Visual Assessment of Surface Fuel Loads Does Not Align with Destructively Sampled Surface Fuels
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bradstock, R.A. A biogeographic model of fire regimes in australia: Current and future implications. Glob. Ecol. Biogeogr. 2010, 19, 145–158. [Google Scholar] [CrossRef]
- Sullivan, A.L. Wildland surface fire spread modelling, 1990–2007. 1: Physical and quasi-physical models. Int. J. Wildland Fire 2009, 18, 349–368. [Google Scholar] [CrossRef]
- Sullivan, A.L. Wildland surface fire spread modelling, 1990–2007. 2: Empirical and quasi-empirical models. Int. J. Wildland Fire 2009, 18, 369–386. [Google Scholar] [CrossRef]
- Cruz, M.G.; Gould, J.S.; Alexander, M.E.; Sullivan, A.L.; McCaw, W.L.; Matthews, S. Empirical-based models for predicting head-fire rate of spread in australian fuel types. Aust. For. 2015, 78, 118–158. [Google Scholar] [CrossRef]
- McArthur, A.G. Fire Behaviour in Eucalypt Forests. Leaflet No. 107; Forest Research Institute, Forestry and Timber Bureau: Canberra, Australia, 1967.
- Burrows, N.D. Experimental Development of a Fire Management Model for Jarrah (Eucalyptus marginata donn ex sm.) Forest. Ph.D. Thesis, Australian National University, Canberra, Australia, 1994. [Google Scholar]
- Catchpole, W.R.; Wheeler, C.J. Estimating plant biomass: A review of techniques. Aust. J. Ecol. 1992, 17, 121–131. [Google Scholar] [CrossRef]
- Price, O.F.; Gordon, C.E. The potential for lidar technology to map fire fuel hazard over large areas of australian forest. J. Environ. Manag. 2016, 181, 663–673. [Google Scholar] [CrossRef] [PubMed]
- Van Wagner, C.E. The line intersect method in forest fuel sampling. For. Sci. 1968, 14, 20–26. [Google Scholar]
- Lydersen, J.M.; Collins, B.M.; Knapp, E.E.; Roller, G.B.; Stephens, S. Relating fuel loads to overstorey structure and composition in a fire-excluded sierra nevada mixed conifer forest. Int. J. Wildland Fire 2015, 24, 484–494. [Google Scholar] [CrossRef]
- Sandberg, D.V.; Ottmar, R.D.; Cushon, G.H. Characterizing fuels in the 21st century. Int. J. Wildland Fire 2001, 10, 381–387. [Google Scholar] [CrossRef]
- Wright, C.S.; Ottmar, R.D.; Vihnanek, R.E. Critique of sikkink and keane’s comparison of surface fuel sampling techniques. Int. J. Wildland Fire 2010, 19, 374–376. [Google Scholar] [CrossRef]
- Keane, R.E. Describing wildland surface fuel loading for fire management: A review of approaches, methods and systems. Int. J. Wildland Fire 2013, 22, 51–62. [Google Scholar] [CrossRef]
- Sikkink, P.G.; Keane, R.E. A comparison of five sampling techniques to estimate surface fuel loading in montane forests. Int. J. Wildland Fire 2008, 17, 363–379. [Google Scholar] [CrossRef]
- Watson, P.J.; Penman, S.H.; Bradstock, R.A. A comparison of bushfire fuel hazard assessors and assessment methods in dry sclerophyll forest near sydney, australia. Int. J. Wildland Fire 2012, 21, 755–763. [Google Scholar] [CrossRef]
- Hines, F.; Tolhurst, K.G.; Wilson, A.A.; McCarthy, G.J. Overall Fuel Hazard Assessment Guide; Victorian Government Department of Sustainability and Environment: Melbourne, Australia, 2010.
- Gould, J.S.; McCaw, W.L.; Cheney, N.P.; Ellis, P.F.; Knight, I.K.; Sullivan, A.L. Project Vesta: Fire in Dry Eucalypt Forest: Fuel Structure, Fuel Dynamics and Fire Behaviour; CSIRO Publishing: Clayton, Victoria, Australia, 2007.
