Impacts of Global Change on Mediterranean Forests and Their Services
Abstract
:1. Introduction
2. The Changes in the Previous Millenia and Centuries
2.1. The Holocene
2.2. The Last Millennium
2.3. Current Climate Change
3. Capacity of Mediterranean Organisms and Forests to Respond and Adapt to Climate and Global Change
3.1. Responses at the Molecular Level and in the Use of Chemical Elements
3.2. Changes in Morphology, Physiology, Phenology and Growth in Plants
3.3. Changes in Morphology, Physiology, Phenology and Growth in Animals
3.4. Changes in Populations and Communities
3.4.1. Impacts of Altered Emissions of Fragrances by Leaves and Flowers on Communities
3.4.2. The Effects of Pollutants on the Interaction with Climate Change: The Example of Persistent Organic Pollutants
3.5. Biogeochemical and Ecosystem Responses
Forests Versus Shrublands and Grasslands
3.6. Impact of Climate Change on Mediterranean Forests Projected for the Coming Decades
3.6.1. Shifts in Forest Cover and Carbon Uptake
3.6.2. Biological Feedbacks on Climate Change
4. The Effects on Ecosystem Services
4.1. C Storage
4.2. Forest Services
4.3. Biodiversity
5. The Role of Management and Economy
- -
- Management of disturbed forests, reforestation and “afforestation” of abandoned farmland must incorporate the changes of environmental conditions when defining the intensity and frequency of intervention. The decreasing availability of water due to lower rainfall and higher potential evapotranspiration are priorities. For example, the reduction in the densities of stems in dense forests has been an effective measure to reduce the impact of extreme drought.
- -
- The management of forested areas, and natural areas in general, must incorporate the landscape and large-scale planning that considers the combination of mosaics of diverse types, their multiple uses and the effect of disturbances, such as forest fires.
- -
- Research policies and inventories of resources should try to quantify the C in soils and above- and belowground biomass, because these data are scarce but necessary.
- -
- Reforestation, afforestation post-fire periods should be managed to mitigate climate change by increasing uptake and decreasing the loss of CO2 by prolonging the immobilization of C in forest products and protecting soils, taking into account the alterations in the water and nutrient cycles that these measures would cause (e.g., Marañón-Jiménez and Castro, 2013 [262]).
- -
- -
- Multi-use strategies for the management and rehabilitation of forests require a large effort in education, research, use and improvement of technical methodologies and economic governance that will allow us to continue to enjoy their services and to gain insight into the potential future changes. These strategies are needed to protect environmental services provided by forests. Society should evolve to accept an economic cost to the successful achievement of these new polices.
Socio-Economic Perspectives
6. Concluding Remarks
- A substantial amount of observational and experimental evidence suggests that climate change together with changes in land-use, pollution, rising atmospheric CO2 concentration and species invasions, has already affected organisms, populations, communities and terrestrial ecosystems in the Mediterranean region.
- These impacts of global change on Mediterranean organisms and forests are affecting several basic ecosystem services for humans such as provisioning services (supply of renewable natural resources such as pastures, food, medicines or consumer products such as timber, hunting or mushrooms), environmental services (maintenance of biodiversity, regulation of atmospheric composition and climate, conservation of soils and water or C storage) and social services (recreational, educational and leisure uses, traditional cultural values or tourism and hiking).
- This evidence is based on observations at different scales, from genetic and epigenetic changes to the changes of the entire Mediterranean region (observable in satellite images), through the metabolism of organisms, the demographics of plant and animal populations, the composition of communities and the structure and functioning of forests.
- Drought is the main concern in Mediterranean areas. It negatively affects most services, from food production (by decreasing water sources for irrigation) to C-storing capacity.
- These drought-driven alterations can become stronger if climate change, its associated disturbances (e.g., by floods, droughts, heat waves and forest fires) and changes in other components of global change (especially the changes of land use, pollution and overexploitation of resources) continue at current rates or are enhanced.
- Environmental and forest management policies should take into account all these characteristics of Mediterranean forests and the social, environmental and climatic conditions that are projected for the coming years and decades.
- Several strategies of appropriate afforestation and more efficient water use may conserve the service capacities of Mediterranean forests in equilibrium with human development. Afforestation (forest colonization) and reforestation with autochtonous tree species, first with appropriate shrubs that can act as nursery species for pines, but also with shrub species, have been successful management strategies, because the first objective is to stop soil degradation rather than to re-establish native vegetation.
- The management of forested areas, and of natural areas in general, should incorporate a hierarchy of landscape guidelines, including a large-scale plan that considers the combination of areas of different types, multiple users and the effects of perturbations, such as forest fires.
- The control of pollution in and around large Metropolitan areas such as Los Angeles or Barcelona, where the effects of the deposition of N and other pollutants have a positive synergistic effect with drought. The strong fragmentation and resulting isolation deteriorating many ecosystem services such as the biodiversity, and the formation of toxic substances such as O3 also merit special attention.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). 2013: Summary for Policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 1–30. [Google Scholar]
- Peñuelas, J.; Filella, I.; Sabate, S.; Gracia, C. Natural systems: Terrestrial ecosystems. In Report on Climate Change in Catalonia; Llebot, J.E., Ed.; Institut d’Estudis Catalans: Barcelona, Spain, 2005; pp. 517–553. ISBN 978-84-9965-317-4. [Google Scholar]
- Piñol, J.; Terradas, J.; Lloret, F. Climate warming, wildfire hazard, and wilfire occurence in coastal eastern Spain. Int. J. Wildland Fire 1998, 11, 95–106. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Impacts, Adaptation and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2014; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; ISBN 978-1-107-05807-1. [Google Scholar]
- Peñuelas, J.; Sardans, J.; Estiarte, M.; Ogaya, R.; Carnicer, J.; Coll, M.; Barbeta, A.; Rivas-Ubach, A.; Llusià, J.; Garbulsky, M.; et al. Evidence of current impact of climate change on life: A walk from genes to the biosphere. Glob. Chang. Biol. 2013, 19, 2303–2338. [Google Scholar] [CrossRef] [PubMed]
- Millennium Ecosystem Assessment. Summary for decision makers. In Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005; pp. 1–24. [Google Scholar]
- Peñuelas, J.; Sardans, J.; Filella, I.; Estiarte, M.; Llusià, J.; Ogaya, R.; Carnicer, J.; Bartrons, M.; Rivas-Ubach, A.; Grau, O.; et al. Impactes del canvi climàtic sobre els ecosistemes terrestres catalans. In Tercer Informe sobre el canvi climàtic de Catalunya; Generalitat de Catalunya: Barcelona, Spain, 2016; pp. 211–235. ISBN 9788439394488. [Google Scholar]
- Vegas-Vilarrúbia, T.; González-Sampériz, P.; Morellón, M.; Gil-Romera, G.; Pérez-Sanz, A.; Valero-Garcés, B. Diatom and vegetation responses to late glacial and early holocene climate changes at lake estanya (southern pyrenees, NE spain). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 392, 335–349. [Google Scholar] [CrossRef]
- Pallàs, R.; Rodés, Á.; Braucher, R.; Carcaillet, J.; Ortuño, M.; Bordonau, J.; Bourlès, D.; Vilaplana, J.M.; Masana, E.; Santanach, P. Late Pleistocene and Holocene glaciation in the Pyrenees: A critical review and new evidence from 10Be exposure ages, south-central Pyrenees. Quat. Sci. Rev. 2006, 25, 2937–2963. [Google Scholar] [CrossRef]
- Pla, S.; Catalan, J. Chrysophyte cysts from lake sediments reveal the submillennial winter/spring climate variability in the northwestern Mediterranean region throughout the Holocene. Clim. Dyn. 2005, 24, 263–278. [Google Scholar] [CrossRef]
- Pérez-Sanz, A.; González-Sampériz, P.; Moreno, A.; Valero-Garcés, B.; Gil-Romera, G.; Rieradevall, M.; Tarrats, P.; Lasheras-Álvarez, L.; Morellón, M.; Belmonte, A.; et al. Holocene climate variability, vegetation dynamics and fire regime in the central Pyrenees: The Basa de la Mora sequence (NE Spain). Quat. Sci. Rev. 2013, 73, 149–169. [Google Scholar] [CrossRef] [Green Version]
- Revelles, J.; Cho, S.; Iriarte, E.; Burjachs, F.; van Geel, B.; Palomo, A.; Piqué, R.; Peña-Chocarro, L.; Terradas, X. Mid-Holocene vegetation history and Neolithic land-use in the Lake Banyoles area (Girona, Spain). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015, 435, 70–85. [Google Scholar] [CrossRef]
