The Use of Auxin Quantification for Understanding Clonal Tree Propagation
Abstract
:1. Introduction
2. Techniques for Auxin Quantification
2.1. Bioassays
2.2. Immunoassays
2.3. Chromatography and Mass Spectrometry
3. Auxin Dynamics during Vegetative Propagation
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Davies, P.J. Plant Hormones: Physiology, Biochemistry and Molecular Biology; Kluwer: Dordrecht, The Netherlands, 1995. [Google Scholar]
- Pop, T.I.; Pamfil, D.; Bellini, C. Auxin control in the formation of adventitious roots. Not. Bot. Hortic Agrobot. Cluj. 2011, 39, 307–316. [Google Scholar]
- Fu, J.H.; Sun, X.H.; Wang, J.D.; Chu, J.F.; Yan, C.Y. Progress in quantitative analysis of plant hormones. Chin. Sci. Bull. 2011, 56, 355–366. [Google Scholar] [CrossRef]
- Boyer, F.-D.; De Saint Germain, A.; Pouvreau, J.-B.; Clavé, G.; Pillot, J.-P.; Roux, A.; Rasmussen, A.; Depuydt, S.; Lauressergues, D.; Frei Dit Frey, N.; et al. New strigolactone analogs as plant hormones with low activities in the rhizosphere. Mol. Plant 2014, 7, 675–690. [Google Scholar] [CrossRef] [PubMed]
- Went, F.W. Wuchsstoff und wachstum. Recl. Trav. Bot. Neerland 1928, 25, 1–116. [Google Scholar]
- Jensen, P.B. Growth Hormones in Plants; McGraw-Hill: New York, NY, USA, 1936. [Google Scholar]
- Went, F.W.; Thimann, K.V. Phytohormones; Macmillan: New York, NY, USA, 1937. [Google Scholar]
- Thimann, K.V. The development of plant hormone research in the last 60 years. In Plant Growth Substances; Skoog, F., Ed.; Springer: Berlin, Germany, 1979; pp. 15–33. [Google Scholar]
- Tivendale, N.D.; Cohen, J.D. Analytical history of auxin. J. Plant Growth Regul. 2015, 34, 708–722. [Google Scholar] [CrossRef]
- Benjamins, R.; Scheres, B. Auxin: The looping star in plant development. Annu. Rev. Plant Biol. 2008, 59, 443–465. [Google Scholar] [CrossRef] [PubMed]
- Barkawi, L.S.; Tam, Y.Y.; Tillman, J.A.; Normanly, J.; Cohen, J.D. A high-throughput method for the quantitative analysis of auxins. Nat. Protoc. 2010, 5, 1609–1618. [Google Scholar] [CrossRef] [PubMed]
- Went, F.W. Auxin, the plant growth hormone. Bot. Rev. 1935, 1, 162–182. [Google Scholar] [CrossRef]
- Ludwig-Müller, J. Auxin conjugates: Their role for plant development and in the evolution of land plants. J. Exp. Bot. 2011, 62, 1757–1773. [Google Scholar] [CrossRef] [PubMed]
- Woodward, A.W.; Bartel, B. Auxin: Regulation, action, and interaction. Ann. Bot. 2005, 95, 707–735. [Google Scholar] [CrossRef] [PubMed]
- Perrot-Rechenmann, C. Cellular responses to auxin: Division versus expansion. CSH Perspect. Biol. 2010, 2, a001446. [Google Scholar] [CrossRef] [PubMed]
- Korasick, D.A.; Enders, T.A.; Strader, L.C. Auxin biosynthesis and storage forms. J. Exp. Bot. 2013, 64, 2541–2555. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ruan, Y.-L. Regulation of cell division and expansion by sugar and auxin signaling. Front. Plant Sci. 2013, 4, 163. [Google Scholar] [CrossRef] [PubMed]
- Velasquez, S.M.; Barbez, E.; Kleine-Vehn, J.; Estevez, J.M. Auxin and cellular elongation. Plant Physiol. 2016, 170, 1206–1215. [Google Scholar] [CrossRef] [PubMed]
- Kramer, E.M.; Ackelsberg, E.M. Auxin metabolism rates and implications for plant development. Front. Plant Sci. 2015, 6, 150. [Google Scholar] [CrossRef] [PubMed]
- Ludwig-Müller, J. Indole-3-butyric acid in plant growth and development. Plant Growth Regul. 2000, 32, 219–230. [Google Scholar] [CrossRef]
- Epstein, E.; Lavee, S. Conversion of indole-3-butyric acid to indole-3-acetic acid by cuttings of gravepine (Vitis vinifera) and olive (Olea europea). Plant Cell Physiol. 1984, 25, 697–703. [Google Scholar]
- Figueiredo, D.D.; Batista, R.A.; Roszak, P.J.; Köhler, C. Auxin production couples endosperm development to fertilization. Nat. Plants 2015, 1, 15184. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, A.; Hosseini, S.A.; Hajirezaei, M.-R.; Druege, U.; Geelen, D. Adventitious rooting declines with the vegetative to reproductive switch and involves a changed auxin homeostasis. J. Exp. Bot. 2015, 66, 1437–1452. [Google Scholar] [CrossRef] [PubMed]
- Steffens, B.; Rasmussen, A. The physiology of adventitious roots. Plant Physiol. 2016, 170, 603–617. [Google Scholar] [CrossRef] [PubMed]
- Kevers, C.; Hausman, J.F.; Faivre-Rampant, O.; Evers, D.; Gaspar, T. Hormonal control of adventitious rooting: Progress and questions. J. Appl. Bot. 1997, 71, 71–79. [Google Scholar]
- Nag, S.; Saha, K.; Choudhuri, M.A. Role of auxin and polyamines in adventitious root formation in relation to changes in compounds involved in rooting. J. Plant Growth Regul. 2001, 20, 182–194. [Google Scholar] [CrossRef]
- Štefančič, M.; Štampar, F.; Veberič, R.; Osterc, G. The levels of IAA, IAAsp and some phenolics in cherry rootstock ‘GiSelA 5’ leafy cuttings pretreated with IAA and IBA. Sci. Hortic. 2007, 112, 399–405. [Google Scholar] [CrossRef]
