Quantifying Tree and Soil Carbon Stocks in a Temperate Urban Forest in Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Survey
2.3. Calculation of Tree Carbon Stock Densities
2.4. Soil Organic C, Bulk Density Measurement, and SOC Density Calculation
2.5. Analysis of the Urbanization Gradients, Mainly Represented as Ring Road and Urban Settlement Time
2.6. Statistical Analysis
3. Results
3.1. Variation in Forest Types with Respect to Tree Biomass and Soil C-Related Parameters
3.2. Variation in Ring Roads with Respect to Tree Biomass and Soil C-Related Parameters
3.3. Variation in History of Settlement Region with Respect to Tree Biomass and Soil C-Related Parameters
3.4. Variation in Administrative Districts with Respect to Tree Biomass and Soil C-Related Parameters
3.5. Spatial Distribution Map: Visual Confirmation of Variation
4. Discussion
4.1. Tree and Soil C Stock Density of Harbin City Versus Other Cities and Natural Forests
4.2. Tree C Stock Variation along the Urban-Rural Gradients
4.3. SOC Density Changes along Urban-Rural Gradients
4.4. Implications for Urbanization-Induced C Stocks in China
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix
Latin Name | Tree Biomass Equations | Citations |
---|---|---|
Pinus tabuliformis | Bag = Bstem + Bbranch + Bleaf; Bstem = 0.11 × D2.34; Bbranch = 0.01 × D2.58; Bleaf = 0.0049 × D2.48; Br = 0.64 × D2.1 | Ma [56]; Liu and Li [37] |
Ulmus | Bag = Bstem + Bbranch + Bleaf; Bstem = 0.043 × D2.87; Bbranch = 0.0074 × D2.67; Bleaf = 0.0028 × D2.50 | Chen and Guo [57]; Liu and Li [37] |
Picea | Bag = Bstem + Bbranch + Bleaf; Bstem = 0.057 × D2.48; Bbranch = 0.012 × D2.41; Bleaf = 0.083 × D2.37; Br = 0.0088 × D2.54 | Chen and Guo [57]; Liu and Li [37] |
Betula platyphylla | Bag = 102.159 × D2.367/1000; Br = 101.358 × D2.518/1000 | Wang [39] |
Populus | Bag = 101.826 × D2.558/1000; Br = 101.025 × D2.56/1000 | Wang [39] |
Pinus koraiensis | Bag = 102.236 × D2.144/1000; Br = 101.296 × D2.376/1000 | Wang [39] |
Larix gmelinii | Bag = 101.977 × D2.451/1000; Br = 101.085 × D2.57/1000 | Wang [39] |
Acer | Bag = 101.930 × D2.535/1000; Br = 102.112 × D1.981/1000 | Wang [39] |
Fraxinus | Bag = 102.136 × D2.408/1000; Br = 101.396 × D2.467/1000 | Wang [39] |
Juglans mandshurica | Bag = 102.235 × D2.287/1000; Br = 101.226 × D2.397/1000 | Wang [39] |
Phellodendronamurense | Bag = 101.942 × D2.332/1000; Br = 101.024 × D2.617/1000 | Wang [39] |
Tilia | Bag = 101.606 × D2.668/1000; Br = 101.273 × D2.452/1000 | Wang [39] |
Quercus mongolica | Bag = 102.002 × D2.456/1000; Br = 101.482 × D2.356/1000 | Wang [39] |
Pinus sylvestris L. var. sylvestriformis | Bag = Bstem + Bbr + Bleaf; Br = 200.0322 × D1.495/1000; Bstem = 0.0159368 × D2.949 + 0.6300862 × D0.759; Bbranch = 0.0557699 × D2.483; Bleaf = 0.1090 × D4.293/1000 | Zou et al. [58] |
Pinus sylvestris var. mongolica Litv. | Bag = Bstem + Bbranch + Bleaf; Bstem = 0.0439 × (D2H)0.8852; Bbranch = 0.02388 × D4.1912H−2.3076; Bleaf = 0.1082 × D2.7169H−1.3955 | Jia et al. [59] |
Platycladus | Bag = Bstem + Bbranch + Bleaf; Bstem = 0.013 × (D2H)0.5969 + 0.0036 × (D2H)0.6758; Bbranch = 0.00274 × (D2H)0.5973 + 0.004965 × (D2H)0.5975 + 0.00055 × (D2H)0.5879; Bleaf = 0.003787 × (D2H)0.5976 | Chang et al. [60] |
Padusracemosa | Bag = 0.00009 × D2.696; Br = 0.035 × D2.641/1000 | Li [61] |
Rosaceae | Bag = 10 − 0.6657 × D1.7041 | Wu [62] |
Tree generalized equation | Bag = 101.945 × D2.467/1000; Btotal = 102.033 × D2.469/1000; Br = Btotal − Bag | Wang [40] |