- Carrión, J.S.; Fernández, S.; González-Sampériz, P.; Gil-Romera, G.; Badal, E.; Carrión-Marco, Y.; López-Merino, L.; López-Sáez, J.A.; Fierro, E.; Burjachs, F. Expected trends and surprises in the Lateglacial and Holocene vegetation history of the Iberian Peninsula and Balearic Islands. Rev. Palaeobot. Palynol. 2010, 162, 458–475. [Google Scholar] [CrossRef] [Green Version]
- Rull, V.; González-Sampériz, P.; Corella, J.P.; Morellón, M.; Giralt, S. Vegetation changes in the southern Pyrenean flank during the last millennium in relation to climate and human activities: The Montcortès lacustrine record. J. Paleolimnol. 2011, 46, 387–404. [Google Scholar] [CrossRef] [Green Version]
- Morellón, M.; Valero-Garcés, B.; González-Sampériz, P.; Vegas-Vilarrúbia, T.; Rubio, E.; Rieradevall, M.; Delgado-Huertas, A.; Mata, P.; Romero, Ó.; Engstrom, D.R.; et al. Climate changes and human activities recorded in the sediments of Lake Estanya (NE Spain) during the Medieval Warm Period and Little Ice Age. J. Paleolimnol. 2011, 46, 423–452. [Google Scholar] [CrossRef]
- López-Sáez, J.A.; López-Merino, L.; Mateo, M.Á.; Serrano, Ó.; Pérez-Díaz, S.; Serrano, L. Palaeoecological potential of the marine organic deposits of Posidonia oceanica: A case study in the NE Iberian Peninsula. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 271, 215–224. [Google Scholar] [CrossRef]
- Catalan, J.; Pla-Rabés, S.; Wolfe, A.P.; Smol, J.P.; Rühland, K.M.; Anderson, N.J.; Kopáček, J.; Stuchlík, E.; Schmidt, R.; Koinig, K.A.; et al. Global change revealed by palaeolimnological records from remote lakes: A review. J. Paleolimnol. 2013, 49, 513–535. [Google Scholar] [CrossRef]
- Cunill, R.; Soriano, J.M.; Bal, M.C.; Pèlachs, A.; Pérez-Obiol, R. Holocene treeline changes on the south slope of the Pyrenees: A pedoanthracological analysis. Veg. Hist. Archaeobotany 2012, 21, 373–384. [Google Scholar] [CrossRef]
- Gonzalez-Samperiz, P.; Aranbarri, J.; Perez-Sanz, A.; Gil-Romera, G.; Moreno, A.; Leunda, M.; Sevilla-Callejo, M.; Corella, J.P.; Morellon, M.; Oliva, B.; et al. Environmental and climate change in the southern Central Pyrenees since the Last Glacial Maximum: A view from the lake records. Catena 2017, 149, 668–688. [Google Scholar] [CrossRef]
- Peñuelas, J.; Filella, I.; Comas, P. Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean Region. Glob. Chang. Biol. 2002, 8, 531–544. [Google Scholar] [CrossRef]
- Peñuelas, J.; Boada, M. A global-change induced biome shift in the Montseny mountains (NE Spain). Glob. Chang. Biol. 2003, 9, 131–140. [Google Scholar] [CrossRef]
- Esteban-Parra, M.J.; Rodrigo, F.S.; Castro-Diez, Y. Spatial and temporal patterns of precipitation in Spain for the period 1880–1992. Int. J. Climatol. 1998, 18, 1557–1574. [Google Scholar] [CrossRef]
- McDonald, G.M.; Moser, K.A.; Bloom, A.M.; Potito, A.P.; Porinchu, D.F.; Holmquist, J.R.; Hughes, J.; Kremenetski, K.V. Prolonged California aridity linked to climate warming and Pacific sea surface temperature. Sci. Rep. 2016, 6, 33325. [Google Scholar] [CrossRef] [PubMed]
- Lehner, F.; Coats, S.; Stocker, T.F.; Pendergrass, A.G.; Sanderson, B.M.; Raible, C.C.; Smerdon, J.E. Projected drought risk in 1.5 degrees C and 2 degrees C warmer climates. Geophys. Res. Lett. 2017, 44, 7419–7428. [Google Scholar] [CrossRef]
- Peñuelas, J.; Ogaya, R.; Boada, M.; Jump, A.S. Migration, invasion and decline: Changes in recruitment and forest structure in a warming-linked shift of European beech forest in Catalonia (NE Spain). Ecography 2007, 30, 829837. [Google Scholar] [CrossRef]
- Batllori, E.; Gutiérrez, E. Regional tree line dynamics in response to global change in the Pyrenees. J. Ecol. 2008, 96, 1275–1288. [Google Scholar] [CrossRef]
- Jump, A.S.; Hunt, J.M.; Martínez-Izquierdo, J.A.; Penuelas, J. Natural selection and climate change: Temperature-linked spatial and temporal trends in gene frequency in Fagus sylvatica. Mol. Ecol. 2006, 15, 3469–3480. [Google Scholar] [CrossRef] [PubMed]
- Jump, A.S.; Hunt, J.M.; Penuelas, J. Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Glob. Chang. Biol. 2006, 12, 2163–2174. [Google Scholar] [CrossRef]
- Jump, A.S.; Penuelas, J. Genetic effects of chronic habitat fragmentation in a wind-pollinated tree. Proc. Natl. Acad. Sci. USA 2006, 103, 8096–8100. [Google Scholar] [CrossRef] [PubMed]
- Jump, A.S.; Penuelas, J.; Rico, L.; Ramallo, E.; Estiarte, M.; Martínez-Izquierdo, J.A.; Lloret, F. Simulated climate change provokes rapid genetic change in the Mediterranean shrub Fumana thymifolia. Glob. Chang. Biol. 2008, 14, 637–643. [Google Scholar] [CrossRef]
- Rico, L.; Ogaya, R.; Barbeta, A.; Peñuelas, J. Changes in DNA methylation fingerprint of Quercus ilex trees in response to experimental field drought simulating projected climate change. Plant Biol. 2014, 16, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Rivas-Ubach, A.; Sardans, J.; Perez-Trujillo, M.; Estiarte, M.; Penñuelas, J. Strong relationship between elemental stoichiometry and metabolome in plants. Proc. Natl. Acad. Sci. USA 2012, 109, 4181–4186. [Google Scholar] [CrossRef] [PubMed]
- Rivas-Ubach, A.; Gargallo-Garriga, A.; Sardans, J.; Oravec, M.; Mateu-Castell, L.; Pérez-Trujillo, M.; Parella, T.; Ogaya, R.; Urban, O.; Peñuelas, J. Drought enhances folivory by shifting foliar metabolomes in Quercus ilex trees. New Phytol. 2014, 202, 874–885. [Google Scholar] [CrossRef] [PubMed]
- Rivas-Ubach, A.; Barbeta, A.; Sardans, J.; Guenther, A.; Ogaya, R.; Oravec, M.; Urban, O.; Peñuelas, J. Topsoil depth substantially influences the responses to drought of the foliar metabolomes of Mediterranean forests. Perspect. Plant Ecol. Evol. Syst. 2016, 21, 41–54. [Google Scholar] [CrossRef]
- Sardans, J.; Rivas-Ubach, A.; Estiarte, M.; Ogaya, R.; Peñuelas, J. Field-simulated droughts affect elemental leaf stoichiometry in Mediterranean forests and shrublands. Acta Oecol. 2013, 50, 20–31. [Google Scholar] [CrossRef]
- Gargallo-Garriga, A.; Sardans, J.; Perez-Trujillo, M.; Rivas-Ubach, A.; Oravec, M.; Vecerova, K.; Urban, O.; Jentsch, A.; Kreyling, J.; Beierkuhnlein, C.; et al. Opposite metabolic responses of shoots and roots to drought. Sci. Rep. 2014, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Gargallo-Garriga, A.; Sardans, J.; Oravec, M.; Urban, O.; Jentsch, A.; Kreyling, J.; Beierkuhnlein, C.; Parella, T.; Penuelas, J. Warming differentially influences the effects of drought on stoichiometry and metabolomics in shoots and roots. New Phytol. 2015, 207, 591–603. [Google Scholar] [CrossRef] [PubMed]
- Sardans, J.; Rivas-Ubach, A.; Peñuelas, J. The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: A review and perspectives. Biogeochemistry 2012, 111, 1–39. [Google Scholar] [CrossRef]
- Sterner, R.; Elser, J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere; Princeton University Press: Princeton, NJ, USA, 2002; ISBN 9781400885695. [Google Scholar]
- Sardans, J.; Rivas-Ubach, A.; Peñuelas, J. Factors affecting nutrient concentration and stoichiometry of forest trees in Catalonia (NE Spain). For. Ecol. Manag. 2011, 262, 2024–2034. [Google Scholar] [CrossRef]
- Sardans, J.; Peñuelas, J. Plant-soil interactions in Mediterranean forest and shrublands: Impacts of climatic change. Plant Soil 2013, 365, 1–33. [Google Scholar] [CrossRef]
- Sardans, J.; Peñuelas, J. Drought changes the dynamics of trace element accumulation in a Mediterranean Quercus ilex forest. Environ. Pollut. 2007, 147, 567–583. [Google Scholar] [CrossRef] [PubMed]
- Sardans, J.; Peñuelas, J.; Ogaya, R. Drought’s impact on Ca, Fe, Mg, Mo and S concentration and accumulation patterns in the plants and soil of a Mediterranean evergreen Quercus ilex forest. Biogeochemistry 2008, 87, 49–69. [Google Scholar] [CrossRef]
- Sardans, J.; Peñuelas, J. Tree growth changes with climate and forest type are associated with relative allocation of nutrients, especially phosphorus, to leaves and wood. Glob. Ecol. Biogeogr. 2013, 22, 494–507. [Google Scholar] [CrossRef]
- Sardans, J.; Peñuelas, J.; Prieto, P.; Estiarte, M. Drought and warming induced changes in P and K concentration and accumulation in plant biomass and soil in a Mediterranean shrubland. Plant Soil 2008, 306, 261–271. [Google Scholar] [CrossRef]
- Sardans, J.; Peñuelas, J.; Estiarte, M.; Prieto, P. Warming and drought alter C and N concentration, allocation and accumulation in a Mediterranean shrubland. Glob. Chang. Biol. 2008, 14, 2304–2316. [Google Scholar] [CrossRef]
- Sardans, J.; Peñuelas, J.; Prieto, P.; Estiarte, M. Changes in Ca, Fe, Mg, Mo, Na, and S content in a Mediterranean shrubland under warming and drought. J. Geophys. Res. Biogeosci. 2008, 113, 1–11. [Google Scholar] [CrossRef]
- Sardans, J.; Peñuelas, J. Soil Enzyme Activity in a Mediterranean Forest after Six Years of Drought. Soil Sci. Soc. Am. J. 2010, 74, 838. [Google Scholar] [CrossRef]
- Di Castri, F.; Mooney, H.A. (Eds.) Mediterranean Type Ecosystems: Origin and Structure; Springer: New York, NY, USA, 1973; p. 405. [Google Scholar]
- Achotegui-Castells, A.; Sardans, J.; Ribas, À.; Penuelas, J. Identifying the origin of atmospheric inputs of trace elements in the Prades Mountains (Catalonia) with bryophytes, lichens, and soil monitoring. Environ. Monit. Assess. 2013, 185, 615–629. [Google Scholar] [CrossRef] [PubMed]
- Díaz-de-Quijano, M.; Penuelas, J.; Ribas, À. Increasing interannual and altitudinal ozone mixing ratios in the Catalan Pyrenees. Atmos. Environ. 2009, 43, 6049–6057. [Google Scholar] [CrossRef]