- Faivre-Rampant, O.; Charpentier, J.P.; Kevers, C.; Dommes, J.; Van Onckelen, H.; Jay-Allemand, C.; Gaspar, T. Cuttings of the non-rooting rac tobacco mutant overaccumulate phenolic compounds. Funct. Plant Biol. 2002, 29, 63–71. [Google Scholar] [CrossRef]
- Blakesley, D. Auxin metabolism and adventitious root initiation. In Biology of Adventitious Root Formation; Davis, T.D., Haissig, B.E., Eds.; Plenum Press: New York, NY, USA, 1994; pp. 143–154. [Google Scholar]
- Jarvis, B.C. Endogenous control of adventitious rooting in non-woody cuttings. In New Root Formation in Plants and Cuttings; Jackson, M.B., Ed.; Martinus Nijhoff Publishers: Dordrecht, The Netherlands, 1986; pp. 191–222. [Google Scholar]
- De Klerk, G.J.; Van Der Krieken, W.; De Jong, J.C. The formation of adventitious roots: New concepts, new possibilities. In Vitro Cell. Dev. Biol. Plant 1999, 35, 189–199. [Google Scholar] [CrossRef]
- Wendling, I.; Brondani, G.E.; Dutra, L.F.; Hansel, F.A. Mini-cuttings technique: A new ex vitro method for clonal propagation of sweetgum. New For. 2010, 39, 343–353. [Google Scholar] [CrossRef]
- Perry, F.; Trueman, S.J. Cutting propagation of Victorian smokebush, Conospermum mitchellii (Proteaceae). S. Afr. J. Bot. 1999, 65, 243–244. [Google Scholar] [CrossRef]
- Dwan, B.E.; Trueman, S.J. Propagation methods for environmental offset planting of the Kogan waxflower (Philotheca sporadica) (Rutaceae). J. Environ. Sci. Technol. 2014, 7, 347–353. [Google Scholar]
- Pereira, M.J.; Eleutério, T.; Canhoto, J.M. The influence of cytokinin and auxin types and their concentration on the proliferation and rooting of Viburnum treleasei seedling explants. Acta Hortic. 2015, 1083, 311–318. [Google Scholar] [CrossRef]
- Husen, A. Changes of soluble sugars and enzymatic activities during adventitious rooting in cuttings of Grewia optiva as affected by age of donor plants and auxin treatments. Am. J. Plant Physiol. 2012, 7, 1–16. [Google Scholar] [CrossRef]
- Fogaça, C.M.; Fett-Neto, A.G. Role of auxin and its modulators in the adventitious rooting of Eucalyptus species differing in recalcitrance. Plant Growth Regul. 2005, 45, 1–10. [Google Scholar] [CrossRef]
- Kilkenny, A.J.; Wallace, H.M.; Walton, D.A.; Adkins, M.F.; Trueman, S.J. Improved root formation in eucalypt cuttings following combined auxin and anti-ethylene treatments. J. Plant Sci. 2012, 7, 138–153. [Google Scholar]
- Trueman, S.J.; Adkins, M.F. Effect of aminoethoxyvinylglycine and 1-methylcyclopropene on leaf abscission and root formation in Corymbia and Eucalyptus cuttings. Sci. Hortic. 2013, 161, 1–7. [Google Scholar] [CrossRef]
- Trueman, S.J. Clonal propagation and storage of subtropical pines in Queensland, Australia. South. Afr. For. J. 2006, 208, 49–52. [Google Scholar] [CrossRef]
- Wendling, I.; Trueman, S.J.; Xavier, A. Maturation and related aspects in clonal forestry—Part I: Concepts, regulation and consequences of phase change. New For. 2014, 45, 449–471. [Google Scholar] [CrossRef]
- Wendling, I.; Trueman, S.J.; Xavier, A. Maturation and related aspects in clonal forestry—Part II: reinvigoration, rejuvenation and juvenility maintenance. New For. 2014, 45, 473–486. [Google Scholar] [CrossRef]
- Osterc, G.; Štampar, F. Maturation changes auxin profile during the process of adventitious rooting in Prunus. Eur. J. Hortic. Sci. 2015, 80, 225–230. [Google Scholar] [CrossRef]
- Valdés, A.E.; Centeno, M.L.; Espinel, S.; Fernández, B. Could plant hormones be the basis of maturation indices in Pinus radiata? Plant Physiol. Biochem. 2002, 40, 211–216. [Google Scholar] [CrossRef]
- Negishi, N.; Nakahama, K.; Urata, N.; Kojima, M.; Sakakibara, H.; Kawaoka, A. Hormone level analysis on adventitious root formation in Eucalyptus globulus. New For. 2014, 45, 577–587. [Google Scholar] [CrossRef]
- Kojima, M.; Kamada-Nobusada, T.; Komatsu, H.; Takei, K.; Kuroha, T.; Mizutani, M.; Ashikari, M.; Ueguchi-Tanaka, M.; Matsuoka, M.; Suzuki, K.; et al. Highly sensitive and high-throughput analysis of plant hormones using MA-probe modification and liquid chromatography–tandem mass spectrometry: An application for hormone profiling in Oryza sativa. Plant Cell Physiol. 2009, 50, 1201–1214. [Google Scholar] [CrossRef] [PubMed]
- Du, F.; Ruan, G.; Liu, H. Analytical methods for tracing plant hormones. Anal. Bioanal. Chem. 2012, 403, 55–74. [Google Scholar] [CrossRef] [PubMed]
- Blakesley, D.; Weston, G.D.; Elliott, M.C. Endogenous levels of indole-3-acetic acid and abscisic acid during the rooting of Cotinus coggygria cuttings taken at different times of the year. Plant Growth Regul. 1991, 10, 1–12. [Google Scholar] [CrossRef]
