Modelling of Climate Conditions in Forest Vegetation Zones as a Support Tool for Forest Management Strategy in European Beech Dominated Forests
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Regional Scenario of Changes in Climate Conditions of Vegetation Zonation in the Czech Republic
3.2. Application of the Regional Scenario for Sustainable Management of Beech-Dominated Forests
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kolström, M.; Lindner, M.; Vilén, T.; Maroschek, M.; Seidl, R.; Lexer, M.J.; Netherer, S.; Kremer, A.; Delzon, S.; Barbati, A.; et al. Reviewing the Science and Implementation of Climate Change Adaptation Measures in European Forestry. Forests 2011, 2, 961–982. [Google Scholar] [CrossRef] [Green Version]
- Nabuurs, G.J.; Pussinen, A.; van Bruselen, J.; Schelhaas, M.J. Future harvesting pressure on European forests. Eur. J. For. Res. 2007, 126, 391–400. [Google Scholar] [CrossRef]
- Strengbom, J.; Dahlberg, A.; Larsson, A.; Lindelöw, A.; Sandström, J.; Widenfalk, O.; Gustafsson, L. Introducing Intensively Managed Spruce Plantations in Swedish Forest Landscapes will Impair Biodiversity Decline. Forests 2011, 2, 610–630. [Google Scholar] [CrossRef]
- Seidl, R.; Rammer, W.; Lexer, M.J. Climate change vulnerability of sustainable forest management in the Eastern Alps. Clim. Chang. 2011, 106, 225–254. [Google Scholar] [CrossRef]
- European Environmental Agency (EEA). Impacts of Europe’s Changing Climate; EEA Report No. 2; European Environmental Agency: Copenhagen, Denmark, 2004. [Google Scholar]
- Lindner, M.; Fitzgerald, J.B.; Zimmermann, N.E.; Reyer, C.; Delzon, S.; van der Maaten, E.; Schelhaas, M.J.; Lasch, P.; Eggers, J.; van der Maaten-Theunissen, M.; et al. Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management? J. Environ. Manag. 2014, 146, 69–83. [Google Scholar] [CrossRef] [PubMed]
- Niinemets, Ü. Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: Past stress history, stress interactions, tolerance and acclimation. For. Ecol. Manag. 2010, 260, 1623–1639. [Google Scholar] [CrossRef]
- Temperli, C.; Bugman, H.; Elkin, C. Adaptive management for competing forest goods and services under climate change. Ecol. Appl. 2012, 22, 2065–2077. [Google Scholar] [CrossRef] [PubMed]
- Bohn, U.; Neuhäusl, R.; Gollub, G.; Hettwer, C.; Neuhäuslová, Z.; Schlüter, H.; Weber, H. Map of the Natural Vegetation of Europe. Scale 1:2500000; Landwirtschaftsverlag: Münster, Germany, 2002. [Google Scholar]
- Tarp, P.; Helles, F.; Holten-Andersen, P.; Larsen, J.B.; Strange, N. Modelling near-natural silvicultural regimes for beech—An economic sensitivity analysis. For. Ecol. Manag. 2000, 130, 187–198. [Google Scholar] [CrossRef]
- Silva, D.E.; Rezende Mazzella, P.; Legay, M.; Corcket, E.; Dupouey, J.L. Does natural regeneration determine the limit of European beech distribution under climatic stress? For. Ecol. Manag. 2012, 266, 263–272. [Google Scholar] [CrossRef]
- Saltré, F.; Duputié, A.; Gaucherel, C.; Chuine, I. How climate, migration ability and habitat fragmentation affect the projected future distribution of European beech. Glob. Chang. Biol. 2015, 21, 897–910. [Google Scholar] [CrossRef] [PubMed]
- Chiesi, M.; Chirici, G.; Marchetti, M.; Hasenauer, H.; Moreno, A.; Knohl, A.; Matteucci, G.; Pilegaard, K.; Granier, A.; Longdoz, B.; et al. Testing the applicability of BIOME-BGC to simulate beech gross primary production in Europe using a new continental weather dataset. Ann. For. Sci. 2016, 73, 713–727. [Google Scholar] [CrossRef]
- Saltré, F.; Saint-Amant, R.; Gritti, E.S.; Brewer, S.; Gaucherel, C.; Davis, B.A.S.; Chuine, I. Climate or migration: What limited European beech post-glacial colonization? Glob. Ecol. Biogeogr. 2013, 22, 1217–1227. [Google Scholar] [CrossRef]