Acer ginnala | Bag = 0.527 × D2.217/1000; Br = 0.149 × D2.261/1000 | Li [61] |
Syringa reticulata | Bag = 0.395 × D2.3/1000; Br = 0.129 × D2.302/1000 | Li [61] |
Euonymus alatus | Bag = 0.095 × D2.655/1000; Br = 0.089 × D2.291/1000 | Li [61] |
Rhamnusschneideri | Bag = 0.169 × D2.555/1000; Br = 0.092 × D2.314/1000 | Li [61] |
Viburnum sargenti | Bag = 0.141 × D2.649/1000; Br = 0.245 × D1.994/1000 | Li [61] |
Tree Shrub generalized equation | Bag = 0.182 × D2.487/1000; Br = 0.089 × D2.37/1000 | Li [61] |
Source | Dependent Variable | df | F | Sig. |
---|---|---|---|---|
Forest types | SOC density kg·m−2 | 3 | 5.181 | <0.01 ** |
Tree C stocks density kg·m−2 | 3 | 23.026 | <0.001 *** | |
SOC content g·kg−1 | 3 | 4.735 | <0.01 ** | |
Soil bulk density g·cm−3 | 3 | 1.813 | 0.146 | |
DBH cm | 3 | 7.403 | <0.001 *** | |
Basal area m2·ha−1 | 3 | 31.598 | <0.001 *** | |
Ring roads (urban-rural gradients) | SOC density kg·m−2 | 4 | 1.535 | 0.193 |
Tree C stocks density kg·m−2 | 4 | 12.670 | <0.001 *** | |
SOC content g·kg−1 | 4 | 1.095 | 0.360 | |
Soil bulk density g·cm−3 | 4 | 0.284 | 0.207 | |
DBH cm | 4 | 7.403 | <0.001 *** | |
Basal area m2·ha−1 | 4 | 18.103 | <0.001 *** | |
History of settlements | SOC density kg·m−2 | 5 | 1.116 | 0.354 |
Tree C stocks density kg·m−2 | 5 | 0.383 | 0.860 | |
SOC content g·kg−1 | 5 | 0.972 | 0.437 | |
Soil bulk density g·cm−3 | 5 | 0.167 | 0.975 | |
DBH cm | 5 | 2.325 | <0.05 * | |
Basal area m2·ha−1 | 5 | 0.529 | 0.754 | |
Districts | SOC density kg·m−2 | 5 | 2.373 | <0.05 * |
Tree C stocks density kg·m−2 | 5 | 6.059 | <0.001 *** | |
SOC content g·kg−1 | 5 | 2.047 | 0.073 | |
Soil bulk density g·cm−3 | 5 | 0.695 | 0.533 | |
DBH cm | 5 | 11.683 | <0.01 ** | |
Basal area m2·ha−1 | 5 | 6.723 | <0.01 ** |
References
- Jim, C.Y.; Chen, W.Y. Ecosystem services and valuation of urban forests in China. Cities 2009, 26, 187–194. [Google Scholar] [CrossRef]
- Nowak, D.J.; Greenfield, E.J.; Hoehn, R.E.; Lapoint, E. Carbon storage and sequestration by trees in urban and community areas of the United States. Environ. Pollut. 2013, 178, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Escobedo, F.; Varela, S.; Zhao, M.; Wagner, J.E.; Zipperer, W. Analyzing the efficacy of subtropical urban forests in offsetting C emissions from cities. Environ. Sci. Policy 2010, 13, 362–372. [Google Scholar] [CrossRef]
- Yang, J.; McBride, J.; Zhou, J.X.; Sun, Z.Y. The urban forest in Beijing and its role in air pollution reduction. Urban Forest. Urban Green. 2005, 3, 65–78. [Google Scholar] [CrossRef]
- Tang, Y.J.; Chen, A.P.; Zhao, S.Q. Carbon storage and sequestration of urban street trees in Beijing, China. Front. Ecol. Evol. 2016, 4, 53. [Google Scholar]
- Ren, Y.; Yan, J.; Wei, X.H.; Wang, Y.J.; Yang, Y.S.; Hua, L.Z.; Xiong, Y.Z.; Niu, X.; Song, X.D. Effects of rapid urban sprawl on urban forest carbon stocks: Integrating remotely sensed, GIS and forest inventory data. J. Environ. Manag. 2012, 113, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Kong, Z.H.; Escobedo, F.J.; Gao, J. Impacts of urban forests on offsetting carbon emissions from industrial energy use in Hangzhou, China. J. Environ. Manag. 2010, 91, 807–813. [Google Scholar] [CrossRef] [PubMed]
- McPherson, E.G.; Xiao, Q.; Aguaron, E. A new approach to quantify and map carbon stored, sequestered and emissions avoided by urban forests. Landsc. Urban Plan. 2013, 120, 70–84. [Google Scholar] [CrossRef]