- Nordström, A.C.; Jacobs, F.A.; Eliasson, L. Effect of exogenous indole-3-acetic acid and indole-3-butyric acid on internal levels of the respective auxins and their conjugation with aspartic acid during adventitious root formation in pea cuttings. Plant Physiol. 1991, 96, 856–861. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Little, C.H.A.; Moritz, T.; Odén, P.C. Effects of prohexadione on cambial and longitudinal growth and the levels of endogenous gibberellins A1, A3, A4, and A9 and indole-3-acetic acid in Pinus sylvestris shoots. J. Plant Growth Regul. 1995, 14, 175–181. [Google Scholar] [CrossRef]
- Campen, R.C.; Weston, G.D.; Harrison-Murray, R.S. Shoots from MM. 106 apple rootstocks grown in a polyethylene tunnel do not contain a higher IAA concentration than shoots from field-grown plants. Plant Growth Regul. 1996, 19, 89–91. [Google Scholar]
- Porfírio, S.; Da Silva, M.D.G.; Peixe, A.; Cabrita, M.J.; Azadi, P. Current analytical methods for plant auxin quantification—A review. Anal. Chim. Acta 2016, 902, 8–21. [Google Scholar] [CrossRef] [PubMed]
- Seo, H.; Kriechbaumer, V.; Park, W.J. Modern quantitative analytical tools and biosensors for functional studies of auxin. J. Plant Biol. 2016, 59, 93–104. [Google Scholar] [CrossRef]
- Thimann, K.V. Studies on the growth hormone of plants VI. The distribution of the growth substance in plant tissues. J. Gen. Physiol. 1934, 18, 23–34. [Google Scholar] [PubMed]
- Kogl, F.; Smit, A.H.; Erxleben, H. Uber ein neues auxin (heteroauxin) aus harn. Z Physiol. Chem. 1934, 228, 90–91. [Google Scholar]
- Van Overbeek, J.V. A simplified method for auxin extraction. Proc. Natl. Acad. Sci. USA 1938, 24, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Stefan, J. Über die beziehung zwischen der wärmestrahlung und der temperatur. Sitzungsber. Akad. Wiss. Wien 1879, 79, 391–428. [Google Scholar]
- Kramer, M.; Went, F.W. The nature of the auxin in tomato stem tips. Plant Physiol. 1949, 24, 207–221. [Google Scholar] [CrossRef] [PubMed]
- Laibach, F.; Meyer, U.F. Über die schwankungen des auxingehaltes bei Zea mays und Helianthus annuus im verlauf der ontogenese. Senckenbergiana 1935, 17, 73–86. [Google Scholar]
- Van Raalte, M.H. On factors determining the auxin content of the root tip. Recl. Trav. Bot. Neerlandais 1937, 34, 278–332. [Google Scholar]
- Thimann, K.V.; Skoog, F. The extraction of auxin from plant tissues. Am. J. Bot. 1940, 27, 951–960. [Google Scholar] [CrossRef]
- Avery, G.S.; Berger, J.; Shalucha, B. The total extraction of free auxin and auxin precursor from plant tissue. Am. J. Bot. 1941, 28, 596–607. [Google Scholar] [CrossRef]
- Van Overbeek, J.; Olivo, G.D.; Vazquez, E.M.S. A rapid extraction method for free auxin and its application in geotropic reactions of bean seedlings and sugar-cane nodes. Bot. Gaz. 1945, 106, 440–451. [Google Scholar] [CrossRef]
- Wildman, S.G.; Muir, R.M. Observations on the mechanism of auxin formation in plant tissues. Plant Physiol. 1949, 24, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Bentley, J.A. An examination of a method of auxin assay using the growth of isolated sections of Avena coleoptiles in test solutions. J. Exp. Bot. 1950, 1, 201–213. [Google Scholar] [CrossRef]
- Bentley, J.A.; Housley, S. Bioassay of plant growth hormone. Physiol. Plant. 1954, 7, 405–420. [Google Scholar] [CrossRef]
- Sirois, J.C. Studies on growth regulators. I. Improved Avena coleoptile elongation test for auxin. Plant Physiol. 1966, 41, 1308–1312. [Google Scholar] [PubMed]
- Volksch, B.; Bublitz, F.; Fritsche, W. Coronatine production by Pseudomonas syringae pathovars: Screening method and capacity of product formation. J. Basic Microb. 1989, 29, 463–468. [Google Scholar] [CrossRef]
- Bai, Y.; Du, F.; Bai, Y.; Liu, H. Determination strategies of phytohormones: Recent advances. Anal. Methods 2010, 2, 1867–1873. [Google Scholar] [CrossRef]
- Sandberg, G.; Crozier, A.; Ernstsen, A. Indole-3-acetic acid and related compounds. In Principles and Practice of Plant Hormone Analysis; Rivier, L., Crozier, A., Eds.; Academic Press: London, UK, 1987; pp. 169–301. [Google Scholar]
- Novák, O.; Hauserová, E.; Swaczynová, J.; Hradecká, V.; Dolezal, K.; Strnad, M. New approach to study metabolite profiling of plant extracts. Planta Med. 2008, 74, PC119. [Google Scholar] [CrossRef]
- Fuchs, S.; Haimovich, J.; Fuchs, Y. Immunological studies of plant hormones. Detection and estimation by immunological assays. Eur. J. Biochem. 1971, 18, 384–390. [Google Scholar] [PubMed]
- Pĕnčík, A.; Rolčík, J.; Novák, O.; Magnus, V.; Barták, P.; Buchtík, R.; Salopek-Sondi, B.; Strnad, M. Isolation of novel indole-3-acetic acid conjugates by immunoaffinity extraction. Talanta 2009, 80, 651–655. [Google Scholar] [CrossRef] [PubMed]
- Lur, H.S.; Setter, T.L. Role of auxin in maize endosperm development (timing of nuclear DNA endoreduplication, zein expression, and cytokinin). Plant Physiol. 1993, 103, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Gussakovskaya, M.A.; Blintsov, A.N. A new method for differential determination of basic natural forms of indolyl-3-acetic acid. Biochemistry 2007, 72, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Weiler, E.W. Plant hormone immunoassays based on monoclonal and polyclonal antibodies. Immunol. Plant Sci. 1986, 4, 1–17. [Google Scholar]