- Kefauver, S.C.; Filella, I.; Penuelas, J. Remote sensing of atmospheric biogenic volatile organic compounds (BVOCs) via satellite-based formaldehyde vertical column assessments. Int. J. Remote Sens. 2014, 35, 7519–7542. [Google Scholar] [CrossRef]
- Ochoa-Hueso, R.; Munzi, S.; Alonso, R.; Arróniz-Crespo, M.; Avila, A.; Bermejo, V.; Bobbink, R.; Branquinho, C.; Concostrina-Zubiri, L.; Cruz, C.; et al. Ecological impacts of atmospheric pollution and interactions with climate change in terrestrial ecosystems of the Mediterranean Basin: Current research and fture directions. Environ. Pollut. 2017, 227, 194–206. [Google Scholar] [CrossRef] [PubMed]
- Barbeta, A.; Ogaya, R.; Penuelas, J. Dampening effects of long-term experimental drought on growth and mortality rates of a Holm oak forest. Glob. Chang. Biol. 2013, 19, 3133–3144. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Ogaya, R.; Barbeta, A.; Yang, X.; Penuelas, J. Contrasting impacts of continuous moderate drought and episodic severe droughts on the aboveground-biomass increment and litterfall of three coexisting Mediterranean woody species. Glob. Chang. Biol. 2015, 21, 4196–4209. [Google Scholar] [CrossRef] [PubMed]
- Ogaya, R.; Penuelas, J. Phenological patterns of Quercus ilex; Phillyrea latifolia; and Arbutus unedo growing under a field experimental drought. Ecoscience 2004, 11, 263–270. [Google Scholar] [CrossRef]
- Ogaya, R.; Barbeta, A.; Başnou, C.; Peñuelas, J. Satellite data as indicators of tree biomass growth and forest dieback in a Mediterranean holm oak forest. Ann. For. Sci. 2015, 72, 135–144. [Google Scholar] [CrossRef]
- Barbeta, A.; Mejía-Chang, M.; Ogaya, R.; Voltas, J.; Dawson, T.E.; Penuelas, J. The combined effects of a long-term experimental drought and an extreme drought on the use of plant-water sources in a Mediterranean forest. Glob. Chang. Biol. 2015, 21, 1213–1225. [Google Scholar] [CrossRef] [PubMed]
- Olano, J.M.; Linares, J.C.; García-Cervigón, A.I.; Arzac, A.; Delgado, A.; Rozas, V. Drought-induced increase in water-use efficiency reduces secondary tree growth and tracheid wall thickness in a Mediterranean conifer. Oecologia 2014, 176, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Sperlich, D.; Chang, C.T.; Peñuelas, J.; Gracia, C.; Sabaté, S. Foliar photochemical processes and carbon metabolism under favourable and adverse winter conditions in a Mediterranean mixed forest, Catalonia (Spain). Biogeosci. Discuss 2014, 11, 9697–9759. [Google Scholar] [CrossRef]
- Sperlich, D.; Chang, C.T.; Peñuelas, J.; Gracia, C.; Sabate, S. Seasonal variability of foliar photosynthetic and morphological traits and drought impacts in a Mediterranean mixed forest. Tree Physiol. 2015, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Sperlich, D.; Barbeta, A.; Ogaya, R.; Sabaté, S.; Peñuelas, J. Balance between carbon gain and loss under long-term drought: Impacts on foliar respiration and photosynthesis in Quercus ilex L. J. Exp. Bot. 2016, 67, 821–833. [Google Scholar] [CrossRef] [PubMed]
- Peñuelas, J.; Filella, I.; Zhang, X.; Llorens, L.; Ogaya, R.; Lloret, F.; Comas, P.; Estiarte, M.; Terradas, J. Complex spatiotemporal phenological shifts as a response to rainfall changes. New Phytol. 2004, 161, 837–846. [Google Scholar] [CrossRef]
- Peñuelas, J.; Filella, I. Responses to a warming world. Science 2001, 294, 793–795. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Tan, J.; Chen, A.; Fu, Y.H.; Ciais, P.; Liu, Q.; Janssens, I.A.; Vicca, S.; Zeng, Z.; Jeong, S.-J.; et al. Leaf onset in the northern hemisphere triggered by daytime temperature. Nat. Commun. 2015, 6, 6911. [Google Scholar] [CrossRef] [PubMed]
- Estiarte, M.; Penuelas, J. Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: Effects on nutrient proficiency. Glob. Chang. Biol. 2015, 21, 1005–1017. [Google Scholar] [CrossRef] [PubMed]
- Llusià, J.; Penuelas, J.; Alessio, G.; Estiarte, M. Seasonal contrasting changes of foliar concentrations of terpenes and other volatile organic compound in four dominant species of a Mediterranean shrubland submitted to a field experimental drought and warming. Physiol. Plant. 2006, 127, 632–649. [Google Scholar] [CrossRef]
- Peñuelas, J.; Staudt, M. BVOCs and global change. Trends Plant Sci. 2010, 15, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Peñuelas, J.; Llusià, J. BVOCs: Plant defense against climate warming? Trends Plant Sci. 2003, 8, 105–109. [Google Scholar] [CrossRef]
- Achotegui-Castells, A.; Della Rocca, G.; Llusià, J.; Danti, R.; Barberini, S.; Bouneb, M.; Simoni, S.; Michelozzi, M.; Penuelas, J. Terpene arms race in the Seiridium cardinal—Cupressus sempervirens pathosystem. Sci. Rep. 2016, 6, 18954. [Google Scholar] [CrossRef] [PubMed]
- Llusià, J.; Penuelas, J. Emission of volatile organic compounds by apple trees under spider mite attack and attraction of predatory mites. Exp. Appl. Acarol. 2001, 25, 65–77. [Google Scholar] [CrossRef] [PubMed]
- Farré-Armengol, G.; Filella, I.; Llusia, J.; Penuelas, J. Relationships among floral VOC emissions, floral rewards and visits of pollinators in five plant species of a Mediterranean shrubland. Plant Ecol. Evol. 2015, 148, 90–99. [Google Scholar] [CrossRef]
- Farré-Armengol, G.; Filella, I.; Llusià, J.; Penuelas, J. Pollination mode determines floral scent. Biochem. Syst. Ecol. 2015, 61, 44–53. [Google Scholar] [CrossRef]
- Farré-Armengol, G.; Filella, I.; Llusià, J.; Niinemets, Ü.; Penuelas, J. Changes in floral bouquets from compound-specific responses to increasing temperatures. Glob. Chang. Biol. 2014, 3660–3669. [Google Scholar] [CrossRef] [PubMed]
- Farré-Armengol, G.; Filella, I.; Llusia, J.; Penuelas, J. Floral volatile organic compounds: Between attraction and deterrence of visitors under global change. Perspect. Plant Ecol. Evol. Syst. 2013, 15, 56–67. [Google Scholar] [CrossRef]
- Llusià, J.; Penuelas, J. Seasonal patterns of terpene content and emission from seven Mediterranean woody species in field conditions. Am. J. Bot. 2000, 87, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Llusià, J.; Penuelas, J.; Alessio, G.; Estiarte, M. Contrasting species-specific, compound-specific, seasonal, and interannual responses of foliar isoprenoid emissions to experimental droght in a Mediterranean shrubland. Int. J. Plant Sci. 2008, 169, 637–645. [Google Scholar] [CrossRef] [Green Version]
- Alessio, G.A.; Penuelas, J.; De Lillis, M.; Llusià, J. Implications of foliar terpene content and hydration on leaf flammability of Quercus ilex and Pinus halepensis. Plant Biol. 2008, 10, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Alessio, G.A.; Penuelas, J.; Llusià, J.; Ogaya, R.; Estiarte, M.; De Lillis, M. Influence of water and terpenes on flammability in some dominant Mediterranean species. Int. J. Wildland Fire 2008, 17, 274–286. [Google Scholar] [CrossRef]
- Filella, I.; Penuelas, J. Daily, weekly and seasonal relationships among VOCs, NOx and O3 in a semi-urban area near Barcelona. J. Atmos. Chem. 2006, 54, 189–201. [Google Scholar] [CrossRef]
- Filella, I.; Penuelas, J. Daily, weekly, and seasonal time courses of VOC concentrations in a semi-urban area near Barcelona. Atmos. Environ. 2006, 40, 7752–7769. [Google Scholar] [CrossRef]
- Llusia, J.; Bermejo-Bermejo, V.; Calvete-Sogo, H.; Penuelas, J. Decreased rates of terpene emissions in Ornithopus compressus L. and Trifolium striatum L. by ozone exposure and nitrogen fertilization. Environ. Pollut. 2014, 194, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 2012, 15, 365–377. [Google Scholar] [CrossRef] [PubMed]
- West-Eberhard, M.J. Phenotypic Plasticity and the Origins of Diversity. Annu. Rev. Ecol. Syst. 1989, 20, 249–278. [Google Scholar] [CrossRef]
- Nylin, S.; Gotthard, K. Plasticity in Life-History Traits. Annu. Rev. Entomol. 1998, 43, 63–83. [Google Scholar] [CrossRef] [PubMed]
- Via, S.; Gomulkievicz, R.; De Jong, G.; Scheiner, S.; Schlichting, C.; Van-Tienderen, P. Adaptive phenotypic plasticity: Consensus and controversy. Trends Ecol. Evol. 1995, 10, 212–217. [Google Scholar] [CrossRef]
- Charmantier, A.; McCleery, R.H.; Cole, L.R.; Kruuk, L.E.B.; Sheldon, B.C.; Perrins, C. Adaptive Phenotypic Plasticity in Response to Climate Change in a Wild Bird Population. Science 2008, 320, 800–803. [Google Scholar] [CrossRef] [PubMed]
- Parmesan, C. Ecological and Evolutionary Responses to Recent Climate Change. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 637–669. [Google Scholar] [CrossRef]
- Gordo, O.; Brotons, L.; Ferrer, X.; Comas, P. Do changes in climate patterns in wintering areas affect the timing of the spring arrival of trans-Saharan migrant birds? Glob. Chang. Biol. 2005, 11, 12–21. [Google Scholar] [CrossRef]
- Stefanescu, C.; Peñuelas, J.; Filella, I. Effects of climatic change on the phenology of butterflies in the northwest Mediterranean Basin. Glob. Chang. Biol. 2003, 9, 1494–1506. [Google Scholar] [CrossRef]
- Donoso, I.; Stefanescu, C.; Martínez-Abraín, A.; Traveset, A. Phenological asynchrony in plant-butterfly interactions associated with climate: A community-wide perspective. Oikos 2016, 1434–1444. [Google Scholar] [CrossRef]
- Bonal, R.; Hernandez, M.; Espelta, J.M.; Munoz, A.; Aparicio, J.M. Unexpected consequences of a drier world: Evidence that delay in late summer rains biases the population sex ratio of an insect. R. Soc. Open Sci. 2015, 2, 150198. [Google Scholar] [CrossRef] [PubMed]