- Di Filippo, A.; Biondi, F.; Maugeri, M.; Schirone, B.; Piovesan, G. Bioclimate and growth history affect beech lifespan in the Italian Alps and Apennines. Glob. Chang. Biol. 2012, 18, 960–972. [Google Scholar] [CrossRef]
- Seidling, W.; Ziche, D.; Beck, W. Climate responses and interrelations of stem increment and crown transparency in Norway spruce, Scots pine, and common beech. For. Ecol. Manag. 2012, 284, 196–204. [Google Scholar] [CrossRef]
- Van der Maaten, E. Climate sensitivity of radial growth in European beech (Fagus sylvatica L.) at different aspects in southwestern Germany. Trees 2012, 26, 777–788. [Google Scholar] [CrossRef] [Green Version]
- Gessler, A.; Keitel, C.; Kreuzwieser, J.; Matyssek, R.; Seiler, W.; Rennenberg, H. Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees 2007, 21, 1–11. [Google Scholar] [CrossRef]
- Latte, N.; Lebourgeois, F.; Claessens, H. Increased tree-growth synchronization of beech (Fagus sylvatica L.) in response to climate change in northwestern Europe. Dendrochronologia 2015, 33, 69–77. [Google Scholar] [CrossRef]
- Müller-Haubold, H.; Hertel, D.; Seidel, D.; Knutzen, F.; Leuschner, C. Climate Responses of Aboveground Productivity and Allocation in Fagus sylvatica: A Transect Study in Mature Forests. Ecosystems 2013, 16, 1498–1516. [Google Scholar] [CrossRef]
- Bosela, M.; Štefančík, I.; Petráš, R.; Vacek, S. The effects of climate warming on the growth of European beech forests depend critically on thinning strategy and site productivity. Agric. For. Meteorol. 2016, 222, 21–31. [Google Scholar] [CrossRef]
- Pötzelsberger, E.; Wolfslehner, B.; Hasenauer, H. Climate change impacts on key forest functions of the Vienna Woods. Eur. J. For. Res. 2015, 134, 481–496. [Google Scholar] [CrossRef]
- Mette, T.; Dolos, K.; Meinardus, C.; Braüning, A.; Reineking, B.; Blaschke, M.; Pretzsch, H.; Beierkuhnlein, C.; Gohlke, A.; Wellstein, C. Climatic turning point for beech and oak under climate change in Central Europe. Ecosphere 2013, 4, 1–19. [Google Scholar] [CrossRef]
- Stojanovič, D.B.; Kržič, A.; Matovič, B.; Orlovič, S.; Duputie, A.; Djurdjevič, V.; Galič, Z.; Stojnič, S. Prediction of the European beech (Fagus sylvatica L.) xeric limit using a regional climate model: An example from southeast Europe. Agric. For. Meteorol. 2013, 176, 94–103. [Google Scholar] [CrossRef]
- Pretzsch, H.; Dieler, J.; Seifert, T.; Rötzer, T. Climate effects on productivity and resource use efficiency of Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica (L.)) in stands with different spatial mixing patterns. Trees 2012, 26, 1343–1360. [Google Scholar] [CrossRef]
- Pretzsch, H.; Schütze, G.; Uhl, E. Resistance of European tree species to drought stress in mixed versus pure forests: Evidence of stress release by inter-specific facilitation. Plant Biol. 2013, 15, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Weber, P.; Bugmann, H.; Pluess, A.R.; Walthert, L.; Rigling, A. Drought response and changing mean sensitivity of European beech close to the dry distribution limit. Trees 2013, 27, 171–181. [Google Scholar] [CrossRef]
- Metz, J.; Annighöfer, P.; Schall, P.; Zimmermann, J.; Kahl, T.; Schultze, E.-D.; Ammer, C. Site-adapted admixed tree species reduce drought susceptibility of mature European beech. Glob. Chang. Biol. 2016, 22, 903–920. [Google Scholar] [CrossRef] [PubMed]
- De Koning, J.; Turnhout, E.; Winkel, G.; Blondet, M.; Borras, L.; Ferranti, F.; Geitzenauer, M.; Sotirov, M.; Jump, A. Managing climate change in conservation practice: An exploration of the science–management interface in beech forest management. Biodivers. Conserv. 2014, 23, 3657–3671. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, R.; Lenoir, J.; Piedallu, C.; Riofrío-Dillon, G.; de Ruffray, P.; Vidal, C.; Pierrat, J.C.; Gegout, J.C. Changes in plant community composition lag behind climate warming in lowland forests. Nature 2011, 479, 517–520. [Google Scholar] [CrossRef] [PubMed]