- Pence, V.C.; Caruso, J.L. Elisa determination of IAA using antibodies against ring-linked IAA. Phytochemistry 1987, 26, 1251–1255. [Google Scholar] [CrossRef]
- Pengelly, W.; Meins, J.F. A specific radioimmunoassay for nanogram quantities of the auxin, indole-3-acetic acid. Planta 1977, 136, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Yolken, R.H.; Leister, F.J. Investigation of enzyme immunoassay time courses: Development of rapid assay systems. J. Clin. Microb. 1981, 13, 738–741. [Google Scholar]
- Hedden, P. Modern methods for the quantitative analysis of plant hormones. Annu. Rev. Plant Physiol. 1993, 44, 107–129. [Google Scholar] [CrossRef]
- Peres, L.E.P.; Mercier, H.; Kerbauy, G.B.; Zaffari, G.R. Endogenous levels of IAA, cytokinins, and ABA in a shootless orchid and a rootless bromeliad determined by means of HPLC and ELISA. Rev. Bras. Fisiol. Veg. 1997, 9, 169–176. [Google Scholar]
- Zhao, J.; Li, G.; Yi, G.X.; Wang, B.M.; Deng, A.X.; Nan, T.G.; Li, Q.X. Comparison between conventional indirect competitive enzyme-linked immunosorbent assay (icELISA) and simplified icELISA for small molecules. Anal. Chim. Acta 2006, 571, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Jung, F.; Gee, S.J.; Harrison, R.O.; Goodrow, M.H.; Karu, A.E.; Braun, A.L.; Hammock, B.D. Use of immunochemical techniques for the analysis of pesticides. Pestic. Sci. 1989, 26, 303–317. [Google Scholar] [CrossRef]
- Chiwocha, S.; Von Aderkas, P. Endogenous levels of free and conjugated forms of auxin, cytokinins and abscisic acid during seed development in Douglas fir. Plant Growth Regul. 2002, 36, 191–200. [Google Scholar] [CrossRef]
- Maldiney, R.; Pelese, F.; Pilate, G.; Sotta, B.; Sossountzov, L.; Miginiac, E. Endogenous levels of abscisic acid, indole-3-acetic acid, zeatin and zeatin-riboside during the course of adventitious root formation in cuttings of Craigella and Craigella lateral suppressor tomatoes. Physiol. Plant. 1986, 68, 426–430. [Google Scholar] [CrossRef]
- Fackler, U.; Reich, J.; Hock, B. Auxin distribution in spruce needles. J. Plant Physiol. 1986, 126, 163–172. [Google Scholar] [CrossRef]
- De Diego, N.; Rodríguez, J.L.; Dodd, I.C.; Pérez-Alfocea, F.; Moncaleán, P.; Lacuesta, M. Immunolocalization of IAA and ABA in roots and needles of radiata pine (Pinus radiata) during drought and rewatering. Tree Physiol. 2013, 33, 537–549. [Google Scholar] [CrossRef] [PubMed]
- Weiler, E.W.; Jourdan, P.S.; Conrad, W. Levels of indole-3-actetic acid in intact and decapitated coleoptiles as determined by a specific and highly sensitive solid-phase enzyme immunoassay. Planta 1981, 153, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, N.; Fujikawa, Y.; Aly, M.A.M.; Saneoka, H.; Fujita, K.; Yamashita, I. Proliferation and rol gene expression in hairy root lines of Egyptian clover. Plant Cell Tissue Organ Cult. 2001, 66, 175–182. [Google Scholar] [CrossRef]
- Sergeeva, E.; Liaimer, A.; Bergman, B. Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria. Planta 2002, 215, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-M.; Zhang, L.-H.; Li, Y.-Y.; Ma, L.-J.; Chen, Q.; Wang, L.L.; He, X.-Y. Effects of elevated carbon dioxide and/or ozone on endogenous plant hormones in the leaves of Ginkgo biloba. Acta Physiol. Plant. 2011, 33, 129–136. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, S.; Chen, F.; Liu, Z.; Fang, W. The regulatory role of the auxin in the creeping chrysanthemum habit. Russ. J. Plant Physiol. 2012, 59, 364–371. [Google Scholar] [CrossRef]
- Morris, J.W.; Doumas, P.; Morris, R.O.; Zaerr, J.B. Cytokinins in vegetative and reproductive buds of Pseudotsuga menziesii. Plant Physiol. 1990, 93, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Trueman, S.J. Endogenous cytokinin levels during early fruit development of macadamia. Afr. J. Agric. Res. 2010, 5, 3402–3407. [Google Scholar]
- Trueman, S.J. Endogenous gibberellin levels during early fruit development of macadamia. Afr. J. Agric. Res. 2011, 6, 4785–4788. [Google Scholar]
- Dobrev, P.I.; Havlíček, L.; Vágner, M.; Malbeck, J.; Kamínek, M. Purification and determination of plant hormones auxin and abscisic acid using solid phase extraction and two-dimensional high performance liquid chromatography. J. Chromatogr. A 2005, 1075, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wang, T.; Jin, Y. A study on GC–MS–SIM method for measuring content of IAA in plant tissue. J. Univ. Sci. Technol. B 1991, 13, 56–61. [Google Scholar]