- Díaz-Porras, D.F.; Gaston, K.J.; Evans, K.L. 110 years of change in urban tree stocks and associated carbon storage. Ecol. Evol. 2014, 4, 1413–1422. [Google Scholar] [CrossRef] [PubMed]
- Shakeel, T.; Conway, T.M. Individual households and their trees: Fine-scale characteristics shaping urban forests. Urban For. Urban Green. 2014, 13, 136–144. [Google Scholar] [CrossRef]
- Yoon, T.K.; Park, C.W.; Lee, S.J.; Ko, S.; Kim, K.N.; Son, Y.; Son, Y. Allometric equations for estimating the aboveground volume of five common urban street tree species in Daegu, Korea. Urban For. Urban Green. 2013, 12, 344–349. [Google Scholar] [CrossRef]
- Timilsina, N.; Escobedo, F.J.; Staudhammer, C.L.; Brandeis, T. Analyzing the causal factors of C stores in a subtropical urban forest. Ecol. Complex. 2014, 20, 23–32. [Google Scholar] [CrossRef]
- Edmondson, J.L.; O’Sullivan, O.S.; Inger, R.; Potter, J.; McHugh, N.; Gaston, K.J.; Leake, J.R. Urban Tree Effects on Soil Organic C. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zheng, H.; Ren, Z.; Zhai, C.; Shen, G.; Mao, Z.; He, X. Effects of forest type and urbanization on C storage of urban forests in Changchun, Northeast China. Chin. Geogr. Sci. 2015, 25, 147–158. [Google Scholar] [CrossRef]
- Raciti, S.M.; Groffman, P.M.; Jenkins, J.C.; Pouyat, R.V.; Fahey, T.J.; Pickett, S.T.; Cadenasso, M.L. Accumulation of C and Nitrogen in Residential Soils with Different Land-Use Histories. Ecosystems 2011, 14, 287–297. [Google Scholar] [CrossRef]
- Pouyat, R.V.; Yesilonis, I.D.; Nowak, D.J. Carbon storage by urban soils in the United States. J. Environ. Qual. 2006, 35, 1566–1575. [Google Scholar] [CrossRef] [PubMed]
- Pouyat, R.; Groffman, P.; Yesilonis, I.; Hernandez, L. Soil C pools and fluxes in urban ecosystems. Environ. Pollut. 2002, 116, S107–S118. [Google Scholar] [CrossRef]
- Oldfield, E.E.; Felson, A.J.; Wood, S.A.; Hallett, R.A.; Strickland, M.S.; Bradford, M.A. Positive effects of afforestation efforts on the health of urban soils. For. Ecol. Manag. 2014, 313, 266–273. [Google Scholar] [CrossRef]
- Zhao, Y.G.; Zhang, G.L.; Zepp, H.; Yang, J.L. Establishing a spatial grouping base for surface soil properties along urban–rural gradient—A case study in Nanjing, China. Catena 2007, 69, 74–81. [Google Scholar] [CrossRef]
- Setälä, H.M.; Francini, G.; Allen, J.A.; Hui, N.; Jumpponen, A.; Kotze, D.J. Vegetation Type and Age Drive Changes in Soil Properties, Nitrogen, and Carbon Sequestration in Urban Parks under Cold Climate. Front. Ecol. Evol. 2016, 4. [Google Scholar] [CrossRef]
- Huyler, A.; Chappelka, A.H.; Prior, S.A.; Somers, G.L. Influence of aboveground tree biomass, home age, and yard maintenance on soil carbon levels in residential yards. Urban Ecosyst. 2014, 17, 787–805. [Google Scholar] [CrossRef]
- Zhang, H.X.; Zhuang, S.Y.; Qian, H.Y.; Wang, F.; Ji, H.B. Spatial Variability of the Topsoil Organic C in the Moso Bamboo Forests of Southern China in Association with Soil Properties. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, W.; Gilliam, F.S.; Liu, L.; Huang, J.; Zhang, T.; Mo, J. Changes in soil C sequestration in Pinus massoniana forests along an urban-to-rural gradient of southern China. Biogeosciences 2013, 10, 6609–6616. [Google Scholar] [CrossRef] [Green Version]
- Drayton, B.; Primack, R.B. Plant Species Lost in an Isolated Conservation Area in Metropolitan Boston from 1894 to 1993. Conserv. Biol. 1996, 10, 30–39. [Google Scholar] [CrossRef]