- Garamvoelgyi, A.; Hufnagel, L. Impacts of climate change on vegetation distribution No. 1. Climate change induced vegetation shifts in the Palearctic region. Appl. Ecol. Environ. Res. 2013, 11, 79–122. [Google Scholar] [CrossRef]
- Iverson, L.R.; Mckenzie, D. Tree-species range shifts in a changing climate: Detecting, modelling, assisting. Landsc. Ecol. 2013, 28, 879–889. [Google Scholar] [CrossRef]
- Büntgen, U.; Frank, D.C.; Kaczka, R.J.; Verstege, A.; Zwijacz-Kozica, T.; Esper, J. Growth responses to climate in a multi-species tree-ring network in the Western Carpathian Tatra Mountains. Tree Physiol. 2007, 27, 689–702. [Google Scholar] [CrossRef] [PubMed]
- Vanoni, M.; Bugmann, H.; Nötzli, M.; Bigler, C. Quantifying the effects of drought on abrupt growth decreases of major tree species in Switzerland. Ecol. Evol. 2016, 6, 3555–3570. [Google Scholar] [CrossRef]
- Kulhavý, J. A new concept in sustainable forest management—The need for forest ecosystem and landscape research. J. For. Sci. 2004, 50, 520–525. [Google Scholar]
- Svobodová, J.; Voženílek, V. Relief for Models of Natural Phenomena. In Landscape Modelling: Geographical Space, Transformation and Future Scenarios (Urban and Landscape Perspectives); Anděl, J., Bičík, I., Dostál, P., Shasneshin, S., Eds.; Springer: Dordrecht, The Netherlands, 2009; Volume 8, pp. 183–196. [Google Scholar]
- Elkin, C.; Gutiérrez, A.G.; Leuzinger, S.; Manusch, C.; Temperli, C.; Rasche, L.; Bugmann, H. A 2 °C warmer world is not safe for ecosystem services in the European Alps. Glob. Chang. Biol. 2013, 19, 1827–1840. [Google Scholar] [CrossRef] [PubMed]
- Egli, H.R. Landscape change in the Bavarian Alpine Region and political approaches to management. Erde 2010, 141, 383–384. [Google Scholar]
- Rosbakh, S.; Bernhardt-Römermann, M.; Poschlod, P. Elevation matters: Contrasting effects of climate change on the vegetation development at different elevations in the Bavarian Alps. Alp Bot. 2014, 124, 143–154. [Google Scholar] [CrossRef]
- Švajda, J.; Solar, J.; Janiga, M.; Buliak, M. Dwarf Pine (Pinus mugo) and selected abiotic habitat conditions in the Western Tatra Mountains. Mt. Res. Dev. 2011, 31, 220–228. [Google Scholar] [CrossRef]
- Kutnar, L.; Kobler, A. Prediction of forest vegetation shift due to different climate-change scenarios in Slovenia. Sumar. List 2011, 135, 113–126. [Google Scholar]
- Zajaczkowski, J.; Brzeziecki, B.; Perzanowski, K.; Kozak, I. Impact of potential climate changes on competitive ability of main forest species in Poland. Sylwan 2013, 157, 253–261. (In Polish) [Google Scholar]
- Treml, V.; Chuman, T. Ecotonal Dynamics of the Altitudinal Forest Limit are Affected by Terrain and Vegetation Structure Variables: An Example from the Sudetes Mountains in Central Europe. Arct. Antarct. Alp. Res. 2015, 47, 133–146. [Google Scholar] [CrossRef]
- Griess, V.C.; Acevedo, R.; Härtl, F.; Staupendahl, K.; Knoke, T. Does mixing tree species enhance stand resistance against natural hazards? A case study for spruce. For. Ecol. Manag. 2012, 267, 284–296. [Google Scholar] [CrossRef]
- Lasch-Born, P.; Suckow, F.; Gutsch, M.; Reyer, C.; Hauf, Y.; Murawski, A.; Pilz, T. Forests under climate change: Potential risks and Opportunities. Meteorol. Z. 2015, 24, 157–172. [Google Scholar]
- Matthies, B.D.; Valsta, L.T. Optimal forest species mixture with carbon storage and albedo effect for climate change mitigation. Ecol. Econ. 2016, 123, 95–105. [Google Scholar] [CrossRef]
- EUFORGEN 2011. European Forest Genetic Resources Programme. Distribution Maps. Available online: http://www.euforgen.org/distribution-maps (accessed on 6 August 2016).