- Barkawi, L.S.; Tam, Y.Y.; Tillman, J.A.; Pederson, B.; Calio, J.; Al-Amier, H.; Emerick, M.; Normanly, J.; Cohen, J.D. A high-throughput method for the quantitative analysis of indole-3-acetic acid and other auxins from plant tissue. Anal. Biochem. 2008, 372, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Luckwill, L.C. Application of paper chromatography to the separation and identification of auxins and growth inhibitors. Nature 1952, 169, 375. [Google Scholar] [CrossRef] [PubMed]
- Bennet-Clark, T.A.; Kefford, N.P. Chromatography of the growth substances in plant extracts. Nature 1953, 171, 645–647. [Google Scholar] [CrossRef] [PubMed]
- Stowe, B.B.; Thimann, K.V.; Kefford, N.P. Further studies of some plant indoles and auxins by paper chromatography. Plant Physiol. 1956, 31, 162–165. [Google Scholar] [CrossRef] [PubMed]
- Harbo, A.; Aasheim, T. A spectrophotometric method for the identification and assay of tryptophol and other indole derivatives. Physiol. Plant. 1962, 15, 546–551. [Google Scholar] [CrossRef]
- Tyce, G.M. Growth substances in relation to rooting of Salix fragilis cuttings. Ann. Bot. 1957, 21, 499–512. [Google Scholar]
- Steen, I.; Eliasson, L. Separation of growth regulators from Picea abies Karst on Sephadex LH-20. J. Chromatogr. 1969, 43, 558–560. [Google Scholar] [CrossRef]
- Eliasson, L. Growth regulators in Populus tremula I. Distribution of auxin and growth inhibitors. Physiol. Plant. 1969, 22, 1288–1301. [Google Scholar] [PubMed]
- Fletcher, A.T.; Mader, J.C. Hormone profiling by LC-QToF-MS/MS in dormant Macadamia integrifolia: Correlations with abnormal vertical growth. J. Plant Growth Regul. 2007, 26, 351–361. [Google Scholar] [CrossRef]
- Jenkins, P.A.; Shepherd, K.R. Seasonal changes in levels of indole-acetic acid and abscisic acid in stem tissues of Pinus radiata. N. Z. J. Bot. 1974, 4, 511–519. [Google Scholar]
- Nakhooda, M.; Watt, M.P.; Mycock, D. Auxin stability and accumulation during in vitro shoot morphogenesis influences subsequent root induction and development in Eucalyptus grandis. Plant Growth Regul. 2011, 65, 263–271. [Google Scholar] [CrossRef]
- Osterc, G.; Štampar, F. Differences in endo/exogenous auxin profile in cuttings of different physiological ages. J. Plant Physiol. 2011, 168, 2088–2092. [Google Scholar] [CrossRef] [PubMed]
- Wendling, I.; Brooks, P.R.; Trueman, S.J. Topophysis in Corymbia torelliana × C. citriodora seedlings: Adventitious rooting capacity, stem anatomy, and auxin and abscisic acid concentrations. New For. 2014, 46, 107–120. [Google Scholar]
- Aral, H.; Aral, T.; Ziyadanoğulları, B.; Ziyadanoğulları, R. Development of a novel amide-silica stationary phase for the reversed-phase HPLC separation of different classes of phytohormones. Talanta 2013, 116, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; La Motte, C.E.; Stewart, C.R.; Cloud, N.P.; Wear-Bagnall, S.; Jiang, C.-Z. Determination of IAA and ABA in the same plant sample by a widely applicable method using GC-MS with selected ion monitoring. J. Plant Growth Regul. 1992, 11, 55–65. [Google Scholar] [CrossRef]
- Tuominen, H.; Sitbon, F.; Jacobsson, C.; Sandberg, G.; Olsson, O.; Sundberg, B. Altered growth and wood characteristics in transgenic hybrid aspen expressing Agrobacterium tumefaciens T-DNA indoleacetic acid-biosynthetic genes. Plant Physiol. 1995, 109, 1179–1189. [Google Scholar] [CrossRef] [PubMed]
- Mwange, K.N.; Hou, H.W. Opposite patterns in the annual distribution and time-course of endogenous abscisic acid and indole-3-acetic acid in relation to the periodicity of cambial activity in Eucommia ulmoides Oliv. J. Exp. Bot. 2005, 56, 1017–1028. [Google Scholar] [CrossRef] [PubMed]
- De Diego, N.; Pérez-Alfocea, F.; Cantero, E.; Lacuesta, M.; Moncaleán, P. Physiological response to drought in radiata pine: Phytohormone implication at leaf level. Tree Physiol. 2012, 32, 435–449. [Google Scholar] [CrossRef] [PubMed]
- Guiochon, G.; Marchetti, N.; Mriziq, K.; Shalliker, R.A. Implementations of two-dimensional liquid chromatography. J. Chromatogr. A 2008, 1189, 109–168. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, F.; Miyazawa, H.; Wakasa, K.; Miyagawa, H. Quantification of indole-3-acetic acid and amino acid conjugates in rice by liquid chromatography–electrospray ionization–tandem mass spectrometry. Biosci. Biotechnol. Biochem. 2005, 69, 778–783. [Google Scholar] [CrossRef] [PubMed]
- Durgbanshi, A.; Arbona, V.; Pozo, O.; Miersch, O.; Sancho, J.V.; Gómez-Cadenas, A. Simultaneous determination of multiple phytohormones in plant extracts by liquid chromatography—Electrospray tandem mass spectrometry. J. Agric. Food Chem. 2005, 53, 8437–8442. [Google Scholar] [CrossRef] [PubMed]
- Zare, R.N. Capillary electrophoresis. Science 1998, 242, 224–228. [Google Scholar]
- Camilleri, P. Capillary Electrophoresis. Theory and Practice; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Yin, X.B.; Guo, J.M.; Wei, W. Dual-cloud point extraction and tertiary amine labeling for selective and sensitive capillary electrophoresis-electrochemiluminescent detection of auxins. J. Chromatogr. A 2010, 1217, 1399–1406. [Google Scholar] [CrossRef] [PubMed]
