The Coupling of Treeline Elevation and Temperature is Mediated by Non-Thermal Factors on the Tibetan Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Climate
2.2. Study Sites and Environmental Factors
2.3. Data Analysis
2.3.1. Correlation Analysis
2.3.2. Relative Contribution of Environmental Factors to Treeline Elevation
2.3.3. Comparison between Temperatures Extracted from Worldclim Data and Reference Values
3. Results
3.1. Relationships between Treeline Elevation and Environmental Factors
3.2. Comparison between July Mean Temperatures Extracted from Worldclim Data and Reference Values
3.3. Predicting Treeline Elevation
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Site Code | Elevation (m a.s.l.) | Aspect | Slope (°) | Tree Species | Treeline Form | Study Region |
---|---|---|---|---|---|---|
QL1 | 3098 | N | 8 | Spruce | diffuse | Qilian Mts |
QL2 | 3386 | N | 33 | Spruce | diffuse | Qilian Mts |
QL3 | 3496 | NE | 37 | Spruce | diffuse | Qilian Mts |
QL4 | 3580 | S | 31 | Juniper | abrupt | Qilian Mts |
QL5 | 3700 | S | 32 | Juniper | abrupt | Qilian Mts |
DL1 | 4186 | S | 18 | Juniper | abrupt | Dulan |
DL2 | 4079 | S | 39 | Juniper | abrupt | Dulan |
WL1 | 3877 | NW | 27 | Spruce | diffuse | Wulan |
WL2 | 3847 | NE | 32 | Spruce | diffuse | Wulan |
WL3 | 3887 | NE | 24 | Spruce | diffuse | Wulan |
MQ1 | 3845 | SE | 12 | Juniper | abrupt | Maqu |
MQ2 | 3877 | SE | 13 | Juniper | abrupt | Maqu |
MQ3 | 3845 | SE | 20 | Juniper | abrupt | Maqu |
PW | 3240 | N | 41 | Birch | diffuse | Pingwu |
DZ1 | 4195 | N | 28 | Spruce | diffuse | Yushu |
DZ2 | 4279 | N | 21 | Spruce | diffuse | Yushu |
AB | 3968 | NW | 32 | Fir | diffuse | Aba |
BZ1 | 4462 | S | 26 | Juniper | abrupt | Yushu |
BZ2 | 4501 | S | 33 | Juniper | abrupt | Yushu |
BZ3 | 4370 | N | 26 | Spruce | abrupt | Yushu |
CD1 | 4308 | NE | 30 | Spruce | diffuse | Changdu |
CD2 | 4472 | NW | 38 | Spruce | diffuse | Changdu |
CD3 | 4436 | NE | 40 | Spruce | diffuse | Changdu |
CD4 | 4460 | E | 30 | Spruce | diffuse | Changdu |
CD5 | 4900 | W | 28 | Juniper | abrupt | Changdu |
LZ1 | 4390 | N | 10 | Fir | Diffuse | Nyingchi |
LZ2 | 4387 | N | 9 | Fir | diffuse | Nyingchi |
LZ3 | 4370 | N | 15 | Fir | diffuse | Nyingchi |
MD1 | 4095 | N | 30 | Spruce | diffuse | Maduo |
MD2 | 4116 | N | 30 | Spruce | diffuse | Maduo |
RW1 | 4471 | NE | 30 | Fir | diffuse | Ranwu |
RW2 | 4448 | NE | 33 | Fir | diffuse | Ranwu |
RW3 | 4478 | NW | 27 | Fir | diffuse | Ranwu |
BM1 | 4397 | N | 15 | Fir | diffuse | Deqin |
BM2 | 4398 | N | 22 | Fir | diffuse | Deqin |
BM3 | 4428 | NE | 26 | Fir | diffuse | Deqin |
GG1 | 3647 | SW | 42 | Fir | diffuse | Gongga Mts |
GG2 | 3641 | SW | 37 | Fir | diffuse | Gongga Mts |
GG3 | 3802 | SE | 31 | Fir | diffuse | Gongga Mts |
GLG | 3800 | N | 34 | Fir | diffuse | Gaoligong Mts |
DJ1 | 3920 | N | 19 | Fir | diffuse | Rikaze |
DJ2 | 3700 | N | 20 | Fir | diffuse | Rikaze |
DJ3 | 3410 | NW | 21 | Fir | diffuse | Rikaze |
LKZ | 4647 | SW | 39 | Juniper | abrupt | Shannan |
SX | 4585 | SW | 38 | Juniper | abrupt | Naqu |
LX1 | 4406 | SW | 28 | Juniper | abrupt | Langxian |