- Chen, I. Rapid Range Shifts of Species. Science 2011, 333, 1024–1026. [Google Scholar] [CrossRef] [PubMed]
- Devictor, V.; van Swaay, C.; Brereton, T.; Brotons, L.; Chamberlain, D.; Heliölä, J.; Herrando, S.; Julliard, R.; Kuussaari, M.; Lindström, Å.; et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Chang. 2012, 2, 121–124. [Google Scholar] [CrossRef]
- Bradshaw, W.E.; Holzapfel, C.M. Genetic shift in photoperiodic response correlated with global warming. Proc. Natl. Acad. Sci. USA 2001, 98, 14509–14511. [Google Scholar] [CrossRef] [PubMed]
- Carnicer, J.; Wheat, C.; Vives, M.; Ubach, A.; Domingo, C.; Nylin, S.; Stefanescu, C.; Vila, R.; Wiklund, C.; Penuelas, J. Evolutionary Responses of Invertebrates to Global Climate Change: The Role of Life-History Trade-Offs and Multidecadal Climate Shifts. In Global Climate Change and Terrestrial Invertebrates, 1st ed.; Johnson, S.N., Jones, T.H., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; Chapter 16; ISBN 978-1-119-07090-0. [Google Scholar]
- De Frenne, P.; Rodríguez-Sánchez, F.; Coomes, D.A.; Baeten, L.; Verstraeten, G.; Vellend, M.; Bernhardt-Römermann, M.; Brown, C.D.; Brunet, J.; Cornelis, J.; et al. Microclimate moderates plant responses to macroclimate warming. Proc. Natl. Acad. Sci. USA 2013, 110, 18561–18565. [Google Scholar] [CrossRef] [PubMed]
- Stefanescu, C.; Carnicer, J.; Peñuelas, J. Determinants of species richness in generalist and specialist Mediterranean butterflies: The negative synergistic forces of climate and habitat change. Ecography 2011, 34, 353–363. [Google Scholar] [CrossRef]
- Suggitt, A.J.; Stefanescu, C.; Páramo, F.; Oliver, T.; Anderson, B.J.; Hill, J.K.; Roy, D.B.; Brereton, T.; Thomas, C.D.; Hitch, A.T.; et al. Habitat associations of species show consistent but weak responses to climate. Biol. Lett. 2012, 8, 590–593. [Google Scholar] [CrossRef] [PubMed]
- Urban, M.C.; Zarnetske, P.L.; Skelly, D.K. Moving forward: Dispersal and species interactions determine biotic responses to climate change. Ann. N. Y. Acad. Sci. 2013, 1297, 44–60. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, A.; Sgrò, C. Climate change and evolutionary adaptation. Nature 2011, 470, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Carnicer, J.; Stefanescu, C.; Vila, R.; Dincǎ, V.; Font, X.; Penuelas, J. A unified framework for diversity gradients: The adaptive trait continuum. Glob. Ecol. Biogeogr. 2013, 22, 6–18. [Google Scholar] [CrossRef]
- Urban, M. Accelerating extinction risk from climate change. Science 2015, 348, 571–573. [Google Scholar] [CrossRef] [PubMed]
- Carnicer, J.; Brotons, L.; Stefanescu, C.; Penuelas, J. Biogeography of species richness gradients: Linking adaptive traits, demography and diversification. Biol. Rev. 2012, 87, 457–479. [Google Scholar] [CrossRef] [PubMed]
- Carnicer, J.; Coll, M.; Pons, X.; Ninyerola, M.; Vayreda, J.; Penuelas, J. Large-scale recruitment limitation in Mediterranean pines: The role of Quercus ilex and forest successional advance as key regional drivers. Glob. Ecol. Biogeogr. 2014, 23, 371–384. [Google Scholar] [CrossRef]
- Ogaya, R.; Peñuelas, J. Tree growth, mortality, and above-ground biomass accumulation in a holm oak forest under a five-year experimental field drought. Plant Ecol. 2007, 189, 291–299. [Google Scholar] [CrossRef]
- Prieto, P.; Peñuelas, J.; Lloret, F.; Llorens, L.; Estiarte, M. Experimental drought and warming decrease diversity and slow down post-fire succession in a Mediterranean shrubland. Ecography 2009, 32, 623–636. [Google Scholar] [CrossRef]
- Peñuelas, J.; Llusia, J.; Estiarte, M. Terpenoids a plant language. Tree 1995, 10, 289. [Google Scholar] [CrossRef]
- Llusia, J.; Roahtyn, S.; Yakir, D.; Rotenberg, E.; Seco, R.; Guenther, A.; Penuelas, J. Photosynthesis, stomatal conductance and terpene emission response to water availability in dry and mesic Mediterranean forests. Trees 2015, 30, 749. [Google Scholar] [CrossRef]
- Filella, I.; Wilkinson, M.J.; Llusià, J.; Hewitt, C.N.; Penuelas, J. Volatile organic compounds emissions in Norway spruce (Picea abies) in response to temperature changes. Physiol. Plant. 2007, 130, 58–66. [Google Scholar] [CrossRef]
- Llusià, J.; Penuelas, J.; Munné-Bosch, S. Sustained accumulation of methyl salicylate alters antioxidant protection and reduces tolerance of holm oak to heat stress. Physiol. Plant. 2005, 124, 353–361. [Google Scholar] [CrossRef]
- Peñuelas, J.; Llusià, J. The complexity of factors driving volatile organic compound emissions by plants. Biol. Plant. 2001, 44, 481–487. [Google Scholar] [CrossRef]
- Farré-Armengol, G.; Filella, I.; Llusia, J.; Primante, C.; Penuelas, J. Enhanced emissions of floral volatiles by Diplotaxis erucoides (L.) in response to folivory and florivory by Pieris brassicae (L.). Biochem. Syst. Ecol. 2015, 63, 51–58. [Google Scholar] [CrossRef]
- Filella, I.; Bosch, J.; Llusià, J.; Penuelas, A.; Penuelas, J. Chemical cues involved in the attraction of the oligolectic bee Hoplitis adunca to its host plant Echium vulgare. Biochem. Syst. Ecol. 2011, 39, 498–508. [Google Scholar] [CrossRef]
- Filella, I.; Bosch, J.; Llusià, J.; Seco, R.; Penuelas, J. The role of Frass and Cocoon Volatiles in Host Location by Monodontomerus aeneus, a Parasitoid of Megachilid Solitary Bees. Environ. Entomol. 2011, 40, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Peñuelas, J.; Farré-Armengol, G.; Llusia, J.; Gargallo-Garriga, A.; Rico, L.; Sardans, J.; Terradas, J.; Filella, I. Removal of floral microbiota reduces floral terpene emissions. Sci. Rep. 2014, 4, 6727. [Google Scholar] [CrossRef] [PubMed]
- Llusià, J.; Penuelas, J.; Gimeno, B.S. Seasonal and species-specific response of VOC emissions by Mediterranean woody plant to elevated ozone concentrations. Atmos. Environ. 2002, 36, 3931–3938. [Google Scholar] [CrossRef]
- Peñuelas, J.; Llusià, J. Short-term responses of terpene emission rates to experimental changes of PFD in Pinus halepensis and Quercus ilex in summer field conditions. Environ. Exp. Bot. 1999, 42, 61–68. [Google Scholar] [CrossRef]
- Farré-Armengol, G.; Penuelas, J.; Li, T.; Yli-Pilrilä, P.; Filella, I.; Llusia, J.; Blande, J.D. Ozone degrades floral scent and reduces pollinator attraction to flowers Ozone degrades floral scent and reduces pollinator attraction to flowers. New Phytol. 2016, 209, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Bartrons, M.; Catalan, J.; Peñuelas, J. Spatial and Temporal Trends of Organic Pollutants in Vegetation from Remote and Rural Areas. Sci. Rep. 2016, 6, 25446. [Google Scholar] [CrossRef] [PubMed]
- Porta, M.; Gasull, M.; Puigdomenech, E.; Gari, M.; de Basea, M.B.; Guillen, M.; Lopez, T.; Bigas, E.; Pumarega, J.; Llebaria, X.; et al. Distribution of blood concentrations of persistent organic pollutants in a representative sample of the population of Catalonia. Environ. Int. 2010, 36, 655–664. [Google Scholar] [CrossRef] [PubMed]
- Meijer, S.N.; Ockenden, W.A.; Sweetman, A.; Breivik, K.; Grimalt, J.O.; Jones, K.C. Global distribution and budget of PCBs and HCB in background surface soils: Implications for sources and environmental processes. Environ. Sci. Technol. 2003, 37, 667–672. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Hung, H.; Tian, C.; Kallenborn, R. Revolatilization of persistent organic pollutants in the Arctic induced by climate change. Nat. Clim. Chang. 2011, 1, 255–260. [Google Scholar] [CrossRef]
- Carrera, G.; Fernández, P.; Grimalt, J.O.; Ventura, M.; Camarero, L.; Catalan, J.; Nickus, U.; Thies, H.; Psenner, R. Atmospheric deposition of organochlorine compounds to remote high mountain lakes of Europe. Environ. Sci. Technol. 2002, 36, 2581–2588. [Google Scholar] [CrossRef] [PubMed]
- Lamon, L.; Von Waldow, H.; Macleod, M.; Scheringer, M.; Marcomini, A.; Hungerbühler, K. Modeling the global levels and distribution of polychlorinated biphenyls in air under a climate change scenario. Environ. Sci. Technol. 2009, 43, 5818–5824. [Google Scholar] [CrossRef] [PubMed]
- Bartrons, M.; Grimalt, J.O.; Catalan, J. Altitudinal distributions of BDE-209 and other polybromodiphenyl ethers in high mountain lakes. Environ. Pollut. 2011, 159, 1816–1822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartrons, M.; Gratton, C.; Spiesman, B.J.; Vander Zanden, M.J. Taking the trophic bypass: Aquatic-terrestrial linkage reduces methylmercury in a terrestrial food web. Ecol. Appl. 2015, 25, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Pulkrabová, J.; Suchanová, M.; Tomaniová, M.; Kocourek, V.; Hajšlová, J. Organic pollutants in areas impacted by flooding in 2002: A 4-year survey. Bull. Environ. Contam. Toxicol. 2008, 81, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Carnicer, J.; Coll, M.; Ninyerola, M.; Pons, X.; Sánchez, G.; Penuelas, J. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc. Natl. Acad. Sci. USA 2011, 108, 1474–1478. [Google Scholar] [CrossRef] [PubMed]
- Bangash, R.F.; Passuello, A.; Sanchez-Canales, M.; Terrado, M.; López, A.; Elorza, F.J.; Ziv, G.; Acuña, V.; Schuhmacher, M. Ecosystem services in Mediterranean river Basin: Climate change impact on water provision end erosion control. Sci. Total Environ. 2013, 458–460, 246–255. [Google Scholar] [CrossRef]
- Peñuelas, J.; Lloret, F.; Montoya, R. Severe drought effects on mediterranean woody flora in Spain. For. Sci. 2001, 47, 214–218. [Google Scholar]