- Deyoe, D.R.; Zaerr, J.B. Indole-3-acetic acid in Douglas fir: Analysis by gas-liquid chromatography and mass spectrometry. Plant Physiol. 1976, 58, 299–303. [Google Scholar] [CrossRef] [PubMed]
- Caruso, J.L.; Smith, R.G.; Smith, L.M.; Cheng, T.-Y.; Daves, G.D., Jr. Analysis of indole-3-acetic acid in Douglas fir using a deuterium analog and combined gas chromatography-mass spectrometry. Plant Physiol. 1978, 62, 841–845. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.D.; Baldi, B.G.; Slovin, J.P. C(6)-[benzene ring]-indole-3-acetic acid: A new internal standard for quantitative mass spectral analysis of indole-3-acetic acid in plants. Plant Physiol. 1986, 80, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Sundberg, B.; Little, C.H.A.; Cui, K.; Sandberg, G. Level of endogenous indole-3-acetic acid in the stem of Pinus sylvestris in relation to the seasonal variation of cambial activity. Plant Cell Environ. 1991, 14, 241–246. [Google Scholar] [CrossRef]
- Li, W.F.; Ding, Q.; Cui, K.M.; He, X.Q. Cambium reactivation independent of bud unfolding involves de novo IAA biosynthesis in cambium regions in Populus tomentosa Carr. Acta Physiol. Plant. 2013, 35, 1827–1836. [Google Scholar] [CrossRef]
- Li, X.-M.; He, X.-Y.; Zhang, L.-H.; Chen, W.; Chen, Q. Influence of elevated CO2 and O3 on IAA, IAA oxidase and peroxidase in the leaves of ginkgo trees. Biol. Plant. 2009, 53, 339–342. [Google Scholar] [CrossRef]
- Li, X.-M.; He, X.-Y.; Chen, W.; Zhang, L.-H. Effects of elevated CO2 and/or O3 on hormone IAA in needles of Chinese pine. Plant Growth Regul. 2007, 53, 25–31. [Google Scholar] [CrossRef]
- Wendling, I.; Warburton, P.M.; Trueman, S.J. Maturation in Corymbia torelliana × C. citriodora stock plants: Effects of pruning height on shoot production, adventitious rooting capacity, stem anatomy, and auxin and abscisic acid concentrations. Forests 2015, 6, 3763–3778. [Google Scholar]
- Birkemeyer, C.; Kolasa, A.; Kopka, J. Comprehensive chemical derivatization for gas chromatography-mass spectrometry-based multi-targeted profiling of the major phytohormones. J. Chromatogr. A 2003, 993, 89–102. [Google Scholar] [CrossRef]
- Müller, A.; Düchting, P.; Weiler, E.W. A multiplex GC-MS/MS technique for the sensitive and quantitative single-run analysis of acidic phytohormones and related compounds, and its application to Arabidopsis thaliana. Planta 2002, 216, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Chamarro, J.; Östin, A.; Sandberg, G. Metabolism of indole-3-acetic acid by orange (Citrus sinensis) flavedo tissue during fruit development. Phytochemistry 2001, 57, 179–187. [Google Scholar] [CrossRef]
- Pan, X.; Welti, R.; Wang, X. Simultaneous quantification of major phytohormones and related compounds in crude plant extracts by liquid chromatography–electrospray tandem mass spectrometry. Phytochemistry 2008, 69, 1773–1781. [Google Scholar] [CrossRef] [PubMed]
- Pĕnčík, A.; Simonovik, B.; Petersson, S.V.; Henykova, E.; Simon, S.; Greenham, K.; Zhang, Y.; Kowalczyk, M.; Estelle, M.; Zažímalová, E.; et al. Regulation of auxin homeostasis and gradients in Arabidopsis roots through the formation of the indole-3-acetic acid catabolite 2-oxindole-3-acetic acid. Plant Cell 2013, 25, 3858–3870. [Google Scholar] [CrossRef] [PubMed]
- Novák, O.; Pĕnčík, A.; Ljung, K. Identification and profiling of auxin and auxin metabolites. In Auxin and Its Role in Plant Development; Zažímalová, E., Petrasek, J., Benková, E., Eds.; Springer: Vienna, Austria, 2014; pp. 39–60. [Google Scholar]
- Pĕnčík, A.; Turečková, V.; Paulišić, S.; Rolčík, J.; Strnad, M.; Mihaljević, S. Ammonium regulates embryogenic potential in Cucurbita pepo through pH-mediated changes in endogenous auxin and abscisic acid. Plant Cell Tissue Organ Cult. 2015, 122, 89–100. [Google Scholar] [CrossRef]
- Leljak-Levanić, D.; Mrková, M.; Turečková, V.; Pĕnčík, A.; Rolčík, J.; Strnad, M.; Mihaljević, S. Hormonal and epigenetic regulation during embryogenic tissue habituation in Cucurbita pepo L. Plant Cell Rep. 2016, 35, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Šimura, J.; Spíchal, L.; Adamec, L.; Pĕnčík, A.; Rolčík, J.; Novák, O.; Strnad, M. Cytokinin, auxin and physiological polarity in the aquatic carnivorous plants Aldrovanda vesiculosa and Utricularia australis. Ann. Bot. 2016, 117, 1037–1044. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.-Y.; Sun, L.-H.; Mou, R.-X.; Zhang, L.-P.; Lin, X.-Y.; Zhu, Z.-W.; Chen, M.-X. Profiling of phytohormones and their major metabolites in rice using binary solid-phase extraction and liquid chromatography-triple quadrupole mass spectrometry. J. Chromatogr. A 2016, 1451, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.-J.; Ye, T.-T.; Wang, Q.; Cai, B.-D.; Feng, Y.-Q. A rapid approach to investigate spatiotemporal distribution of phytohormones in rice. Plant Methods 2016, 12, 47. [Google Scholar] [CrossRef] [PubMed]