- Tolhurst, K.; Shields, B.; Chong, D. Phoenix: Development and application of a bushfire risk management tool. Aust. J. Emerg. Manag. 2008, 23, 47–54. [Google Scholar]
- Cheney, N.P.; Gould, J.S.; McCaw, W.L.; Anderson, W.R. Predicting fire behaviour in dry eucalypt forest in southern australia. For. Ecol. Manag. 2012, 280, 120–131. [Google Scholar] [CrossRef]
- Volkova, L.; Sullivan, A.L.; Roxburgh, S.H.; Weston, C.J. Visual assessments of fuel loads are poorly related to destructively sampled fuel loads in eucalypt forests. Int. J. Wildland Fire 2016, 25, 1193. [Google Scholar] [CrossRef]
- Thomas, P.B.; Watson, P.J.; Bradstock, R.A.; Penman, T.D.; Price, O.F. Modelling surface fine fuel dynamics across climate gradients in eucalypt forests of south-eastern australia. Ecography 2014, 37, 827–837. [Google Scholar] [CrossRef]
- Cheal, D.C. Growth Stages and Tolerable Fire Intervals For Victoria’s Native Vegetation Data Sets. Fire and Adaptive Management; Victorian Government Department of Sustainability and Environment: Melbourne, Australia, 2010. [Google Scholar]
- Swan, M.; Christie, F.; Sitters, H.; York, A.; Di Stefano, J. Predicting faunal fire responses in heterogeneous landscapes: The role of habitat structure. Ecol. Appl. 2015, 25, 2293–2305. [Google Scholar] [CrossRef] [PubMed]
- Sitters, H.; Christie, F.J.; Di Stefano, J.; Swan, M.; Penman, T.; Collins, P.C.; York, A. Avian responses to the diversity and configuration of fire age classes and vegetation types across a rainfall gradient. For. Ecol. Manag. 2014, 318, 13–20. [Google Scholar] [CrossRef]
- Overall Fuel Hazard Assessment Guide. Available online: https://www.ffm.vic.gov.au/__data/assets/pdf_file/0005/21110/Report-82-overall-fuel-assess-guide-4th-ed.pdf (accessed on 1 August 2017).
- McColl-Gausden, S.C.; Penman, T.D. Field Data Associated with “Visual Assessment of Surface Fuel Loads Does Not Align with Destructively Sampled Aurface Fuels”. Available online: https://figshare.com/articles/McColl-Gausden_fielddata_xlsx/5413057 (accessed on 27 October 2017).
- Walshe, T.; Wintle, B.; Fidler, F.; Burgman, M. Use of confidence intervals to demonstrate performance against forest management standards. For. Ecol. Manag. 2007, 247, 237–245. [Google Scholar] [CrossRef]
- Sokal, R.R.; Rohlf, F.J. Biometry, 3rd ed.; W.H. Freeman and Company: New York, NY, USA, 1995. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Noble, I.R.; Bary, G.A.V.; Gill, A.M. Mcarthur’s fire-danger meters expressed as equations. Aust. J. Ecol. 1980, 5, 201–203. [Google Scholar] [CrossRef]
- Tolhurst, K.G.; Chong, D.M.O. Assessing potential house losses using phoenix rapidfire. In Bushfire CRC & AFAC 2011 Conference Science Day; Thornton, R.P., Ed.; Bushfire CRC: Sydney, Australia, 2011; pp. 74–86. [Google Scholar]
- Gill, A.M.; Christian, K.R.; Moore, P.H.R.; Forrester, R.I. Bushfire incidence, fire hazard and fuel reduction burning. Aust. J. Ecol. 1987, 12, 299–306. [Google Scholar] [CrossRef]
- Jenkins, M.; Collins, L.; Price, O.; Penman, T.; Zylstra, P.; Horsey, B.; Bradstock, R. Environmental values and fire hazard of eucalypt plantings. Ecosphere 2016, 7, e01528. [Google Scholar] [CrossRef]
- Collins, L.; Penman, T.D.; Price, O.F.; Bradstock, R.A. Adding fuel to the fire? Revegetation influences wildfire size and intensity. J. Environ. Manag. 2015, 150, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Penman, T.D.; Bradstock, R.A.; Price, O.F. Reducing wildfire risk to urban developments: Simulation of cost-effective fuel treatment solutions in south eastern australia. Environ. Model. Softw. 2014, 52, 166–175. [Google Scholar] [CrossRef]
- DEWLP. Strategic Bushfire Risk Management Plan—Barwon Otway; Department-of-Environment-Land-Water-and-Planning, Ed.; Victorian Government Department of Environment and Primary Industries Melbourne: Melbourne, Australia, 2015; p. 42.