- Sardans, J.; Peñuelas, J.; Rodà, F. Plasticity of leaf morphological traits, leaf nutrient content, and water capture in the Mediterranean evergreen oak Quercus ilex subsp. ballota in response to fertilization and changes in competitive conditions. Ecoscience 2006, 13, 258–270. [Google Scholar] [CrossRef]
- Sardans, J.; Peñuelas, J. Drought changes nutrient sources, content and stoichiometry in the bryophyte Hypnum cupressiforme Hedw. growing in a Mediterranean forest. J. Bryol. 2008, 30, 59–65. [Google Scholar] [CrossRef]
- Sardans, J.; Rivas-Ubach, A.; Penuelas, J. The C:N:P stoichiometry of organisms and ecosystems in a changing world: A review and perspectives. Perspect. Plant Ecol. Evol. Syst. 2012, 14, 33–47. [Google Scholar] [CrossRef]
- Sardans, J.; Peñuelas, J.; Estiarte, M. Warming and drought alter soil phosphatase activity and soil P availability in a Mediterranean shrubland. Plant Soil 2006, 289, 227–238. [Google Scholar] [CrossRef]
- Peñuelas, J.; Filella, I.; Lloret, F.; Piñol, J.; Siscart, D. Effects of severe drought on water and nitrogen use by Quercus ilex and Phillyrea latifolia. Biol. Plant. 2000, 43, 47–53. [Google Scholar] [CrossRef]
- Medina-Villar, S.; Rodríguez-Echeverría, S.; Lorenzo, P.; Alonso, A.; Pérez-Corona, E.; Castro-Díez, P. Impacts of the alien trees Ailanthus altissima (Mill.) Swingle and Robinia pseudoacacia L. on soil nutrients and microbial communities. Soil Biol. Biochem. 2016, 96, 65–73. [Google Scholar] [CrossRef]
- De Marco, A.; Arena, C.; Giordano, M.; Virzo De Santo, A. Impact of the invasive tree black locust on soil properties of Mediterranean stone pine-holm oak forests. Plant Soil 2013, 372, 473–486. [Google Scholar] [CrossRef]
- Traveset, A.; Brundu, G.; Carta, L.; Mprezetou, I.; Lambdon, P.; Manca, M.; Médail, F.; Moragues, E.; Rodríguez-Pérez, J.; Siamantziouras, A.S.D.; et al. Consistent performance of invasive plant species within and among islands of the Mediterranean basin. Biol. Invasions 2008, 10, 847–858. [Google Scholar] [CrossRef]
- Godoy, O.; Castro-Díez, P.; van Logtestijn, R.S.P.; Cornelissen, J.H.C.; Valladares, F. Leaf litter traits of invasive species slow down decomposition compared to Spanish natives: A broad phylogenetic comparison. Oecologia 2010, 162, 781–790. [Google Scholar] [CrossRef] [PubMed]
- Noumi, Z. Effects of exotic and endogenous shrubs on understory vegetation and soil nutrients in the south of Tunisia. J. Arid Land 2015, 7, 481–487. [Google Scholar] [CrossRef]
- Benesperi, R.; Giuliani, C.; Zanetti, S.; Gennai, M.; Mariotti Lippi, M.; Guidi, T.; Nascimbene, J.; Foggi, B. Forest plant diversity is threatened by Robinia pseudoacacia (black-locust) invasion. Biodivers. Conserv. 2012, 21, 3555–3568. [Google Scholar] [CrossRef]
- Lazzaro, L.; Giuliani, C.; Fabiani, A.; Agnelli, A.E.; Pastorelli, R.; Lagomarsino, A.; Benesperi, R.; Calamassi, R.; Foggi, B. Soil and plant changing after invasion: The case of Acacia dealbata in a Mediterranean ecosystem. Sci. Total Environ. 2014, 497–498, 491–498. [Google Scholar] [CrossRef] [PubMed]
- González-Muñoz, N.; Costa-Tenorio, M.; Espigares, T. Invasion of alien Acacia dealbata on Spanish Quercus robur forests: Impact on soils and vegetation. For. Ecol. Manag. 2012, 269, 214–221. [Google Scholar] [CrossRef]
- Erskine-Ogden, J.; Grotkopp, E.; Rejmanek, M. Mediterranean, invasive, woody species grow larger than their less-invasive counterparts under potential global environmental change. Am. J. Bot. 2016, 103, 613–624. [Google Scholar] [CrossRef] [PubMed]
- Sardans, J.; Alonso, R.; Janssens, I.A.; Carnicer, J.; Vereseglou, S.; Rillig, M.C.; Fernandez-Martinez, M.; Sanders, T.G.M.; Peñuelas, J. Foliar and soil concentrations and stoichiometry of nitrogen and phosphorous across European Pinus sylvestris forests: Relationships with climate, N deposition and tree growth. Funct. Ecol. 2016, 30, 676–689. [Google Scholar] [CrossRef]
- Vayreda, J.; Martínez-Vilalta, J.; Gracia, M.; Canadell, J.G.; Retana, J. Anthropogenic-driven ràpid shifts in tree Distribution lead to increased dominance of broadleaf species. Glob. Chang. Biol. 2016, 22, 3984–3995. [Google Scholar] [CrossRef] [PubMed]
- Vilà-Cabrera, A.; Espelta, J.M.; Vayreda, J.; Pino, J. “New Forests” from the twentieth century are a relevant contribution for C storage in the Iberian Peninsula. Ecosystems 2017, 20, 130–143. [Google Scholar] [CrossRef]
- San Roman Sanz, A.; Fernández, C.; Mouillot, F.; Ferrat, L.; Istria, D.; Pasqualini, V. Long-term forest Dynamics and land-use abandonament in the Mediterranean mountains, Corsica, France. Ecol. Soc. 2013, 18, 38. [Google Scholar] [CrossRef]
- Acácio, V.; Holmgren, M.; Rego, F.; Moreira, F.; Mohren, G.M.J. Are drought and wildfires turning Mediterranean cork oak forest into persistent shrublands? Agrofor. Syst. 2009, 76, 389–400. [Google Scholar] [CrossRef]
- Padilla, F.M.; Vidal, B.; Sánchez, J.; Pugnaire, F.I. Land-use changes and carbon sequestration through the twentieth century in a Mediterranean mountain ecosystem: Implications for land management. J. Environ. Manag. 2010, 91, 2688–2695. [Google Scholar] [CrossRef] [PubMed]
- Keenan, T.; Serra, J.M.; Lloret, F.; Ninyerola, M.; Sabate, S. Predicting the future of forests in the Mediterranean under climate change, with niche- and process-based models: CO2 matters! Glob. Chang. Biol. 2011, 17, 565–579. [Google Scholar]
- Doblas-Miranda, E.; Martínez-Vilalta, J.; Lloret, F.; Álvarez, A.; Ávila, A.; Bonet, F.J.; Brotons, L.; Castro, J.; Curiel-Yuste, J.; Díaz, M.; et al. Reassessing global change research priorities in mediterranean terrestrial ecosystems: How far have we come and where do we go from here? Glob. Ecol. Biogeogr. 2015, 24, 25–43. [Google Scholar] [CrossRef]
- Rao, L.E.; Allen, E.B.; Meixner, T. Risk-baseds determination of critical nitrogen deposition loads for fire spread in Southern California deserts. Ecol. Appl. 2010, 20, 1320–1335. [Google Scholar] [CrossRef] [PubMed]
- Khalili, B.; Ogunseitan, O.A.; Goulden, M.L.; Allison, S.D. Interactive effects of precipitation manipulation and nitrogen addition on soil properties in California grassland and shrubland. Appl. Soil Ecol. 2016, 107, 144–153. [Google Scholar] [CrossRef]
- Syphard, A.D.; Franklin, J.; Keely, J.E. Simulating the effects of freqüent fire on Southern California coastal shrublands. Ecol. Appl. 2006, 16, 1744–1756. [Google Scholar] [CrossRef]
- Parra, A.; Moreno, J.M. Post-fire environaments are favorable for plant functioning of seeder and resprouter Mediterranean shrubs, even under drought. New Phytol. 2017, 214, 1118–1131. [Google Scholar] [CrossRef] [PubMed]
- Lloret, F.; Casanovas, C.; Peñuelas, J. Seedling survival of Mediterranean shrubland species in relation to root: Shoot ratio, seed size and wàter and nitrogen use. Funct. Ecol. 1999, 13, 210–216. [Google Scholar] [CrossRef]
- Martí-Roura, M.; Casals, P.; Romanyà, J. Long-term retention of post-fire soil mineral nitrogen pools in Mediterranean shrubland and grassland. Plant Soil 2013, 371, 521–531. [Google Scholar] [CrossRef]
- Padilla, F.M.; de Dios Miranda, J.; Pugnaire, F.I. Early root growth plasticity in seedlings of three Mediterranean Woody species. Plant Soil 2007, 296, 103–113. [Google Scholar] [CrossRef]
- De Dato, G.; Pellizzaro, G.; Cesaraccio, C.; Sirca, C.; De Angelis, P.; Duce, P.; Spano, D.; Scarascia Mugnozza, G. Effects of warmer and drier climate conditions on plant composition and biomass production in a Mediterranean shrubland community. iForest 2008, 1, 39–48. [Google Scholar] [CrossRef]
- Prieto, P.; Peñuelas, J.; Ogaya, R.; Estiarte, M. Precipitation-dependent flowering of Globularia alypum and Erica multiflora in Mediterranean shrubland under experimental drought and warming and its inter-annual variability. Ann. Bot. 2008, 102, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Prieto, P.; Peñuelas, J.; Llusià, J.; Asensio, D.; Estiarte, M. Effects of long-term experimental night-time warming and drought on photosynthesis, Fv/Fm and stomatal conductance in the dominant species of a Mediterranean shrubland. Acta Physiol. Plant 2009, 31, 729–739. [Google Scholar] [CrossRef]
- West, A.G.; Dawson, T.E.; February, E.C.; Midgley, G.F.; Bond, W.J.; Aston, T.L. Diverse funcional responses to drought in a Mediterranean-type shrubland in South Africa. New Phytol. 2012, 195, 396–407. [Google Scholar] [CrossRef] [PubMed]
- Del Cacho, M.; Peñuelas, J.; Lloret, F. Reproductive output in Mediterranean shrubs under climate change experimentally induced by drought and warming. Perspect. Plant Ecol. Evol. Syst. 2013, 15, 319–327. [Google Scholar] [CrossRef]
- Lloret, F.; de la Riva, E.G.; Pérez-Ramos, I.M.; Marañon, T.; Saura-Mas, S.; Díaz-Delgado, R.; Villar, R. Climatic events inducing die-off in Mediterranea shrublands: Are species’ responses related to their funcional traïts? Oecologia 2016, 180, 961–973. [Google Scholar] [CrossRef] [PubMed]
- Sapes, G.; Serra-Díaz, J.M.; Lloret, F. Species climàtic niche explanis drought-induced die-off in a Mediterranean Woody community. Ecosphere 2017, 8, e01833. [Google Scholar] [CrossRef]
- Dirks, I.; Navon, Y.; Kanas, D.; Dumbur, R.; Grünzweig, J.M. Atmospheric wàter vapor as driver of litter decomposition in Mediterranean shrubland and grassland during rainless seasons. Glob. Chang. Biol. 2010, 16, 2799–2812. [Google Scholar] [CrossRef]