- Ludwig-Müller, J. Molecular basis for the role of auxins in adventitious rooting. In Adventitious Root Formation of Forest Trees and Horticultural Plants: From Genes to Applications; Niemi, K., Scagel, C., Eds.; Research Signpost: Kerala, India, 2009; pp. 1–29. [Google Scholar]
- Montalbán, I.A.; Novák, O.; Rolčik, J.; Strnad, M.; Moncaleán, P. Endogenous cytokinin and auxin profiles during in vitro organogenesis from vegetative buds of Pinus radiata adult trees. Physiol. Plant. 2013, 148, 214–231. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, M.; Sandberg, G. Quantitative analysis of indole-3-acetic acid metabolites in Arabidopsis. Plant Physiol. 2001, 127, 1845–1853. [Google Scholar] [CrossRef] [PubMed]
- Heeren, R.M.A.; McDonnell, L.A.; Amstalden, E.; Luxembourg, S.L.; Altelaar, A.F.M.; Piersma, S.R. Why don’t biologists use SIMS? A critical evaluation of imaging MS. Appl. Surf. Sci. 2006, 252, 6827–6835. [Google Scholar] [CrossRef]
- Solon, E.G.; Schweitzer, A.; Stoeckli, M.; Prideaux, B. Autoradiography, MALDI-MS, and SIMS-MS imaging in pharmaceutical discovery and development. AAPS J. 2009, 12, 11–26. [Google Scholar] [CrossRef] [PubMed]
- Kaspar, S.; Peukert, M.; Svatos, A.; Matros, A.; Mock, H.P. MALDI-imaging mass spectrometry—An emerging technique in plant biology. Proteomics 2011, 11, 1840–1850. [Google Scholar] [CrossRef] [PubMed]
- Ellis, S.R.; Bruinen, A.L.; Heeren, R.M.A. A critical evaluation of the current state-of-the-art in quantitative imaging mass spectrometry. Anal. Bioanal. Chem. 2014, 406, 1275–1289. [Google Scholar] [CrossRef] [PubMed]
- Steuer, A.E.; Poetzsch, M.; Kraemer, T. MALDI-MS drug analysis in biological samples: Opportunities and challenges. Bioanal. 2016, 8, 1859–1878. [Google Scholar] [CrossRef] [PubMed]
- Gorzolka, K.; Kölling, J.; Nattkemper, T.W.; Niehaus, K. Spatio-temporal metabolite profiling of the barley germination process by MALDI MS imaging. PLoS ONE 2016, 11, e0150208. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.; Ni, Z.; Ren, T.; Dong, Z.; Dong, M.; Gu, Y.; Yang, J.; Shi, Q. MALDI-MS of pseudo-alkaloid taxanes from Taxus canadensis. Chem. Nat. Compd. 2014, 50, 1050–1055. [Google Scholar] [CrossRef]
- Yoshinaga, A.; Kamitakahara, H.; Takabe, K. Distribution of coniferin in differentiating normal and compression woods using MALDI mass spectrometric imaging coupled with osmium tetroxide vapor treatment. Tree Physiol. 2016, 36, 643–652. [Google Scholar] [CrossRef] [PubMed]
- Sita, G.L.; Rani, B.S. In vitro propagation of Eucalyptus grandis L, by tissue culture. Plant Cell Rep. 1985, 4, 63–65. [Google Scholar] [CrossRef] [PubMed]
- Cid, L.P.B.; Machado, A.C.; Carvalheira, S.B.; Brasileiro, A.C.M. Plant regeneration from seedling explants of Eucalyptus grandis × E. urophylla. Plant Cell Tissue Organ Cult. 1999, 56, 17–23. [Google Scholar]
- Osterc, G.; Štefančič, M.; Štampar, F. Juvenile stock plant material enhances root development through higher endogenous auxin level. Acta Physiol. Plant. 2009, 31, 899–903. [Google Scholar] [CrossRef]
- Hunt, M.A.; Trueman, S.J.; Rasmussen, A. Indole-3-butyric acid accelerates adventitious root formation and impedes shoot growth of Pinus elliottii var. elliottii × P. caribaea var. hondurensis cuttings. New For. 2011, 41, 349–360. [Google Scholar]
- Bryant, P.H.; Trueman, S.J. Stem anatomy and adventitious root formation in cuttings of Angophora, Corymbia and Eucalyptus. Forests 2015, 6, 1227–1238. [Google Scholar] [CrossRef]
- Goldfarb, B.; Surles, S.E.; Thetford, M.; Blazich, F.A. Effects of root morphology on nursery and first-year field growth of rooted cuttings of loblolly pine. South. J. Appl. For. 1998, 22, 231–234. [Google Scholar]
- Haines, R.J.; Copley, T.R.; Huth, J.R.; Nester, M.R. Shoot selection and the rooting and field performance of tropical pine cuttings. For. Sci. 1992, 38, 95–101. [Google Scholar]
- Foster, G.S.; Stelzer, H.E.; McRae, J.B. Loblolly pine cutting morphological traits: Effects of rooting and field performance. New For. 2000, 19, 291–306. [Google Scholar] [CrossRef]
- Krylov, S.N.; Aguda, B.D.; Ljubimova, M.L. Bistability and reaction thresholds in the phenol-inhibited peroxidase-catalyzed oxidation of indole-3-acetic acid. Biophys. Chem. 1995, 53, 213–218. [Google Scholar] [CrossRef]
- Davis, T.D.; Haissig, B.E.; Sankhla, N. Adventitious Root Formation in Cuttings; Advances in Plant Science Series v. 2; Dioscorides Press: Portland, OR, USA, 1989. [Google Scholar]
- Riov, J. Endogenous and exogenous auxin conjugates in rooting of cuttings. Acta Hortic. 1993, 329, 284–288. [Google Scholar] [CrossRef]