- Etienne, R.S.; Vos, C.C.; Jansen, M.J.W. Ecological impact assessment in data-poor systems: A case study on metapopulation persistence. Environ. Manag. 2003, 32, 760–777. [Google Scholar]
- Keith, D.W. When is it appropriate to combine expert judgments? Clim. Chang. 1996, 33, 139–143. [Google Scholar] [CrossRef]
- Runge, M.C.; Converse, S.J.; Lyons, J.E. Which uncertainty? Using expert elicitation and expected value of information to design an adaptive program. Biol. Conserv. 2011, 144, 1214–1223. [Google Scholar] [CrossRef]
- Krueger, T.; Page, T.; Hubacek, K.; Smith, L.; Hiscock, K. The role of expert opinion in environmental modelling. Environ. Model. Softw. 2012, 36, 4–18. [Google Scholar] [CrossRef]
- Burgman, M.A.; McBride, M.; Ashton, R.; Speirs-Bridge, A.; Flander, L.; Wintle, B.; Fidler, F.; Rumpff, L.; Twardy, C. Expert status and performance. PLoS ONE 2011, 6. [Google Scholar] [CrossRef] [PubMed]
- Wintle, B.C.; Fidler, F.; Vesk, P.A.; Moore, J.L. Improving visual estimation through active feedback. Methods Ecol. Evol. 2013, 4, 53–62. [Google Scholar] [CrossRef]
Forest Type | Number of Sites | Post-Fire Age Range | Mean Surface Fuel Load (t/ha) | Median Surface Fuel Hazard Rating |
---|---|---|---|---|
heathland | 25 | 2–34 | 4.45 (0.30–11.10) | Low (Low–High) |
tall mixed | 26 | 2–34 | 8.24 (2.86–16.58) | Moderate (Low–Very High) |
foothills | 26 | 1–78 | 9.73 (2.74–23.33) | High (Low–Extreme) |
forby | 20 | 5–78 | 6.78 (1.25–17.99) | Moderate (Low–Extreme) |
wet | 19 | 5–58 | 10.42 (5.16–17.52) | High (Moderate–Very High) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
McColl-Gausden, S.C.; Penman, T.D. Visual Assessment of Surface Fuel Loads Does Not Align with Destructively Sampled Surface Fuels. Forests 2017, 8, 408. https://doi.org/10.3390/f8110408
McColl-Gausden SC, Penman TD. Visual Assessment of Surface Fuel Loads Does Not Align with Destructively Sampled Surface Fuels. Forests. 2017; 8(11):408. https://doi.org/10.3390/f8110408
Chicago/Turabian StyleMcColl-Gausden, Sarah C., and Trent D. Penman. 2017. "Visual Assessment of Surface Fuel Loads Does Not Align with Destructively Sampled Surface Fuels" Forests 8, no. 11: 408. https://doi.org/10.3390/f8110408
APA StyleMcColl-Gausden, S. C., & Penman, T. D. (2017). Visual Assessment of Surface Fuel Loads Does Not Align with Destructively Sampled Surface Fuels. Forests, 8(11), 408. https://doi.org/10.3390/f8110408