- Talmon, Y.; Sternberg, M.; Grünzweig, J.M. Impact of rainfall manipulations and biòtic controls on soil respiration in Mediterranean and desert ecosystems along an aridity gradient. Glob. Chang. Biol. 2011, 17, 1108–1118. [Google Scholar] [CrossRef]
- Del Cacho, M.; Saura-Mas, S.; Estiarte, M.; Peñuelas, J.; Lloret, F. Effect of experimentally induced climate change on the seed bank of a Mediterranean shrubland. J. Veg. Sci. 2012, 23, 280–291. [Google Scholar] [CrossRef]
- Colombaroli, D.; Marchetto, A.; Tinner, W. Long-term interactions between Mediterranean climate vegetation and fire regime at Logo di Massaciuccoli (Tuscany, Italy). J. Ecol. 2007, 95, 755–770. [Google Scholar] [CrossRef]
- Liu, D.; Estiarte, M.; Ogaya, R.; Yang, X.; Peñuelas, J. Shift in community structure in an early-successional Mediterranean shrubland driven by long-term experimental warming and drought and natural extreme droughts. Glob. Chang. Biol. 2017, 23, 4267–4279. [Google Scholar] [CrossRef] [PubMed]
- Porqueddu, C.; Ates, S.; Louhaichi, M.; Kyriazopoulos, A.P.; Moreno, G.; del Pozo, A.; Ovalle, C.; Ewing, M.A.; Nichols, P.G.H. Grassland in “Old World” and “New Worls” Mediterranean-climate zones: Past trends, corrent status and future research priorities. Grass Forage Sci. 2016, 71, 1–35. [Google Scholar] [CrossRef]
- Golodets, C.; Sternberg, M.; Kigel, J.; Boeken, B.; Henkin, Z.; Seligman, N.G.; Ungar, E.D. From desert to Mediterranean rangelands: Will increasing drought and inter-annual rainfall variability affect herbaceous annual primary productivity? Clim. Chang. 2013, 119, 785–798. [Google Scholar] [CrossRef]
- Mamolos, A.P.; Veresoglou, D.S.; Noitsakis, V.; Gerakis, A. Differential drought tolerance of five coexisting plant species in Mediterranean lowland grasslands. J. Arid Environ. 2001, 49, 329–341. [Google Scholar] [CrossRef]
- Carmona, C.P.; Azcárate, F.M.; de Bello, F.; Ollero, H.S.; Leps, J.; Peco, B. Taxonomical and funcional diversity turnover in Mediterranean grasslands: Interactions between grazing, habitat type and rainfall. J. Appl. Ecol. 2012, 49, 1084–1093. [Google Scholar] [CrossRef]
- Rota, C.; Manzano, P.; Carmona, C.P.; Malo, J.E.; Peco, B. Plant community assenbly in Mediterranean grasslands: Understanding the interplay between grazing and spatio-temporal wàter availability. J. Veg. Sci. 2017, 28, 149–159. [Google Scholar] [CrossRef]
- Bonanomi, G.; Incerti, G.; Allegrezza, M. Assessing the impact of land abandonament, nitrogen enrichment and fairy-ring fungi on plant diversity of Mediterranean grassland. Biodivers. Conserv. 2013, 22, 2285–2304. [Google Scholar] [CrossRef]
- Jiménez-Alfaro, B.; Gavilán, R.G.; Escudero, A.; Iriondo, J.M.; Fernández-González, F. Decline of dry grassland specialists in Mediterranean high-mountain communities influences by recent climate warming. J. Veg. Sci. 2014, 25, 1394–1404. [Google Scholar] [CrossRef]
- Mairota, P.; Leronni, V.; Xi, W.; Mladenoff, D.J.; Nagendra, H. Using spatial simulations of habitat modifications for adaptative management of protected areas: Mediterranean grassland modification by Woody plant encroachment. Environ. Conserv. 2013, 41, 144–156. [Google Scholar] [CrossRef]
- Gracia, C.; Burriel, J.A.; Ibàñez, J.J.; Mata, T.; Vayreda, J. Inventari Ecològic i Forestal de Catalunya. Catalunya; Centre for Research on Ecology and Forestry Applications (CREAF): Bellaterra, Spain, 2004; Volume 10, p. 184. ISBN 84-932860-3-6. [Google Scholar]
- Keenan, T.; García, R.; Friend, A.D.; Zaehle, S.; Gracia, C.; Sabate, S. Improved understanding of drought controls on seasonal variation in Mediterranean forest canopy CO2 and water fluxes through combined in situ measurements and ecosystem modelling. Biogeosciences 2009, 6, 1423–1444. [Google Scholar] [CrossRef] [Green Version]
- Nadal-Sala, D.; Sabaté, S.; Gracia, C. GOTILWA+: Una herramienta para optimizar la gestión forestal adaptada al cambio climático. Ambienta 2014, 108, 106–120. [Google Scholar]
- Gotilwa+: Growth of Trees Is Limited by Water. Available online: www.creaf.uab.cat/gotilwa/ (accessed on 17 November 2017).
- Nadal-Sala, D.; Sabaté, S.; Gracia, C. The relative importance of soil depth for Aleppo pine (Pinus halepensis Mill.) resilience in face of the increasing aridity promoted by climate change. Ecosistemas 2017, 26, 18–26. [Google Scholar] [CrossRef]
- Zhu, B.; Cheng, W. Impacts of drying-wetting cycles on rhizosphere respiration and soil organic matter decomposition. Soil Biol. Biochem. 2013, 63, 89–96. [Google Scholar] [CrossRef]
- Verger, A.; Baret, F.; Weiss, M.; Lacaze, R.; Makhmara, H.; Vermote, E. Long term consistent global GEOV1 AVHRR biophysical products. In Proceedings of the 32th EARSeL Symposium on Temporal Analysis of Satellite Images, Mykonos, Greece, 23–25 May 2012; pp. 1–6. [Google Scholar]
- Garbulsky, M.F.; Penuelas, J.; Gamon, J.; Inoue, Y.; Filella, I. The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies. A review and meta-analysis. Remote Sens. Environ. 2011, 115, 281–297. [Google Scholar] [CrossRef]
- Peñuelas, J.; Filella, I.; Gamon, J. Assessment of plant photosynthetic radiation-use efficiency with spectral reflectance. New Phytol. 1995, 131, 291–296. [Google Scholar] [CrossRef]
- Peñuelas, J.; Garbulsky, M.F.; Filella, I. Photochemical reflectance index (PRI) and remote sensing of plant CO2 uptake. New Phytol. 2011, 191, 596–599. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Filella, I.; Garbulsky, M.; Peñuelas, J. Affecting Factors and Recent Improvements of the Photochemical Reflectance Index (PRI) for Remotely Sensing Foliar, Canopy and Ecosystemic Radiation-Use Efficiencies. Remote Sens. 2016, 8, 677. [Google Scholar] [CrossRef]
- Shakesby, R.A. Post-wildfire soil erosion in the Mediterranean: Review and future research directions. Earth-Sci. Rev. 2011, 105, 71–100. [Google Scholar] [CrossRef]
- Safriel, U.N. Status of Desertification in the Mediterranean region. In Water Scarcity, Land Degradation and Desertification in the Mediterranean Region; Rubio, J.L., Safriel, U., Daussa, R., Blum, W., Pedrazzini, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 33–73. ISBN 978-90-481-2526-5. [Google Scholar]
- Baeza, M.J.; Valdecantos, A.; Alloza, J.A.; Vallejo, R. Human disturbance and environmental factors as drivers of long-term post-fire regeneration patterns in Mediterranean forest. J. Veg. Sci. 2007, 18, 243–252. [Google Scholar] [CrossRef]
- Coelho, C.D.O.A.; Ferreira, A.J.D.; Boulet, A.K.; Keizer, J.J. Overland flow generation processes, erosion yields and solute loss following different intensity fires. Q. J. Eng. Geol. Hydrogeol. 2004, 37, 233–240. [Google Scholar] [CrossRef]
- Millan, M.M.; Estrella, M.J.; Sanz, M.J.; Mantilla, E.; Martin, M.; Pastor, F.; Salvador, R.; Vallejo, R.; Alonso, L.; Gangoiti, G.; et al. Climatic feedbacks and desertification: The Mediterranean model. J. Clim. 2005, 18, 684–701. [Google Scholar] [CrossRef]
- Zucca, C.; Canu, A.; Della Peruta, R. Effects of land use and landscape on spatial distribution and morphological features of gullies in an agropastoral area in Sardinia (Italy). Catena 2006, 88, 87–95. [Google Scholar] [CrossRef]
- Calatrava, J.; Barbera, G.G.; Castillo, V.M. Farming practiques and policy measures for agricultural soil conservation in semi-arid Mediterranean areas: The case of the Guadalentin basin in Southeast Spain. Land Degrad. Dev. 2011, 22, 58–69. [Google Scholar] [CrossRef]
- Kéfi, S.; Rietkerk, M.; Alados, C.L.; Pueyo, Y.; Papanastasis, V.P.; Eiaich, A.; de Ruiter, P.C. Spatial vegetation paterns and imminent desertification in Mediterranean arid ecosystems. Nature 2007, 449, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Frei, C.; Schär, C.; Lüthi, D.; Davies, H.C. Heavy precipitation processes in a warmer climate. Geophys. Res. Lett. 1998, 25, 1431–1434. [Google Scholar] [CrossRef]
- Romero, R.; Guijarro, J.A.; Ramis, C.; Alonso, S. A 30-year (1964–1993) daily data base for the Spanish Mediterranean regions: First exploratory study. Int. J. Climatol. 1998, 18, 541–560. [Google Scholar] [CrossRef]
- International Panel on Climate Change (IPCC). Climate Change 2007: The physical science basis. Contribution of Working Group I. In Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; pp. 849–940. ISBN 978-0-521-88009-1. [Google Scholar]
- Garcia, C.; Hernandez, T.; Roldan, A.; Martin, A. Effect of plant cover decline on chemical and microbiological parameters under Mediterranean climate. Soil Biol. Biochem. 2002, 34, 635–642. [Google Scholar] [CrossRef]
- García-Fayos, P.; Bochet, E. Indication of antagonistic interaction between climate change and erosion on plant species richness and soil properties in semiàrid Mediterranean ecosystems. Glob. Chang. Biol. 2009, 15, 306–308. [Google Scholar] [CrossRef]
- Moreno-de las Heras, M.; Espigares, T.; Merino-Martín, L.; Nicolau, J.M. Water-related ecological impacts of rill erosion processes in Mediterranean-dry reclaimed slopes. Catena 2011, 84, 114–124. [Google Scholar] [CrossRef]
- Ruiz-Sinoga, J.D.; Gabarón Galeote, M.A.; Martínez Murillo, J.F.; Garcia Marín, R. Vegetation strategies for soil consumption along a pluviometric gradient in southern Spain. Catena 2011, 84, 12–20. [Google Scholar] [CrossRef]
- Grossiord, C.; Granier, A.; Ratcliffe, S.; Bouriaud, O.; Bruelheide, H.; Checko, E.; Forresterg, D.I.; Dawudh, S.M.; Finéri, L.; Pollastrinij, M.; et al. Tree diversity does not always improve resistance of forest ecosystems to drought. Proc. Natl. Acad. Sci. USA 2014, 111, 14812–14815. [Google Scholar] [CrossRef] [PubMed]