- Quaddoury, A.; Amssa, M. Effect of exogenous indole butyric acid on root formation and peroxidase and indole-3-acetic acid oxidase activities and phenolic contents in date palm offshoots. Bot. Bull. Acad. Sin. 2004, 45, 127–131. [Google Scholar]
- Gonçalves, J.C.; Diogo, G.; Coelho, M.T.; Vidal, N.; Amâncio, S. Quantitation of endogenous levels of IAA, IAAsp and IBA in micro-propagated shoots of hybrid chestnut pretreated with IBA. In Vitro Cell. Dev. Biol. Plant 2008, 44, 412–418. [Google Scholar] [CrossRef]
- Ford, Y.Y.; Bonham, E.C.; Cameron, R.W.F.; Blake, P.S.; Judd, H.L.; Harrison-Murray, R.S. Adventitious rooting: Examining the role of auxin in an easy and a difficult-to-root plant. Plant Growth Regul. 2002, 36, 149–159. [Google Scholar] [CrossRef]
- Epstein, E.; Ludwig-Muller, J. Indole-3-butyric acid in plants: Occurrence, synthesis, metabolism and transport. Physiol. Plant. 1993, 88, 382–389. [Google Scholar] [CrossRef]
- Štefančič, M.; Štampar, F.; Osterc, G. Influence of IAA and IBA on root development and quality of Prunus ‘GiSelA 5’ leafy cuttings. HortScience 2005, 40, 2052–2055. [Google Scholar]
- Greenwood, M.S. Phase change in loblolly pine: Shoot development as a function of age. Physiol. Plant. 1984, 61, 518–522. [Google Scholar] [CrossRef]
- McMahon, T.V.; Hung, C.D.; Trueman, S.J. In vitro storage delays the maturation of African mahogany (Khaya senegalensis) clones. J. Plant Sci. 2013, 8, 31–38. [Google Scholar]
- McMahon, T.V.; Hung, C.D.; Trueman, S.J. Clonal maturation of Corymbia torelliana × C. citriodora is delayed by minimal-growth storage. Aust. For. 2014, 77, 9–14. [Google Scholar]
- Hung, C.D.; Trueman, S.J. Topophysic effects differ between node and organogenic cultures of Corymbia torelliana × C. citriodora. Plant Cell Tissue Organ Cult. 2011, 104, 69–77. [Google Scholar] [CrossRef]
- Tsipouridis, C.; Thomidis, T.; Bladenopoulou, S. Rhizogenesis of GF677, Early Crest, May Crest and Arm King stem cuttings during the year in relation to carbohydrate and natural hormone content. Sci. Hortic. 2006, 108, 200–204. [Google Scholar] [CrossRef]
- Costa, C.T.; De Almeida, M.R.; Ruedell, C.M.; Schwambach, J.; Maraschin, F.S.; Fett-Neto, A.G. When stress and development go hand in hand: Main hormonal controls of adventitious rooting in cuttings. Front. Plant Sci. 2013, 4, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Trueman, S.J.; McMahon, T.V.; Bristow, M. Production of cuttings in response to stock plant temperature in the subtropical eucalypts, Corymbia citriodora and Eucalyptus dunnii. New For. 2013, 44, 265–279. [Google Scholar] [CrossRef]
- Trueman, S.J.; McMahon, T.V.; Bristow, M. Production of Eucalyptus cloeziana cuttings in response to stock plant temperature. J. Trop. For. Sci. 2013, 25, 60–69. [Google Scholar]
- Trueman, S.J.; McMahon, T.V.; Bristow, M. Nutrient partitioning among the roots, hedge and cuttings of Corymbia citriodora stock plants. J. Soil. Sci. Plant Nutr. 2013, 13, 977–989. [Google Scholar] [CrossRef]
- Lohr, D.; Tillman, P.; Zerche, S.; Druege, U.; Meinken, E. Near-infrared spectroscopy: A promising sensor technique for quality assessment of ornamental cuttings. Acta Hortic. 2015, 1099, 71–78. [Google Scholar] [CrossRef]
- Roberts, K.S.; Trueman, S.J. Plant propagation for environmental offset planting: A case study of endangered Pomaderris clivicola and near-threatened Bertya pedicellata. J. Environ. Sci. Technol. 2016, 9, 452–461. [Google Scholar]
- Pohio, K.E.; Wallace, H.M.; Peters, R.F.; Smith, T.E.; Trueman, S.J. Cuttings of Wollemi pine tolerate moderate photoinhibition and remain highly capable of root formation. Trees Struct. Funct. 2005, 19, 587–595. [Google Scholar] [CrossRef]
- White, J.; Lovell, P.H. Anatomical changes which occur in cuttings of Agathis robusta (D. Don) Lindl 2. The initiation of root primordia and early root development. Ann. Bot. 1984, 54, 633–645. [Google Scholar]
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stuepp, C.A.; Wendling, I.; Trueman, S.J.; Koehler, H.S.; Zuffellato-Ribas, K.C. The Use of Auxin Quantification for Understanding Clonal Tree Propagation. Forests 2017, 8, 27. https://doi.org/10.3390/f8010027
Stuepp CA, Wendling I, Trueman SJ, Koehler HS, Zuffellato-Ribas KC. The Use of Auxin Quantification for Understanding Clonal Tree Propagation. Forests. 2017; 8(1):27. https://doi.org/10.3390/f8010027
Chicago/Turabian StyleStuepp, Carlos A., Ivar Wendling, Stephen J. Trueman, Henrique S. Koehler, and Katia C. Zuffellato-Ribas. 2017. "The Use of Auxin Quantification for Understanding Clonal Tree Propagation" Forests 8, no. 1: 27. https://doi.org/10.3390/f8010027
APA StyleStuepp, C. A., Wendling, I., Trueman, S. J., Koehler, H. S., & Zuffellato-Ribas, K. C. (2017). The Use of Auxin Quantification for Understanding Clonal Tree Propagation. Forests, 8(1), 27. https://doi.org/10.3390/f8010027