LX2 | 4378 | SE | 32 | Juniper | abrupt | Langxian |
LT1 | 4031 | NE | 30 | Birch | diffuse | Himalayan Mts |
LT2 | 4067 | N | 35 | Birch | diffuse | Himalayan Mts |
EV1 | 4098 | N | 26 | Fir | diffuse | Himalayan Mts |
EV2 | 4049 | N | 24 | Fir | diffuse | Himalayan Mts |
MN1 | 4086 | W | 33 | Birch | diffuse | Himalayan Mts |
MN2 | 4145 | N | 31 | Birch | diffuse | Himalayan Mts |
MN3 | 4095 | NW | 7 | Birch | diffuse | Himalayan Mts |
HUM1 | 4023 | NW | 31 | Birch | diffuse | Himalayan Mts |
HUM2 | 3990 | N | 22 | Fir | diffuse | Himalayan Mts |
SKB1 | 4150 | NE | 8 | Birch | diffuse | Himalayan Mts |
References
- Körner, C. Alpine Treelines: Functional Ecology of the Global High Elevation Tree Limits; Springer: Basel, Switzerland, 2012. [Google Scholar]
- Körner, C.; Paulsen, J. A world-wide study of high altitude treeline temperatures. J. Biogeogr. 2004, 31, 713–732. [Google Scholar] [CrossRef]
- Liu, H.; Tang, Z.; Dai, J.; Tang, Y.; Cui, H. Larch timberline and its development in North China. Mt. Res. Dev. 2002, 22, 359–367. [Google Scholar] [CrossRef]
- Liang, E.; Dawadi, B.; Pederson, N.; Eckstein, D. Is the growth of birch at the upper timberline in the Himalayas limited by moisture or by temperature? Ecology 2014, 95, 2453–2465. [Google Scholar] [CrossRef]
- Piper, F.I.; Viñegla, B.; Linares, J.C.; Camarero, J.J.; Cavieres, L.A.; Fajardo, A. Mediterranean and temperate treelines are controlled by different environmental drivers. J. Ecol. 2016, 104, 691–702. [Google Scholar] [CrossRef]
- Cieraad, E.; Mcglone, M.S.; Huntley, B. Southern Hemisphere temperature tree lines are not climatically depressed. J. Biogeogr. 2014, 41, 1456–1466. [Google Scholar] [CrossRef]
- Shi, P.; Körner, C.; Hock, G. A test of the growth-limitation theory for alpine treeline formation in evergreen and deciduous taxa of the eastern Himalayas. Funct. Ecol. 2008, 22, 213–220. [Google Scholar] [CrossRef]
- Liu, B.; Liang, E.; Zhu, L. Microclimatic conditions for Junipers saltuaria treeline in the Sygera Mountains, southeastern Tibetan Plateau. Mt. Res. Dev. 2011, 31, 45–53. [Google Scholar] [CrossRef]
- Liu, X.; Luo, T. Spatial temporal variability of soil temperature and moisture across two contrasting timberline ectotones in the Sergyemla Mountains, southeast Tibet. Arct. Antarct. Alp. Res. 2011, 43, 229–238. [Google Scholar] [CrossRef]
- Camarero, J.J.; Gutiérrez, E. Pace and pattern of recent treeline dynamics: Response of ecotones to climatic variability in the Spanish Pyrenees. Clim. Chang. 2004, 63, 181–200. [Google Scholar] [CrossRef]
- Macias-Fauria, M.; Johnson, E.A. Warming-induced upslope advance of subalpine forest is severely limited by geomorphic processes. Proc. Natl. Acad. Sci. USA 2013, 20, 8117–8122. [Google Scholar] [CrossRef] [PubMed]
- Liang, E.; Wang, Y.; Piao, S.; Lu, X.; Camarero, J.J.; Zhu, H.; Zhu, L.; Ellison, A.M.; Ciais, P.; Peñuelas, J. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. Proc. Natl. Acad. Sci. USA 2016, 113, 4380–4385. [Google Scholar] [CrossRef] [PubMed]