- Koerner, B.A.; Klopatek, J.M. C fluxes and nitrogen availability along an urban-rural gradient in a desert landscape. Urban Ecosyst. 2010, 13, 1–21. [Google Scholar] [CrossRef]
- Rao, P.; Hutyra, L.R.; Raciti, S.M.; Finzi, A.C. Field and remotely sensed measures of soil and biomass C and nitrogen across an urbanization gradient in the Boston metropolitan area. Urban Ecosyst. 2013, 16, 593–616. [Google Scholar] [CrossRef]
- Kaye, J.P.; McCulley, R.L.; Burke, I.C. Carbon fluxes, nitrogen cycling, and soil microbial communities in adjacent urban, native and agricultural ecosystems. Glob. Chang. Biol. 2005, 11, 575–587. [Google Scholar] [CrossRef]
- Gao, Y. Study on Soil of Harbin Urban Biomass. Master’s Thesis, Northeast Forestry University, Harbin, China, July 2002. [Google Scholar]
- Hu, H.; Chen, X.; Xu, S. Soil nutrients and plant cultivation Countermeasures of Urban green sapce in Harbin. Res. Environ. Sci. 2013, 20, 110–114. [Google Scholar]
- Ying, T.; Li, M.; Fan, W.Y. Estimation of C storage of Urban Forests in Harbin city. J. Northeast For. Univ. 2009, 9, 33–35. [Google Scholar]
- Zhang, X.M.; Chen, L.; Ji, J.Z.; Wang, J.; Wang, Y.B.; Guo, W.; Lan, B.W. Climate change and its effect in Harbin from 1881 to 2010. J. Meteorol. Environ. 2011, 27, 13–20. [Google Scholar]
- Overview of Harbin, People’s Government Portal Website of Harbin City. Available online: http://www.hlj.xinhuanet.com/wq/2011–06/09/c_13919750.htm (assessed on 20 August 2016).
- Chang, J. The Study on Investigation of Soil in Urban Green Space and Effects for the Improving in Harbin. Master’s Thesis, Northeast Forestry University, Harbin, China, 2015. [Google Scholar]
- He, Y.; Yu, B. Yesterday-Today-Tomorrow: An Overview of Harbin Landscape; Heilongjiang People’s Publishing House: Harbin, China, 2011. [Google Scholar]
- Xiao, J.; Shen, Y.; Ge, J.; Tateishi, R.; Tang, C.; Liang, Y.; Huang, Z. Evaluating urban expansion and land use change in Shijiazhuang, China, by using GIS and remote sensing. Landsc. Urban Plan. 2006, 75, 69–80. [Google Scholar] [CrossRef]
- He, X.; Liu, C.; Chen, W.; Guan, Z.; Zhao, G. Discussion on urban forest classification. Chin. J. Ecol. 2004, 23, 175–178. [Google Scholar]
- Liu, C.; Li, X. Carbon storage and sequestration by urban forests in Shenyang, China. Urban For. Urban Green. 2012, 11, 121–128. [Google Scholar] [CrossRef]
- Davies, Z.G.; Edmondson, J.L.; Heinemeyer, A.; Leake, J.R.; Gaston, K.J. Mapping an urban ecosystem service: Quantifying above-ground C storage at a city-wide scale. J. Appl. Ecol. 2011, 48, 1125–1134. [Google Scholar] [CrossRef]
- Wang, C.K. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. For. Ecol. Manag. 2006, 222, 9–16. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E. C storage and sequestration by urban trees in the USA. Environ. Pollut. 2002, 116, 381–389. [Google Scholar] [CrossRef]
- Wang, W.W.; Qiu, L.; Zu, Y.G.; Su, D.X.; An, J.; Wang, H.Y.; Zheng, G.Y.; Sun, W.; Chen, X.Q. Changes in soil organic C, nitrogen, pH and bulk density with the development of larch (Larix gmelinii) plantations in China. Glob. Chang. Biol. 2011, 17, 2657–2676. [Google Scholar]
- Bao, S. Soil Agro-Chemistrical Analysis; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Huang, D.C.; Su, Z.M.; Zhang, R.Z.; Koh, L.P. Degree of urbanization influences the persistence of Dorytomus weevils (Coleoptera: Curculionoidae) in Beijing, China. Landsc. Urban Plan. 2010, 96, 163–171. [Google Scholar] [CrossRef]