- Parviainen, J.; Frank, G. Protected forests in Europe approaches-harmonizing the definitions for international comparison and forest policy making. J. Environ. Manag. 2003, 67, 27–36. [Google Scholar] [CrossRef]
- Idle, E.T.; Bines, T.J.H. Management Planning for Protected Areas. A Guide for Practitioners and Their Bosses; Eurosite, England Nature: Peterborough, UK, 2005; pp. 86–144. [Google Scholar]
- Reyer, C.; Bugmann, H.; Nabuurs, G.J.; Hanewinkel, M. Models for adaptive forest management. Reg. Environ. Chang. 2015, 15, 1483–1487. [Google Scholar] [CrossRef]
- Hanewinkel, M.; Hummel, S.; Cullmann, D. Modelling and economic evaluation of forest biome shifts under climate change in southwest Germany. For. Ecol. Manag. 2010, 259, 710–719. [Google Scholar] [CrossRef]
- Keskitalo, E.C.H. How can forest management adapt to climate change? Possibilities in different forestry systems. Forests 2011, 2, 415–430. [Google Scholar] [CrossRef]
- Klenk, N.L.; Adams, B.W.; Bull, G.Q.; Innes, J.L.; Cohen, S.J.; Larson, B.C. Climate change adaptation and sustainable forest management: A proposed reflexive research agenda. For. Chron. 2011, 87, 351–357. [Google Scholar] [CrossRef]
- Mermet, L.; Farcy, C. Contexts and concepts of forest planning in a diverse and contradictory world. For. Policy Econ. 2011, 13, 361–365. [Google Scholar] [CrossRef]
- Vlčková, V.; Buček, A.; Machar, I.; Daněk, T.; Pechanec, V.; Brus, J.; Kilianová, H. The application of geobiocoenological landscape typology in the modelling of climate change implications. J. Landsc. Ecol. 2015, 8, 69–81. [Google Scholar]
- Kirilenko, A.P.; Solomon, A.M. Modelling dynamic vegetation response to rapid climate change using bioclimatic classification. Clim. Chang. 1998, 38, 15–49. [Google Scholar] [CrossRef]
- Yee, T.W.; Mitchell, N.D. Generalized additive models in plant ecology. J. Veg. Sci. 1991, 2, 587–602. [Google Scholar] [CrossRef]
- Woodward, F.I.; Lomas, M.R.; Betts, R.A. Vegetation-climate feedback in a greenhouse world. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1998, 353, 38–39. [Google Scholar] [CrossRef]
- Úradníček, L.; Maděra, P.; Kolibáčová, S.; Koblížek, J. Woody Plant Species in Czech Republic; Matice Lesnická: Písek, Czech Republic, 2001; p. 333. (In Czech) [Google Scholar]
- Moravec, J.; Husová, M.; Chytrý, M.; Neuhäuslová, Z. Vegetation Survey of the Czech Republic. Volume 2. Hygrophilous, Mesophilous and Xerophilous Deciduous Forests; Academia: Praha, Czech Republic, 2000; p. 319. (In Czech) [Google Scholar]
- Zlatník, A. Overview of geobiocoene groups originally forest and shrub type in ČSR. Zprávy Geografického ČSAV 1976, 13, 55–64. (In Czech) [Google Scholar]
- Viewegh, J.; Kusbach, A.; Mikeska, M. Czech forest ecosystem classification. J. For. Sci. 2003, 49, 85–93. [Google Scholar]
- Macků, J. Climatic characteristics of forest vegetation zones of the Czech Republic. J. Landsc. Ecol. 2015, 7, 39–48. [Google Scholar] [CrossRef]
- Pretel, J. Current Climate Development and its Outlook. Ochr. Prir. 2009, 46, 2–7. (In Czech) [Google Scholar]
- Nakićenović, N.; Swart, R. Special Report on Emissions Scenarios; A Special Report of Working Group III of the IPCC; IPCC: New York, NY, USA, 2000; p. 612. [Google Scholar]
- Machar, I. Applying of the Biogeography Register to Predicting the Consequences of Global Climate Changes on the Landscape in the Czech Republic. In Proceedings of the 11th International Conference on Environment, Ecosystems and Development, Brasov, Romania, 1–3 June 2013; pp. 15–18.