- Holtmeier, F.K.; Broll, G. Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Glob. Ecol. Biogeogr. 2005, 14, 395–410. [Google Scholar] [CrossRef]
- Harsch, M.A.; Bader, M.Y. Treeline form—A potential key to understanding treeline dynamics. Glob. Ecol. Biogeogr. 2011, 20, 582–596. [Google Scholar] [CrossRef]
- Miehe, G.; Miehe, S.; Vogel, J.; Co, S.; Duo, L. Highest treeline in the northern Hemisphere found in southern Tibet. Mt. Res. Dev. 2007, 27, 169–173. [Google Scholar] [CrossRef]
- Fang, K.; Gou, X.; Chen, F.; Peng, J.; D’Arrigo, R.; Wright, W.; Li, M. Response of regional treeline forests to climate change: Evidence from the northeastern Tibetan Plateau. Trees 2009, 23, 1321–1329. [Google Scholar] [CrossRef]
- He, J.; Luo, T.; Xu, Y. Characteristics of ecoclimate at Smith fir timberline in the Segyemal Mountains, southeast Tibetan Plateau. Acta Ecol. Sin. 2009, 29, 37–46. [Google Scholar]
- Liang, E.; Wang, Y.; Eckstein, D.; Luo, T. Little change in the fir treeline positon on the southeastern Tibetan Plateau after 200 years of warming. New Phytol. 2011, 190, 760–769. [Google Scholar] [CrossRef] [PubMed]
- Lyu, L.; Zhang, Q.; Deng, X.; Mäkinen, H. Fine-sale distribution of treeline trees and the nurse plant facilitation on the eastern Tibetan Plateau. Ecol. Indic. 2016, 66, 251–258. [Google Scholar] [CrossRef]
- Ren, Q.; Yang, X.; Cui, G.; Wang, J.; Huang, Y.; Wei, X.; Li, Q. Smith fir population structure and dynamic in the timberline ecotone of the Sejila Mountain, Tibet, China. Acta Ecol. Sin. 2007, 27, 2669–2677. [Google Scholar] [CrossRef]
- Lv, L.; Zhang, Q. Asynchronous recruitment history of Abies spectabilis along an altitudinal gradient in the Mt. Everest region. J. Plant Ecol. 2012, 5, 147–156. [Google Scholar] [CrossRef]
- Gou, X.; Zhang, F.; Deng, Y.; Ettl, G.J.; Yang, M.; Gao, L.; Fang, K. Patterns and dynamics of tree-line responses to climate change in the eastern Qilian Mountains, northwestern China. Dendrochronologia 2012, 30, 121–126. [Google Scholar] [CrossRef]
- Ran, F.; Liang, Y.; Yang, Y.; Yang, Y.; Wang, G. Spatial-temporal dynamics of an Abies fabri population near the alpine treeline in the Yajiageng area of Gongga Mountains, China. Acta Ecol. Sin. 2014, 34, 6872–6878. [Google Scholar]
- Wang, B.; Chen, T.; Xu, G.; Liu, H.; Wang, W.; Wu, G.; Zhang, Y. Alpine timberline population dynamics under climate change: A comparison between Qilian juniper and Qinghai spruce tree species in the middle Qilian Mountains of northeast Tibetan Plateau. Boreas 2016, 45, 411–422. [Google Scholar] [CrossRef]
- Paulsen, J.; Körner, C. A climate-based model to predict potential treeline position around the globe. Alpine Bot. 2014, 124, 1–12. [Google Scholar] [CrossRef]
- Zheng, D. A Study on the Ecogeographic Regional System of China; Chinese Business Press: Beijing, China, 2008. [Google Scholar]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B.; et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Lu, X.; Huang, R.; Wang, Y.; Sigdel, S.R.; Dawadi, B.; Liang, E.; Camarero, J.J. Summer temperature drives radial growth of alpine shrub willows on the northeastern Tibetan Plateau. Arct. Antarct. Alp. Res. 2016, 48, 461–468. [Google Scholar] [CrossRef]