- González-Hidalgo, J.C.; Peña-Monné, J.L.; de Luís, M. A review of daily soil erosion in Western Mediterranean areas. Catena 2007, 71, 193–199. [Google Scholar] [CrossRef]
- Barnes, P.W.; Throop, H.L.; Hewins, D.B.; Abbene, M.L.; Archer, S.R. Soil coverage reduces photodegradation and promotes the development of soil-microbial films on dryland leaf litter. Ecosystems 2012, 15, 311–321. [Google Scholar] [CrossRef]
- Riera, P.; Peñuelas, J.; Farreras, V.; Estiarte, M. Valuation of climate-change effects on Mediterranean shrublands. Ecol. Appl. 2007, 17, 91–100. [Google Scholar] [CrossRef]
- Weedon, G.P.; Balsamo, G.; Bellouin, N.; Gomes, S.; Best, M.J.; Viterbo, P. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water. Resour. Res. 2014, 50, 7505–7514. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2009, 23, 1696–1718. [Google Scholar] [CrossRef]
- Peñuelas, J.; Rutishauser, T.; Filella, I. Phenology Feedbacks on cllimate change. Science 2009, 324, 887–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costanza, R.; de Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenthy years of ecosystenm services: How far have we come and how far do we still need to go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
- Palahi, M.; Mavsar, R.; Gracia, C.; Birot, Y. Mediterranean forest under focus. Int. For. Rev. 2008, 10, 676–688. [Google Scholar] [CrossRef]
- Guerra, C.A.; Maes, J.; Geijzendorffer, I.; Metzger, M.J. An assessment of soil erosion prevention by vegetation in Mediterranean Europe: Current trends of ecosystem service provision. Ecol. Indic. 2016, 60, 213–222. [Google Scholar] [CrossRef]
- Gios, G.; Clauser, O. Forest and tourism: Economic evaluation and management features under sustainable multifunctionality. iForest 2009, 2, 192–197. [Google Scholar] [CrossRef]
- Ruiz-Peinado, R.; Bravo-Oviedo, A.; Lopez-Senespleda, E.; Bravo, F.; Del Rio, M. Forest Management and carbón sequestration in the Mediterranean región: A review. For. Syst. 2017, 26, 2. [Google Scholar] [CrossRef]
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidi, R.; Delzon, S.; Corona, P.; Kolström, M.; et al. Climate change impacts, adaptative capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- Scheneider, C.; Laizé, C.L.R.; Acreman, M.C.; Flörke, M. How will climate change modify river flow regimes in Europe? Hydrol. Earth Syst. Sci. 2013, 17, 325–339. [Google Scholar] [CrossRef] [Green Version]
- Petrovic, M.; Ginebrada, A.; Acuña, V.; Batalla, R.J.; Elosegi, A.; Guasch, H.; López de Alda, M.; Marcé, R.; Muñoz, I.; Navarro-Ortega, A.; et al. Combined scenarios of chewmical and Ecological quality under wàter scarcity in Mediterranean rivers. Trends Anal. Chem. 2011, 30, 1269–1278. [Google Scholar] [CrossRef]
- Lutz, S.R.; Mallucci, S.; Diamantini, E.; Mojone, B.; Bellin, A.; Merz, R. Hydroclimatic and wàter quality trends across Mediterranean river basins. Sci. Total Environ. 2016, 571, 1392–1406. [Google Scholar] [CrossRef] [PubMed]
- Bartrons, M.; Peñuelas, J. Pharmaceuticals and personal-care products in plants. Trends Plant Sci. 2017, 22, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Skoulikidis, N.T.; Sabater, S.; Datry, T.; Morais, M.M.; Buffagni, A.; Dörflinger, G.; Zogaris, S.; Sánchez-Montoya, A.M.; Bonada, N.; Kalogianni, E.; et al. Non-prennial Mediterranean rivers in Europe: Status, pressures, and challenges for research and management. Sci. Total Environ. 2017, 577, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Piñol, J.; Avila, A.; Rodà, F. The seasonal-variation of stremwater chemistry in 3 forested Mediterranean catchments. J. Hydrol. 1992, 140, 119–141. [Google Scholar] [CrossRef]
- Rupérez-Moreno, C.; Senent, J.; Martinez-Vicente, D.; García-Aróstegui, J.L.; Cabezas Calvo-Rubio, F.; Pérez-Sánchez, J. Sustainability of irrigated agriculture with overexploited aquifers: The case of Segura basin (SE, Spain). Agric. Water Manag. 2017, 182, 67–76. [Google Scholar] [CrossRef]
- Allard, V.; Ourcival, J.M.; Rambal, S.; Joffre, R.; Rocheteau, A. Seasonal and anual variation of carbon Exchange in an evergreen Mediterranean forest in Southern France. Glob. Chang. Biol. 2008, 14, 714–725. [Google Scholar] [CrossRef]
- Lempereur, M.; Martin-StPaul, N.K.; Damesin, C.; Joffre, R.; Ourcival, J.M.; Rocheteau, A.; Rambla, S. Growth duration is a better predictor of stem increment than carbon supply in a Mediterranean oak forest: Implications for assessing forest productivity under climate change. New Phytol. 2015, 207, 579–590. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.S.; Mateus, J.A.; Aires, L.M.; Pita, G.; Pio, C.; David, J.S.; Andrade, V.; Banza, J.; David, T.S.; Paço, T.A.; et al. Net ecosystem carbon Exchange in three contrastin Mediterranean ecosystems—The effect of drought. Biogeosciences 2007, 4, 791–802. [Google Scholar] [CrossRef]
- Ogaya, R.; Peñuelas, J. Decreased mushroom production in a holm oak forest in response to an experimental drought. Forestry 2005, 78, 279–283. [Google Scholar] [CrossRef]
- Büntgen, U.; Egli, S.; Galvan, D.; Diez, J.M.; Aldea, J.; Latorre, J.; Martínez-Peña, F. Drought-induced changes in the phenology, productivity and diversity of Spanish fungi. Fungal Ecol. 2015, 16, 6–18. [Google Scholar] [CrossRef]
- Santos, A.; Pinho, P.; Munzi, S.; Botelho, M.J.; Palma-Oliveira, J.M.; Branquinho, C. The role of forest in mitigating the impact of atmospheric dust pollution in a mixed landscape. Environ. Sci. Pollut. Res. 2017, 24, 12038–12048. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, E.; Báez, K.; Diaz-Ambrona, C.H. Assessing drought risk in Mediterranean Dehesa grazing lands. Agric. Syst. 2016, 149, 65–74. [Google Scholar] [CrossRef]
- Cowling, R.M.; Rundel, P.W.; Lamont, B.B.; Arroyo, M.K.; Arianoutsou, M. Plant diversity in Mediterranean-climate regions. Trends Ecol. Evol. 1996, 11, 362–366. [Google Scholar] [CrossRef]
- Sebastià, M.T.; Kirwan, L.; Connolly, J. Strong shifts in plant diversity and vegetation composition in grassland shortly after climàtic change. J. Veg. Sci. 2008, 19, 299–306. [Google Scholar] [CrossRef]
- De la Riva, E.; Lloret, F.; Pérez-Ramos, I.M.; Marañon, T.; Saura-Mas, S.; Díaz-Delgado, R.; Villar, R. The importance of funcional diversity in the stability of Mediterranean shrubland communities after the impacts of extreme climàtic events. J. Plant Ecol. 2017, 2, 281–293. [Google Scholar] [CrossRef]
- Lloret, F.; Peñuelas, J.; Estiarte, M. Experimental evidence of reduced diversity of seedlings due to climate modification in a Mediterranean-type community. Glob. Chang. Biol. 2004, 10, 248–258. [Google Scholar] [CrossRef]
- Matías, L.; Zamora, R.; Castro, J. Repercussions of simulated climate change on the diversity of Woody-recruit bank in a Mediterranean-type ecosystem. Ecosystems 2011, 14, 672–682. [Google Scholar] [CrossRef]
- Legakis, A.; Adamopoulou, C. Temporal responses of soil invertebrate communities to drought stress in two semiarid ecosystems of the Mediterranean. Isr. J. Zool. 2013, 51, 331–348. [Google Scholar] [CrossRef]
- Santoja, M.; Fernandez, C.; Proffit, M.; Gers, C.; Gauquelin, T.; Reiter, I.M.; Cramer, W.; Baldy, V. Plant litter mixture partly mitigates the negative effects of extended drought on soil biota and litter decomposition in a Mediterranean oak forest. J. Ecol. 2017, 105, 801–815. [Google Scholar] [CrossRef]
- Shihan, A.; Hättenschwiller, S.; Mileu, A.; Joly, F.X.; Santoja, M.; Fromin, N. Changes in soil microbial substrate utilization in response to altered litter diversity and precipitation in a Mediterranean shrubland. Biol. Fertil. Soils 2017, 53, 171–185. [Google Scholar] [CrossRef]
- Jucker, T.; Bouriaud, O.; Avacaritei, D.; Dänila, I.; Duduman, G.; Valladares, F.; Coomes, D.A. Competition for light and wàter play contrastin roles in driving diversity-productivity relationships in Iberian forest. J. Ecol. 2014, 102, 1202–1213. [Google Scholar] [CrossRef]
- Vourlitis, G.L. Chronic N enrichment and drought alter plant cover and community composition in a Mediterranean-type semi-arid shrubland. Oecologia 2017, 184, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Ariño, A.H.; Gimeno, B.S.; Pérez de Zabalza, A.; Ibañez, R.; Ederra, A.; Santamaria, J.M. Influence of nitrogen deposition on plant biodiversity at Natura 2000 sites in Spain. In Nitrogen Deposition and Natura 2000; Hicks, W.K., Whitfield, C.P., Bealey, W.J., Sutton, M.A., Eds.; European Cooperation in Science&Technology (COST): Brussels, Belgium, 2011; pp. 140–146. [Google Scholar]
- Sterenberg, M.; Golodets, C.; Gutman, M.; Perevolotsky, A.; Kigel, J.; Henkin, Z. No precipitation legacy effects on above-ground net primary production and species diversity in grazed Mediterranean grassland: A 21-year experiment. J. Veg. Sci. 2017, 28, 260–269. [Google Scholar] [CrossRef]
- Thiel, D.; Kreyling, J.; Backhaus, S.; Beierkuhnlein, C.; Buhk, C.; Egen, K.; Huber, G.; Konnert, M.; Nagy, L.; Jentsch, A. Different reactions of central and marginal provenances of Fagus sylvatica to experimental drought. Eur. J. For. Res. 2014, 133, 247–260. [Google Scholar] [CrossRef]
- Delmotte, S.; Couderc, V.; Mouret, J.C.; López-Ridaura, S.; Barbier, J.M.; Hossard, L. From stakeholders narratives to modelling plausible future agricultural Systems. Integrated assessment of scenarios for Camargue, Southern France. Eur. J. Agron. 2017, 82, 292–307. [Google Scholar] [CrossRef]