- Buček, A.; Vlčková, V. Collection of Maps with Prognosis of Global Climate Changes Consequences for Nature in the Czech Republic. Acta Pruhon. 2011, 98, 83–87. [Google Scholar]
- Skaloš, J.; Engstová, B. Methodology for mapping non-forest wood elements using historic cadastral maps and aerial photographs as a basis for management. J. Environ. Manag. 2010, 91, 831–843. [Google Scholar] [CrossRef] [PubMed]
- Vlčková, V. System Nature of Modelling of Possible Trends in the Effects of Climate Change through the Technology of Geographic Information Systems Tools. Acta Inform. Prag. 2014, 3, 70–88. (In Czech) [Google Scholar] [CrossRef]
- Kupka, I. Is the Lang’s rain factor usable for assessing the microclimate influence on growth height of forest culture? Rep. For. Res. 2006, 51, 153–156. [Google Scholar]
- Botkin, D.B.; Saxe, H.; Araújo, M.B.; Betts, R.; Bradshaw, R.H.W.; Cedhagen, T.; Chesson, P.; Dawson, T.P.; Etterson, J.R.; Faith, D.P.; et al. Forecasting the effects of global warming on biodiversity. BioScience 2007, 57, 227–236. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Bedia, J.; Herrera, S.; Gutiérrez, J.M. Dangers of using global bioclimatic datasets for ecological niche modeling. Limitations for future climate projections. Glob. Planet. Chang. 2013, 107, 1–12. [Google Scholar] [CrossRef]
- Bublinec, E.; Luptáková, A.; Kúdelová, D.; Macko, J. Selected characteristics of climate in beech ecosystems. Ecology 2011, 30, 282–287. [Google Scholar] [CrossRef]
- Zang, C.; Hartl-Meier, C.; Dittmar, C.; Rothe, A.; Menzel, A. Patterns of drought tolerance in major European temperate forest trees: Climatic drivers and levels of variability. Glob. Chang. Biol. 2014, 20, 3767–3779. [Google Scholar] [CrossRef] [PubMed]
- Plesník, J.; Pelc, F. Nature and landscape in the Czech Republic and their adaptation to climate change. Ochr. Prír. 2009, 64, 30–34. (In Czech) [Google Scholar]
- Divisek, J.; Chytry, M.; Grulich, V.; Polakova, L. Landscape classification of the Czech Republic based on the distribution of natural habitats. Preslia 2014, 86, 209–231. [Google Scholar]
- Bakkenes, M.; Alkemade, J.R.M.; Ihle, F.; Leemans, R.; Latour, J.B. Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Glob. Chang. Biol. 2002, 8, 390–407. [Google Scholar] [CrossRef]
- Konvička, M.; Maradová, M.; Beneš, J.; Fric, Z.; Kepka, P. Uphill shifts in distribution of butterflies in the Czech Republic: Effects of changing climate detected on a regional scale. Glob. Ecol. Biogeogr. 2003, 12, 403–410. [Google Scholar] [CrossRef]
- Reif, J.; Storch, D.; Voříšek, P.; Šťastný, K.; Bejček, V. Bird-habitat associations predict population trends in central European forest and farmland birds. Biodivers. Conserv. 2008, 17, 3307–3319. [Google Scholar] [CrossRef]
- Gonzales, P.; Neilson, R.P.; Lenihan, J.M.; Drapek, R.J. Global patterns in the vulnerability of ecosystems to vegetation shift due to climate change. Glob. Ecol. Biogeogr. 2010, 19, 755–768. [Google Scholar] [CrossRef]
- Grassl, H. Status and improvements of coupled general circulation models. Science 2000, 288, 1991–1997. [Google Scholar] [CrossRef] [PubMed]
- Dubrovský, M.; Hayes, M.; Pierpaolo, D.; Trnka, M.; Svoboda, M.; Pierpaolo, Z. Multi-GCM projections of future drought and climate variability indicators for the Mediterranean region. Reg. Environ. Chang. 2014, 14, 1907–1919. [Google Scholar] [CrossRef]
