- Latombe, G.; McGeoch, M.A.; Nipperess, D.A.; Hui, C. zetadiv: Functions to Compute Compositional Turnover Using Zeta Diversity. Methods Ecol. Evol. 2018, 9, 431–442. [Google Scholar]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Sale, P.F. Overlap in resource use, and interspecific competition. Oecologia 1974, 17, 245–256. [Google Scholar] [CrossRef]
- Wandrag, E.M.; Catford, J.A.; Duncan, R.P. Quantifying niche availability, niche overlap and competition for recruitment sites in plant populations without explicit knowledge of niche axes. J. Ecol. 2019, 107, 1791–1803. [Google Scholar] [CrossRef]
- Oh, M.; Heo, Y.; Lee, E.J.; Lee, H. Major environmental factors and traits of invasive alien plants determine their spatial distribution: A case study in Korea. J. Ecol. Environ. 2021, 45, 277–286. [Google Scholar] [CrossRef]
- Cañadas, E.M.; Fenu, G.; Peñas, J.; Lorite, J.; Mattana, E.; Bacchetta, G. Hotspots within hotspots: Endemic plant richness, environmental drivers, and implications for conservation. Biol. Conserv. 2014, 170, 282–291. [Google Scholar] [CrossRef]
- Walas, Ł.; Taib, A. Environmental regionalization and endemic plant distribution in the Maghreb. Environ. Monit. Assess. 2022, 194, 100. [Google Scholar] [CrossRef] [PubMed]
- Fois, M.; Fenu, G.; Cañadas, E.M.; Bacchetta, G. Disentangling the influence of environmental and anthropogenic factors on the distribution of endemic vascular plants in Sardinia. PLoS ONE 2017, 12, e0182539. [Google Scholar] [CrossRef]
- Pouteau, R.; Brunel, C.; Dawson, W.; Essl, F.; Kreft, H.; Lenzner, B.; Meyer, C.; Pergl, J.; Pyšek, P.; Seebens, H.; et al. Environmental and socioeconomic correlates of extinction risk in endemic plants. Divers. Distrib. 2022, 28, 53–64. [Google Scholar] [CrossRef]
- Park, B.J.; Heo, T.I.; Cheon, K.I. Vegetation Structure and Habitat Characterization: An Ecological Basis for the Conservation of the Korean Endemic Plant, Taihyun’s Abelia (Zabelia tyaihyonii (Nakai) Hisauti & H. Hara, 1951; Caprifoliaceae). Forests 2025, 16, 1042. [Google Scholar] [CrossRef]
- Pauchard, A.; Shea, K. Integrating the study of non–native plant invasions across spatial scales. Biol. Invasions 2006, 8, 399–413. [Google Scholar] [CrossRef]
- Lanchier, N.; Neuhauser, C. A spatially explicit model for competition among specialists and generalists in a heterogeneous environment. Ann. Appl. Probab. 2006, 16, 1385–1410. [Google Scholar] [CrossRef][Green Version]
- Sexton, J.P.; McIntyre, P.J.; Angert, A.L.; Rice, K.J. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 415–436. [Google Scholar] [CrossRef]
- Freeman, B.G.; Scholer, M.N.; Ruiz-Gutierrez, V.; Fitzpatrick, J.W. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc. Natl. Acad. Sci. USA 2018, 115, 11982–11987. [Google Scholar] [CrossRef]
- Slatyer, R.A.; Hirst, M.; Sexton, J.P. Niche breadth predicts geographical range size: A general ecological pattern. Ecol. Lett. 2013, 16, 1104–1114. [Google Scholar] [CrossRef]
- Fenollosa, E.; Pang, S.E.H.; Briscoe, N.; Guisan, A.; Salguero-Gómez, R. Powerful yet challenging: Mechanistic niche models for predicting invasive species potential distribution under climate change. Ecography 2025, e07775. [Google Scholar] [CrossRef]
- Wang, J.G.; Wu, J.W.; Li, W.J. Ecological niche changes and risk regionalization of the invasive plant Praxelis clematidea. Ecol. Evol. 2025, 15, e71546. [Google Scholar] [CrossRef] [PubMed]
- MacDougall, A.S.; Gilbert, B.; Levine, J.M. Plant invasions and the niche. J. Ecol. 2009, 97, 609–615. [Google Scholar] [CrossRef]
- Catford, J.A.; Jansson, R.; Nilsson, C. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers. Distrib. 2009, 15, 22–40. [Google Scholar] [CrossRef]
- Davis, M.A.; Grime, J.P.; Thompson, K. Fluctuating resources in plant communities: A general theory of invasibility. J. Ecol. 2000, 88, 528–534. [Google Scholar] [CrossRef]
- Thuiller, W.; Lavorel, S.; Araújo, M.B. Niche properties and geographical extent as predictors of species sensitivity to climate change. Glob. Ecol. Biogeogr. 2005, 14, 347–357. [Google Scholar] [CrossRef]
- Barber, Q.E.; Nielsen, S.E.; Hamann, A. Assessing the vulnerability of rare plants using climate change velocity, habitat connectivity, and dispersal ability: A case study in Alberta, Canada. Reg. Environ. Change 2016, 16, 1433–1441. [Google Scholar] [CrossRef]
- Brown, J.H. On the relationship between abundance and distribution of species. Am. Nat. 1984, 124, 255–279. [Google Scholar] [CrossRef]
- D’Amen, M.; Mod, H.K.; Gotelli, N.J.; Guisan, A. Disentangling biotic interactions, environmental filters, and dispersal limitation as drivers of species co-occurrence. Ecography 2018, 41, 1233–1244. [Google Scholar] [CrossRef]
Compared Plant Groups | T | A | p-Value |
---|---|---|---|
Alien vs. Endemic | −73.894 | 0.281 | <0.001 |
Variable | Schoener’s D |
---|---|
Temperature | 0.276 |
Precipitation | 0.719 |
Altitude | 0.157 |
Slope | 0.261 |
Habitat quality | 0.255 |
Bird diversity | 0.419 |
Water yield | 0.397 |
Sediment delivery ratio | 0.277 |
Index | Power Law | Exponential |
---|---|---|
Alien | −530.3144 | −109.6002 |
Endemic | −302.4994 | −85.1348 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, B.-J.; Cheon, K. Species Composition and Ecological Niche Overlap of Alien and Endemic Plants in South Korea: Insights from the National Ecosystem Survey. Forests 2025, 16, 1485. https://doi.org/10.3390/f16091485
Park B-J, Cheon K. Species Composition and Ecological Niche Overlap of Alien and Endemic Plants in South Korea: Insights from the National Ecosystem Survey. Forests. 2025; 16(9):1485. https://doi.org/10.3390/f16091485
Chicago/Turabian StylePark, Byeong-Joo, and Kwangil Cheon. 2025. "Species Composition and Ecological Niche Overlap of Alien and Endemic Plants in South Korea: Insights from the National Ecosystem Survey" Forests 16, no. 9: 1485. https://doi.org/10.3390/f16091485
APA StylePark, B.-J., & Cheon, K. (2025). Species Composition and Ecological Niche Overlap of Alien and Endemic Plants in South Korea: Insights from the National Ecosystem Survey. Forests, 16(9), 1485. https://doi.org/10.3390/f16091485