- Lv, L. Timberline Dynamics and Its Response to Climate Change on the Tibetan Plateau. Doctor Thesis, Institute of Botany, Chinese Academy of Sciences, Beijing, China, 2011. [Google Scholar]
- Xu, Z.; Hu, T.; Zhang, Y. Effects of experimental warming on phenology, growth and gas exchange of treeline birch (Betula utilis) samplings, Eastern Tibetan Plateau, China. Eur. J. For. Res. 2012, 131, 811–819. [Google Scholar] [CrossRef]
- Zhao, F.; Zhang, B.; Yu, P.; Pang, Y.; Yao, Y. A study of the contribution of mass elevation effect to the altitudinal distribution of timberline in the Northern Hemisphere. J. Geogr. Sci. 2014, 24, 226–236. [Google Scholar] [CrossRef]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef]
- Gorczynski, L. The calculation of the degree of continentality. Mon. Weather Rev. 1922, 50, 369–370. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna). 2015. Available online: http://www.r-project.org (accessed on 25 November 2016).
- Grömping, U. Relative importance for linear regression in R: The Package relaimpo. J. Stat. Softw. 2006, 17, 1–27. [Google Scholar] [CrossRef]
- Ray-Mukherjee, J.; Nimon, K.; Mukherjee, S.; Morris, D.W.; Slotow, R.; Hamer, M. Using commonality analysis in multiple regressions: A tool to decompose regression effects in the face of multicollinearity. Methods Ecol. Evol. 2014, 5, 320–328. [Google Scholar] [CrossRef]
- Huang, R.; Zhu, H.; Liu, X.; Liang, E.; Grießinger, J.; Wu, G.; Li, X.; Bräuning, A. Does increasing intrinsic water use efficiency (iWUE) stimulate tree growth at natural alpine timberline on the southeastern Tibetan Plateau? Glob. Planet. Chang. 2017, 148, 217–226. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Y. Vertical Climates in the Hengduan Mountains and their Impact on Forest Distribution; China Meteorological Press: Beijing, China, 2010. [Google Scholar]
- Liang, E.; Wang, Y.; Xu, Y.; Liu, B.; Shao, X. Growth variation in Abies georgei var. smithii along altitudinal gradients in the Sygera Mountains, southeastern Tibetan Plateau. Trees 2010, 24, 363–373. [Google Scholar] [CrossRef]
- Liu, X.; Qin, D.; Shao, X.; Chen, T.; Ren, J. Temperature variations recovered from tree-rings in the middle Qilian Mountain over the last millennium. Sci. China Ser. D 2005, 48, 521–529. [Google Scholar] [CrossRef]
- Liang, E.; Shao, X.; Qin, N. Tree-ring based summer temperature reconstruction for the source region of the Yangtze River on the Tibetan Plateau. Glob. Planet. Chang. 2008, 61, 313–320. [Google Scholar] [CrossRef]
- Liang, E.; Shao, X.; Xu, Y. Tree-ring evidence of recent abnormal warming on the southeast Tibetan Plateau. Theor. Appl. Climatol. 2009, 98, 9–18. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, Y.; Shao, X.; Liu, X.; Xu, Y.; Liang, E. Millennial temperature reconstruction based on tree-ring widths of Qilian juniper from Wulan, Qinghai Province, China. Chin. Sci. Bull. 2008, 53, 3914–3920. [Google Scholar] [CrossRef]