- Neilson, R.P.; Pitelka, L.F.; Solomon, A.M.; Nathan, R.; Midgley, G.F.; Fragoso, J.M.V.; Lishke, H.; Thompson, K. Forecasting Regional to Global Plant Migration in Response to Climate Change. Bioscience 2005, 55, 749–759. [Google Scholar] [CrossRef]
- Drégelyi-Kiss, Á.; Drégelyi-Kiss, G.; Hufnagel, L. Ecosystems as climate controllers-biotic feedbacks. Appl. Ecol. Environ. Res. 2008, 6, 111–134. [Google Scholar] [CrossRef]
- Opdam, P.; Wascher, D. Climate change meets habitat fragmentation: Linking landscape and biogeographical scale levels in research and conservation. Biol. Conserv. 2004, 117, 285–297. [Google Scholar] [CrossRef]
- Walther, G.R. Community and ecosystem responses to recent climate change. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 2019–2024. [Google Scholar] [CrossRef] [PubMed]
- World Climate Research Programme. Available online: http://wcrp.ipsl.jussieu.fr/SF_RCD_CORDEX.html (accessed on 15 March 2017).
- EURO-CORDEX. Available online: http://www.euro-cordex.net/060378/index.php.en (accessed on 15 March 2017).
- Tuček, P.; Caha, J.; Janoška, Z.; Vondráková, A.; Samec, P.; Voženílek, V.; Bojko, J. Forest vulnerability zones in the Czech Republic. J. Maps 2014, 10, 179–182. [Google Scholar] [CrossRef]
- Jiménez-Alfaro, B.; Marcenó, C.; Bueno, A.; Gavilán, R.; Obeso, J.R. Biogeographic deconstruction of alpine plant communities along altitudinal and topographic gradients. J. Veg. Sci. 2014, 25, 160–171. [Google Scholar] [CrossRef]
- Parmesan, C. Biotic Response: Range and Abundance Changes. In Climate Change and Biodiversity, 1st ed.; Lovejoy, T.E., Hannah, L., Eds.; Yale University Press: New Haven, CT, USA; London, UK, 2005; pp. 41–55. [Google Scholar]
- Lomolino, M.V.; Riddle, B.R.; Brown, J.H. Biogeography, 3rd ed.; Sinauer Associates Inc.: Sunderland, UK, 2009; p. 752. [Google Scholar]
- Peterson, A.T.; Tian, H.; Martínez-Meyer, E.; Soberón, J.; Sánchez-Cordero, V.; Huntley, B. Modelling Distributional Shifts of Individual Species and Biomes. In Climate Change and Biodiversity, 1st ed.; Lovejoy, T.E., Hannah, L., Eds.; Yale University Press: New Haven, CT, USA; London, UK, 2005; pp. 211–228. [Google Scholar]
- Giorgi, F.; Hewitson, B.; Christensen, J.; Hulme, M.; von Storch, H.; Whetton, P.; Jones, R.; Merns, I.; Fu, C. Regional climate information—Evaluation and projection. In Climate Change 2001: The Scientific Basis; Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P., Dai, X., Maskell, K., Johnson, C.I., Eds.; Cambridge University Press: New York, NY, USA, 2002; pp. 583–638. [Google Scholar]
- Peterson, A.T.; Soberon, T.J.; Sanchez-Cordero, V. Conservatism of ecological niches in evolutionary time. Science 1999, 285, 1265–1267. [Google Scholar] [CrossRef] [PubMed]
- Vahalík, P.; Mikita, T. Possibilities of forest altitudinal vegetation zones modelling by geoinformatic analysis. J. Landsc. Ecol. 2012, 4, 49–61. [Google Scholar] [CrossRef]
- Mackovčin, P. A multi-level ecological network in the Czech Republic: Implementing the territorial system of ecological stability. GeoJournal 2000, 51, 211–220. [Google Scholar] [CrossRef]
- Průša, E. Silviculture on Typological Foundations, 1st ed.; Lesnická Práce: Kostelec nad Cernymi lesy, Czech Republic, 2001; p. 593. (In Czech) [Google Scholar]