- Chen, T.B.; Zheng, Y.M.; Lei, M.; Huang, Z.C.; Wu, H.T.; Chen, H.; Fan, K.K.; Yu, K.; Wu, X.; Tian, Q.Z. Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere 2005, 60, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.Z. Carbon Density and Carbon Sequestration Capacity of Six Temperate Forests in Northeast China. Master’ Thesis, Northeast Forestry University, Harbin, China, 2010. [Google Scholar]
- Wang, Q.B.; Duan, Y.Q.; Wei, Z.Y. Spatial variability of urban soil organic C in Shenyang. Chin. J. Soil Sci. 2009, 40, 252–257. [Google Scholar]
- Wang, Y.; Li, C.Y.; Li, C.L.; Han, Y.N.; Li, Y.; Zhang, J.J. Preliminary Study on the Quantitative Characteristics of Organic C in Soils under Different Land Use Patterns in Changchun City. J. Jilin Agric. Univ. 2011, 33, 51–56. [Google Scholar]
- Wang, W.J.; Wang, H.M.; Zu, Y.G. Temporal changes in SOM, N, P, K, and their stoichiometric ratios during reforestation in China and interactions with soil depths: Importance of deep-layer soil and management implications. For. Ecol. Manag. 2014, 325, 8–17. [Google Scholar] [CrossRef]
- Wang, W.J.; Su, D.X.; Qiu, L.; Wang, H.M.; An, J.; Zheng, G.; Zu, Y. Concurrent changes in soil inorganic and organic carbon during the development of larch, Larix gmelinii, plantations and their effects on soil physicochemical properties. Environ. Earth Sci. 2013, 69, 1559–1570. [Google Scholar] [CrossRef]
- DeFries, R.S.; Rudel, T.; Uriarte, M.; Hansen, M. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat. Geosci. 2010, 3, 178–181. [Google Scholar] [CrossRef]
- Nielsen, A.B.; Jensen, R.B. Some visual aspects of planting design and silviculture across contemporary forest management paradigms–perspectives for urban afforestation. Urban For. Urban Green. 2007, 6, 143–158. [Google Scholar] [CrossRef]
- Let City Embrace Forest, Working Hard to Build a Forest City in Our Country. Available online: http://www.gov.cn/xinwen/2015–11/24/content_2971646.htm (accessed on 24 Novermber 2015).
- Groffman, P.M.; Pouyat, R.V.; McDonnell, M.J.; Pickett, S.T.; Zipperer, W.C. Carbon pools and trace gas fluxes in urban forest soils. In Advances in Soil Science: Soil Management and Greenhouse Effect; CRC Press, Inc.: Boca Raton, FL, USA, 1995; pp. 147–158. [Google Scholar]
- Carreiro, M.M.; Howe, K.; Parkhurst, D.F.; Pouyat, R.V. Variation in quality and decomposability of red oak leaf litter along an urban-rural gradient. Biol. Fertil. Soils 1999, 30, 258–268. [Google Scholar] [CrossRef]
- Davidson, E.A.; Janssens, I.A. Temperature sensitivity of soil C decomposition and feedbacks to climate change. Nature 2006, 440, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.A. Study on the bimass of Chinese Pine forests. J. Beijing For. Univ. 1989, 11, 1–10. [Google Scholar]
- Chen, C.; Guo, X. Research on biomass of broad-leaved Korean pine forest. For. Investig. Des. 1984, 10–19. [Google Scholar]
- Zou, C.; Pu, J.; Xu, W. Biomass and productivity of Pinus sylvestrif ormis plantation. Chin. J. Appl. Ecol. 1995, 6, 123–127. [Google Scholar]
- Jia, W.; Jiang, S.; Li, F.R. Biomass of Single Tree of Pinus sylvestris var. mongolica in Eastern Heilongjiang. J. Liaoning For. Sci. Technol. 2008. [Google Scholar] [CrossRef]
- Chang, X.X.; Che, K.J.; Song, C.F.; Li, B.X. Biomass and Nutrient Element Accumulation of Sabina prez ewalskii Foret Community. J. Northwest For. Coll. 1997, 12, 24–29. [Google Scholar]