- Li, X.; Liang, E.; Gričar, J.; Prislan, P.; Rossi, S.; Čufar, K. Age dependence of xylogenesis and its climatic sensitivity in Smith fir on the south-eastern Tibetan Plateau. Tree Physiol. 2013, 33, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Rossi, S.; Liang, E.; Camarero, J.J. Temperature threshold for the onset of xylogenesis in alpine shrubs on the Tibetan Plateau. Trees 2016, 30, 2091–2099. [Google Scholar] [CrossRef]
- Asad, F.; Zhu, H.; Zhang, H.; Liang, E.; Muhammad, S.; Farhan, S.B.; Hussain, I.; Wazir, M.A.; Ahmed, M.; Esper, J. Are Karakoram temperatures out of phase compared to hemispheric trends? Clim. Dyn. 2016. [Google Scholar] [CrossRef]
- Liu, B.; Wang, Y.; Zhu, H.; Liang, E.; Camarero, J.J. Topography and age mediate the growth responses of Smith fir to climate warming in the southeastern Tibetan Plateau. Int. J. Climatol. 2016, 60, 1577–1587. [Google Scholar] [CrossRef] [PubMed]
- Schickhoff, U. The upper timberline in the Himalayas, Hindu Kush and the Karakorum: A review of geographical and ecological aspects. In Mountain Ecosystems: Studies in Treeline Ecology; Broll, G., Keplin, B., Eds.; Springer: Berlin, Germany, 2005. [Google Scholar]
- Zhu, H.; Shao, X.; Yin, Z.; Xu, Y.; Tian, H. August temperature variability in the southeastern Tibetan Plateau since AD 1385 inferred from tree rings. Palaeogeogr. Palaeoclimatol. Palaeocol. 2011, 305, 84–92. [Google Scholar] [CrossRef]
- Shen, M.; Piao, S.; Dorji, T.; Liu, Q.; Cong, N.; Chen, X.; An, S.; Wang, S.; Wang, T.; Zhang, G. Plant phenological responses to climate change on the Tibetan Plateau: Research status and challenges. Natl. Sci. Rev. 2015, 2, 454–467. [Google Scholar] [CrossRef]
- Case, B.S.; Duncan, R.P. A novel framework for disentangling the scale-dependent influences of abiotic factors on alpine treeline position. Ecography 2014, 37, 1–14. [Google Scholar] [CrossRef]
- Zhang, B.; Yao, Y. Studies on Mass Elevation Effect; China Environmental Science Press: Beijing, China, 2015. [Google Scholar]
- Yao, Y.; Zhang, B. The mass elevation effect of the Tibetan Plateau and its implications for Alpine treelines. Int. J. Climatol. 2015, 35, 1833–1846. [Google Scholar] [CrossRef]
- Zhao, F.; Zhang, B.; Zhang, S.; Qi, W.; He, W.; Wang, J.; Yao, Y. Contribution of mass elevation effect to the altitudinal distribution of global treelines. J. Mt. Sci. 2015, 12, 289–297. [Google Scholar] [CrossRef]
- Shen, W.; Zhang, L.; Liu, X.; Luo, T. Seed-based treeline seedlings are vulnerable to freezing events in the early growing season under a warmer climate: Evidence from a reciprocal transplant experiment in the Sergyemal Mountains, southeast Tibet. Agric. For. Meteorol. 2014, 187, 83–92. [Google Scholar] [CrossRef]
- Rehm, E.M.; Feeley, K.J. Seedling transplants reveal species-specific responses to high-elevation tropical treeline trees to climate change. Oecologia 2016, 181, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kullman, L. One century of treeline change and stability—Experiences from the Swedish Scandes. Landsc. Online 2010, 17, 1–31. [Google Scholar] [CrossRef]