- Neilson, R.P.; Prentice, I.C.; Smith, B.; Kittel, T.; Viner, D. Simulated changes in vegetation distribution under global warning. In The Regional Impacts of Climate Change: An assessment of Vulnerability; Special Report of IPCC Working Group II; Watson, R.T., Zinyowera, M.C., Moss, R.H., Dokken, D.J., Eds.; Cambridge University Press: Cambridge, UK, 1998; pp. 439–456. [Google Scholar]
- Prentice, I.C.; Webb, R.S.; Ter-Mikhaelian, M.T.; Solomon, A.M.; Smith, T.M.; Pitovranov, S.E.; Nikolov, N.T.; Minin, A.A.; Leemans, R.; Lavorel, S.; et al. Developing a Global Vegetation Dynamics Model: Results of an IIASA Summer Workshop; IIASA Research Report, RR-89-007; Institute for Applied Systems Analysis: Laxenburg, Austria, 1989; p. 48. [Google Scholar]
- Bachelet, D.R.; Neilson, R.P.; Lenihan, J.M.; Drapek, R.J. Climate Change Effects on Vegetation Distribution and Carbon Budget in the U.S. Ecosystems 2001, 4, 164–185. [Google Scholar] [CrossRef]
- Morin, X.; Thuiler, W. Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change. Ecology 2009, 90, 1301–1313. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, F.; DeCanio, S.J.; Howarth, R.B.; Sheeran, K. Limitations of integrated assessment models of climate change. Clim. Chang. 2009, 95, 297–315. [Google Scholar] [CrossRef]
- Walther, G.R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.C.; Fromentin, J.M.; Hoegh-Guldberg, O.; Fairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Schröter, D.; Cramer, W.; Leemans, R.; Prentice, I.C.; Araújo, M.B. Ecosystem service supply and vulnerability to global change in Europe. Science 2005, 310, 1333–1337. [Google Scholar] [CrossRef] [PubMed]
- Trnka, M.; Brázdil, R.; Dubrovský, M.; Semerádová, D.; Štěpánek, P.; Dobrovolný, P.; Možný, M.; Eitzinger, J.; Málek, J.; Formayer, H.; et al. A 200-year climate record in Central Europe: Implications for agriculture. Agron. Sustain. Dev. 2011, 31, 631–641. [Google Scholar] [CrossRef]
- Spulerova, J.; Dobrovodska, M.; Izakovicova, Z.; Kenderessy, P.; Petrovic, F.; Stefunkova, D. Developing a stratégy for the protection of traditional agricultural landscapes based on a complex landscape-ecological evaluation (the case study of a mountain landscape in Slovakia). Morav. Geogr. Rep. 2013, 21, 15–26. [Google Scholar]
- Kongsager, R.; Locatelli, B.; Chazarin, F. Addressing Climate Change Mitigation and Adptation Together: A Global Assessment of Agriculture and Forestry Projects. Environ. Manag. 2016, 57, 271–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pretel, J. Specification of Existing Estimates of the Climate Change Impacts in the Sectors of Water Management, Agriculture and Forestry Sectors, and Proposals for Adaptation; Final Report 2007–2011, Project VaV—SP/1a6/108/07; ČHMÚ: Praha, Czech Republic, 2011; p. 126. (In Czech) [Google Scholar]
- Campioli, M.; Vincke, C.; Jonard, M.; Kint, V.; Demarée, G.; Ponette, G. Current status and predicted impact of climate change on forest production and biogeochemistry in the temperate oceanic European zone: Review and prospects for Belgium as a case study. J. For. Res. 2012, 17, 1–18. [Google Scholar] [CrossRef]
- Jönsson, A.M.; Lagergren, F.; Smith, B. Forest management facing climate change—An ecosystem model analysis of adaptation strategies. Mitig. Adapt. Strateg. Glob. Chang. 2015, 20, 201–220. [Google Scholar] [CrossRef]
- Torres-Rojo, J.M.; Vilcko, F.; von Gadow, K. Evaluating management regimes for European beech forests using dynamic programming. For. Syst. 2014, 23, 470–482. [Google Scholar]