- Li, X. Biomass Allometry and Allocation of Common Understory in a Natural Secondary Forest in Maoershan, Northeast China. Master’s Thesis, Notheast Forestry University, Harbin, China, 2010. [Google Scholar]
- Wu, F. Appraisal of Carbon Storage in Urban Forest Patches and Its Distribution Pattern in Maanshan City, Master’s Thesis, Anhui Agricultural University, Hefei, China, 2012. [Google Scholar]
- Kuang, W.H.; Zhang, S.W.; Zhang, Y.Z.; Sheng, Y. Analysis of Urban Land Utilization Spatial Expansion Mechanism in Changchun City since 1900. Acta Geogr. Sin. 2005, 60, 841–850. [Google Scholar]
- Sun, Y.; Liu, Z.; Wang, Q.B.; Liu, H.B. Spatial Structure Evolution of Urban Land Use in Shenyang during 1910–2010. Prog. Geogr. 2012, 31, 1204–1211. [Google Scholar]
Urban Forest Classification | Classified Regions | Description | Urban-Rural Gradients |
---|---|---|---|
Ring road region (fast road or express way) | First | Within 1st ring road | Urban |
Second | Distribute between 1st ring and 2nd ring road | ||
Third | Distribute between 2nd ring and 3rd ring road | ||
Forth | Distribute between 3rd ring and 4th ring road | ||
Outside | Outside of forth ring road | Rural | |
Urban settlement time (history of settlements) | 100-year | Urban area constructed before 1906 | Urban |
80-year | urban area constructed between 1933 and 1907 | ||
70-year | urban area constructed between 1945 and 1934 | ||
50-year | urban area constructed between 1962 and 1946 | ||
10-year | urban area constructed between 2005 and 1963 | ||
0-year | urban area constructed during 2006 and 2014 | Rural |
City | Tree C Stocks kg·m−2 | SOC Density kg·m−2 | SOC Content g·kg−1 | Soil Bulk Density g·cm−3 | Soil Depth cm | Citations |
---|---|---|---|---|---|---|
Beijing | 3.19 | -- | -- | -- | -- | Tang et al., 2005 [4] |
Xiamen | 2.08 | -- | -- | -- | -- | Ren et al., 2012 [6] |
Hangzhou | 3.03 | -- | -- | -- | -- | Zhao et al., 2010 [7] |
Los Angeles, Sacramento | 0.82; 1.54 | -- | -- | -- | -- | McPherson et al., 2013 [8] |
Other cities in US | 3.14–14.14 | 1.5–16.3 | -- | -- | -- | Nowak et al., 2013 [2]; Pouyat et al., 2006 [16] |
Shenyang | 3.32 | -- | 19.29 | -- | 20 | Liu and Li, 2012 [37]; Wang et al., 2009 [46] |
Changchun | 4.41 | -- | 22 | -- | 20 | Zhang et al., 2015 [14]; Wang et al., 2011 [47] |
Local natural forest | 10.54 | 7.52 | 33.42 | 1.08 | >20 | Zhang, 2010 [45]; Wang et al., 2014 [48], Wang et al., 2013 [49] |
Harbin | 7.71 | 5.48 | 19.98 | 1.38 | 20 | This research |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, H.; Wang, W.; He, X.; Xiao, L.; Zhou, W.; Zhang, B. Quantifying Tree and Soil Carbon Stocks in a Temperate Urban Forest in Northeast China. Forests 2016, 7, 200. https://doi.org/10.3390/f7090200
Lv H, Wang W, He X, Xiao L, Zhou W, Zhang B. Quantifying Tree and Soil Carbon Stocks in a Temperate Urban Forest in Northeast China. Forests. 2016; 7(9):200. https://doi.org/10.3390/f7090200
Chicago/Turabian StyleLv, Hailiang, Wenjie Wang, Xingyuan He, Lu Xiao, Wei Zhou, and Bo Zhang. 2016. "Quantifying Tree and Soil Carbon Stocks in a Temperate Urban Forest in Northeast China" Forests 7, no. 9: 200. https://doi.org/10.3390/f7090200
APA StyleLv, H., Wang, W., He, X., Xiao, L., Zhou, W., & Zhang, B. (2016). Quantifying Tree and Soil Carbon Stocks in a Temperate Urban Forest in Northeast China. Forests, 7(9), 200. https://doi.org/10.3390/f7090200