- Camarero, J.J.; García-Ruiz, J.M.; Sangüesa-Barreda, G.; Galván, J.D.; Alla, A.Q.; Sanjuán, Y.; Beguería, S.; Gutiérrez, E. Recent and intense dynamics in a formerly static treeline. Arct. Antarct. Alp. Res. 2015, 47, 773–783. [Google Scholar] [CrossRef]
- Zhu, K.; Woodall, C.W.; Clark, J. Failure to migrate: Lack of tree range expansion in response to climate change. Glob. Chang. Biol. 2012, 18, 1042–1052. [Google Scholar] [CrossRef]
Variable | Correlation (r) | p Value |
---|---|---|
Latitude | −0.45 | <0.001 |
Longitude | −0.19 | 0.13 |
Elevation of mountain peak | 0.47 | <0.001 |
Aspect | −0.09 | 0.50 |
Slope | 0.01 | 0.79 |
Eastness | −0.18 | 0.19 |
Vegetation thickness index | −0.13 | 0.40 |
July mean temperature | −0.51 | <0.001 |
July minimum temperature | −0.48 | <0.001 |
July maximum temperature | −0.32 | 0.03 |
May precipitation | −0.31 | 0.03 |
Continentality | −0.24 | 0.08 |
Surface solar radiation | −0.26 | 0.05 |
Reference | Study Area (Site Code) | July Mean Temperature Extracted from Worldclim Data (°C) | Reference Value (°C) | Source of Climate Data | Period of Climate Data |
---|---|---|---|---|---|
Unpublished data | Dulan, northeastern TP (DL1) | 8.5 | 8.2 | In situ data | 2013 |
[8] | Nyingchi, southeastern TP (LZ1) | 8.5 | 8.2 | In situ data | 2007–2009 |
[38] | Deqin, southeastern TP (BM1) | 7.9 | 7.4 | In situ data | 1981–1984 |
Predictors of Treeline Elevation | R2 (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Species * | Lat ** | Lon | MP * | Aspect | Slope | TI | MeanT_7 *** | Pre_5 | Con | SSR | 85.7 |
Species * | Lat ** | Lon | MP * | Eastness | TI | MeanT_7 *** | Pre_5 | Con | SSR | 79.1 | |
Species * | Lat ** | MP | MeanT_7 *** | 72.6 | |||||||
Species * | Lat ** | MeanT_7 *** | 72.4 | ||||||||
Species * | MP ** | MeanT_7 *** | 54.9 | ||||||||
Lat ** | MP * | MeanT_7 *** | 44.7 | ||||||||
MP ** | MeanT_7 *** | MeanT_7 × MT | 48.4 | ||||||||
MP ** | MeanT_7 *** | 36.2 | |||||||||
Lat ** | MP * | MeanT_7 *** | MeanT_7 × Lat *** | 44.8 | |||||||
Lat ** | MP * | MeanT_7 *** | 44.8 | ||||||||
Lat *** | MeanT_7 *** | MeanT_7 × Lat | 44.5 | ||||||||
Lat ** | MeanT_7 *** | 44.4 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Liang, E.; Sigdel, S.R.; Liu, B.; Camarero, J.J. The Coupling of Treeline Elevation and Temperature is Mediated by Non-Thermal Factors on the Tibetan Plateau. Forests 2017, 8, 109. https://doi.org/10.3390/f8040109
Wang Y, Liang E, Sigdel SR, Liu B, Camarero JJ. The Coupling of Treeline Elevation and Temperature is Mediated by Non-Thermal Factors on the Tibetan Plateau. Forests. 2017; 8(4):109. https://doi.org/10.3390/f8040109
Chicago/Turabian StyleWang, Yafeng, Eryuan Liang, Shalik Ram Sigdel, Bo Liu, and J. Julio Camarero. 2017. "The Coupling of Treeline Elevation and Temperature is Mediated by Non-Thermal Factors on the Tibetan Plateau" Forests 8, no. 4: 109. https://doi.org/10.3390/f8040109
APA StyleWang, Y., Liang, E., Sigdel, S. R., Liu, B., & Camarero, J. J. (2017). The Coupling of Treeline Elevation and Temperature is Mediated by Non-Thermal Factors on the Tibetan Plateau. Forests, 8(4), 109. https://doi.org/10.3390/f8040109