- Bilek, L.; Remes, J.; Zahradnik, D. Managed vs. unmanaged. Structure of beech forest stands (Fagus sylvatica L.) after 50 years of development, Central Bohemia. For. Syst. 2011, 20, 122–138. [Google Scholar] [CrossRef]
- Pretzsch, H.; Biber, P.; Uhl, E.; Dauber, E. Long-term stand dynamics of managed spruce-fir-beech mountain forests in Central Europe: Structure, productivity and regeneration success. Forestry 2015, 88, 407–428. [Google Scholar] [CrossRef]
- Vacek, Z.; Vacek, S.; Bilek, L.; Kral, J.; Remes, J.; Bulusek, D.; Kralicek, I. Ungulate Impact on Natural Regeneration in Spruce-Beech-Fir Stands in Cerny Dul Nature Reserve in the Orlicke Hory Mountains, Case Study from Central Sudetes. Forests 2014, 5, 2929–2946. [Google Scholar] [CrossRef]
- Kucbel, S.; Saniga, M.; Jaloviar, P.; Vencurik, J. Stand structure and temporal variability in old-growth beech-dominated forests of the northwestern Carpathians: A 40-years perspective. For. Ecol. Manag. 2012, 264, 125–133. [Google Scholar] [CrossRef]
Forest Vegetation Zone | Extent of Climate Conditions for Vegetation Zones in | |||||
---|---|---|---|---|---|---|
2010 | 2030 | 2050 | 2070 | 2090 | ||
% from the Area of the Czech Republic | ||||||
1. | Oak | 3.46 | 3.98 | 12.78 | 38.41 | 40.82 |
2. | Beech-oak | 12.06 | 14.29 | 5.49 | 38.51 | 38.51 |
3. | Oak-beech | 18.21 | 20.14 | 20.14 | 16.41 | 16.41 |
4.a | Beech | 39.62 | 46.22 | 54.91 | 5.60 | 3.98 |
4.b | Oak-coniferous variety of the fourth vegetation belt | 3.62 | 8.69 | 0.00 | 0.00 | 0.00 |
5. | Fir-beech | 19.40 | 5.60 | 5.60 | 1.07 | 0.28 |
6. | Spruce-fir-beech | 2.53 | 0.80 | 0.80 | 0.00 | 0.00 |
7. | Spruce | 1.00 | 0.28 | 0.28 | 0.00 | 0.00 |
8. | Dwarf pine subalpine | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 |
Climate Conditions | 2010 | 2030 | 2050 | 2070 | 2090 |
---|---|---|---|---|---|
km2 | |||||
Unsuitable climate | 2144.86 | 2728.52 | 2144.86 | 30,281.86 | 30,281.86 |
Moderately suitable climate | 10,624.10 | 18,522.57 | 12,258.37 | 23,510.92 | 24,781.26 |
Suitable climate | 30,883.58 | 23,772.25 | 23,027.48 | 22,092.23 | 21,281.24 |
Optimum climate | 35,182.71 | 33,811.91 | 41,404.54 | 2950.25 | 2490.89 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machar, I.; Vlckova, V.; Bucek, A.; Vozenilek, V.; Salek, L.; Jerabkova, L. Modelling of Climate Conditions in Forest Vegetation Zones as a Support Tool for Forest Management Strategy in European Beech Dominated Forests. Forests 2017, 8, 82. https://doi.org/10.3390/f8030082
Machar I, Vlckova V, Bucek A, Vozenilek V, Salek L, Jerabkova L. Modelling of Climate Conditions in Forest Vegetation Zones as a Support Tool for Forest Management Strategy in European Beech Dominated Forests. Forests. 2017; 8(3):82. https://doi.org/10.3390/f8030082
Chicago/Turabian StyleMachar, Ivo, Veronika Vlckova, Antonin Bucek, Vit Vozenilek, Lubomir Salek, and Lucie Jerabkova. 2017. "Modelling of Climate Conditions in Forest Vegetation Zones as a Support Tool for Forest Management Strategy in European Beech Dominated Forests" Forests 8, no. 3: 82. https://doi.org/10.3390/f8030082
APA StyleMachar, I., Vlckova, V., Bucek, A., Vozenilek, V., Salek, L., & Jerabkova, L. (2017). Modelling of Climate Conditions in Forest Vegetation Zones as a Support Tool for Forest Management Strategy in European Beech Dominated Forests. Forests, 8(3), 82. https://doi.org/10.3390/f8030082