- Granados, M.E.; Vilagrosa, A.; Chirino, E.; Vallejo, V.R. Reforestation with resprouter species to increase diversity and resilence in Mediterranean pine forests. For. Ecol. Manag. 2016, 362, 231–240. [Google Scholar] [CrossRef]
- De Dato, G.D.; Loperfido, L.; De Angelis, P.; Valentini, R. Establishment of a field with Mediterranean shrubs in Sardinia and its evaluation for climate mitigation and to combat desertification in semi-arid regions. iForest 2009, 2, 77–84. [Google Scholar] [CrossRef]
- Chirino, E.; Bonet, A.; Bellot, J.; Sánchez, J.R. Effects of 30-year-old Aleppo pine plantations on runoff, soil erosion, and plant diversity in a semi-arid landscape in south eastern Spain. Catena 2006, 65, 19–29. [Google Scholar] [CrossRef]
- Ribeiro, S.; Fernandes, J.P.; Espírito-Santo, M.D. Diversity and florístic patterns of Mediterranean grassland: The relative influence of environmental and land management factors. Biodivers. Conserv. 2014, 23, 2903–2931. [Google Scholar] [CrossRef]
- Stavi, I. Biochar use in forestry and tree-based agro-ecosystems for increasing climate change mitigation and adaptation. Int. J. Sustain. Dev. World Ecol. 2013, 20, 166–181. [Google Scholar] [CrossRef]
- Leiva, M.J.; Mancilla-Leyton, J.M.; Martín-Vicente, A. Methods to improve the recruitment of holm oak seedlings in grazed Mediterranean savanna-like ecosystems (dehesas). Ann. For. Sci. 2013, 70, 11–20. [Google Scholar] [CrossRef]
- Vizzarri, M.; Tognetti, R.; Marchetti, M. Forest Ecosystem services: Issues and challenges for biodiversity, conservation, and Management in Italy. Forest 2015, 6, 1810–1838. [Google Scholar] [CrossRef]
- Koniac, G.; Noy-Meir, I.; Perevolotsky, A. Modeling Dynamics of ecosystem services Basket in Mediterranean landscapes: A tool for rational management. Landsc. Ecol. 2011, 26, 109–124. [Google Scholar] [CrossRef]
- Vizzarri, M.; Sallustio, L.; Travaglini, D.; Bottalico, F.; Chirici, G.; Garfi, V.; Lafortezza, R.; La Mela Beca, D.S.; Lombardi, F.; Maetzke, F.; et al. The MIMOSE approach to suppiort sustainable forest management Planning at regional scale in Mediterranean contexts. Sustainability 2017, 9, 316. [Google Scholar] [CrossRef]
- Chornesky, E.A.; Ackerly, D.D.; Beier, P.; Davis, F.W.; Flint, L.E.; Lawler, J.J.; Moyle, P.B.; Moritz, M.A.; Scoonover, M.; Byrd, K.; et al. Adapting California’s ecosystems to a changing climate. BioScience 2015, 65, 247–262. [Google Scholar] [CrossRef]
- Almagro, M.; de Vicente, J.; Boix-Fayos, C.; García-Franco, N.; Melogares de Aguilar, J.; Gonazález, D.; Solé-Benet, A.; Martínez-Mena, M. Sustainable land management practices as providerrs of several ecosystem services under rainfed Mediterranean egroecosystems. Mitig. Adapt. Strateg. Glob. 2016, 21, 1029–1043. [Google Scholar] [CrossRef]
- Carvalho-Santos, C.; Sousa-Silva, R.; Gonçalves, J.; Pradinho Honrado, J. Ecosystem services and biodiversity conservation under forestation scenarios: Options to improve management in the Vez watershed, NW Portugal. Reg. Environ. Chang. 2016, 16, 1557–1570. [Google Scholar] [CrossRef]
- Prisco, I.; Carboni, M.; Jucker, T.; Acosta, A.T.R. Temporal changes in the vegetation of Italian coastal dunes: Identification winners and losers through the lens of funcional traïts. J. Appl. Ecol. 2016, 53, 1533–1542. [Google Scholar] [CrossRef]
- Palomo, I.; Martín-López, B.; Zorrilla-Miras, P.; García Del Amo, D.; Montes, C. Deliberative mapping of ecosystem services within and around Doñana National Park (SW Spain) in relation to land use change. Reg. Environ. Chang. 2014, 14, 237–251. [Google Scholar] [CrossRef]
- Marañón-Jiménez, S.; Castro, J. Effect of decomposing post-fire coarse woody debris on soil fertility and nutrient availability in a Mediterranean ecosystem. Biogeochemistry 2013, 112, 519–535. [Google Scholar] [CrossRef]
- Maroto, C.; Segura, M.; Ginestar, C.; Uriol, J.; Segura, B. Sustainable forest management in a Mediterranean region: Social preferences. For. Syst. 2013, 22, 546–558. [Google Scholar] [CrossRef]
- Quintas-Soriano, C.; Castro, A.J.; Castro, H.; García-Llorente, M. Impacts of land use change on ecosystem services and implicationsfor human well-being in Spanish drylands. Land Use Policy 2016, 54, 534–548. [Google Scholar] [CrossRef]
- García-Llorente, M.; Martín-López, B.; Nunes, P.A.L.D.; González, J.A.; Alcorlo, P.; Montes, C. Analyzing the social factors that influence willingness to pay for invasive alien species management under two diferent strategies: Eradication and prevention. Environ. Manag. 2011, 48, 418–435. [Google Scholar] [CrossRef] [PubMed]
- Fleischer, A.; Sternberg, M. The econòmic impact of global change on Mediterranean rangeland ecosystems: A space-for-time approach. Ecol. Econ. 2006, 59, 287–295. [Google Scholar] [CrossRef]
- Lafortezza, R.; Sanesi, G.; Chen, J. Large-scale effects of forest management in Mediterranean landscape of Europe. iForest 2013, 6, 342–346. [Google Scholar] [CrossRef]
Climate Change Driver | Organismic Responses | Ecosystemic Responses | Effects on Ecosystem Services |
---|---|---|---|
Warming | Fast genetic adaptation.
Metabolomic shift towards activated anti-stress metabolic pathways Changes in elemental composition of plants Morphological and metabolomic acclimation of plants under moderate warming Changes in phenology Increase of terpene emissions The increase in VOCs (volatile organic compounds) will affect the signal effect of these compounds for pollinators, thereby influencing their competitive ability | Desertification
Asymmetrical adaptation capacity among plant community species drive to changes in species composition at medium and long-term Changes in the phenology of plant-pollinators relationships Increase of POPs (persistent organic pollutants) concentrations in environment and organisms Transformation of primary POPs to more toxic secondary POPs Exacerbation of phenological asynchronies between plants and their pollinators. These climate-induced phenological disruptions may also have unexpected eco-evolutionary consequences, biasing sex ratios in the populations of insect species where sex is determined by temperature. Shifts of species distribution areas of plants and animals to higher latitudes and/or latitudes | Decreased provision of several ecosystem services, such as water storing capacity, timber, mushrooms, tourism, soil conservation.
Less water availability for human activities including food production and recreative services Increased land cover not situable for farmland and cropland activities |
Drought | Fast genetic adaptation
Metabolomic shifts towards activated anti-stress metaboloc pathways Changes in elemental composition of plants Morphological and metabolomic acclimation of plants under moderate drought Disappearance of less drought resistant species under prolonged drought events and/or chronic drought enhancement. Changes in palatability in plant tissues Changed terpene emissions | Desertification
Asymmetrical adaptation capacity among plant community species drives to changes in species composition at medium and long-term favouring drought resistent species Decreases of total ecosystem nutrient content Changes of allocation to nutrients from leaves to roots, and from plants to soil Decrease in soil mineralization Increases of more recalcitrant fractions of nutrients and decreases of more labile fractions in soils The increasing recurrent wildfires linked to drought have transformed several forested areas to shrublands in the last 20 years, e.g., in southern Portugal Reduction of ecosystem capacity to act as C-storage | Decreased provision of several ecosystem services, such as water storing capacity, timber, mushrooms, tourism, soil conservation
Less water availability for human activities including food production and recreative services Increase of land cover not situable for farmland and cropland activities Decrease of tourism and hiking Losses of biodiversity and ecosystem C-storing capacity Loss of soil protection capacity |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peñuelas, J.; Sardans, J.; Filella, I.; Estiarte, M.; Llusià, J.; Ogaya, R.; Carnicer, J.; Bartrons, M.; Rivas-Ubach, A.; Grau, O.; et al. Impacts of Global Change on Mediterranean Forests and Their Services. Forests 2017, 8, 463. https://doi.org/10.3390/f8120463
Peñuelas J, Sardans J, Filella I, Estiarte M, Llusià J, Ogaya R, Carnicer J, Bartrons M, Rivas-Ubach A, Grau O, et al. Impacts of Global Change on Mediterranean Forests and Their Services. Forests. 2017; 8(12):463. https://doi.org/10.3390/f8120463
Chicago/Turabian StylePeñuelas, Josep, Jordi Sardans, Iolanda Filella, Marc Estiarte, Joan Llusià, Romà Ogaya, Jofre Carnicer, Mireia Bartrons, Albert Rivas-Ubach, Oriol Grau, and et al. 2017. "Impacts of Global Change on Mediterranean Forests and Their Services" Forests 8, no. 12: 463. https://doi.org/10.3390/f8120463
APA StylePeñuelas, J., Sardans, J., Filella, I., Estiarte, M., Llusià, J., Ogaya, R., Carnicer, J., Bartrons, M., Rivas-Ubach, A., Grau, O., Peguero, G., Margalef, O., Pla-Rabés, S., Stefanescu, C., Asensio, D., Preece, C., Liu, L., Verger, A., Barbeta, A., ... Terradas, J. (2017). Impacts of Global Change on Mediterranean Forests and Their Services. Forests, 8(12), 463. https://doi.org/10.3390/f8120463